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A COMMON FORM FOR AUTOTOPIES OF n-ARY GROUP
WITH THE INVERSE PROPERTY

Leonid A. Ursu

Abstract

In this article it is proved that every component of an autotopy of =n-IP-group is its
quasiautomorphism and a common form of quasiautomorphisms and autotopies of such groups is
also established.

A quasigroup Q(A) of arity mn is called a n-group [1] if the following
identities

F—~1 +=1 2n-1 f—1 +n=-1 2n-1
A(xi ’A(xll'+" )’xf-I’-T] )::A(x]] :A(xj‘ " ):xj-rltl)

hold in it for all x¥'eQ® andall i,jeln, i#]. _
There exist n-ary groups without an identity element and mn-ary groups
with more than one identity elements [1].
A group Q(A) of arity n is called symmetric [1] if
Axg1) = A(x])
for every xi €(Q" and every a €S,, where §, isthe symmetric group:

of the degree n. ‘
According to the Gluskin-Hosszu theorem [1] each n-group Q(A) is reduced

to a binary group Q{'):
A(x]') = xy - gxy - 07x3. 0", - K,
where ¢ is an automorphism of Q(}, k¥ is a fixed element of @ and
| ok=k, o Tx=k-xkl
If QA) is a symmeiric n-group without an identity element, then
A(x)) =% -xy - x30...0%, - k. (1)
If Q(A) is a symmetric n-group with an identity element, then

A(x()=x; Xy - X37...%,,, (2)
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where Q) is an abelian group.
A quasigroup Q(A) of arity n is called a quasigroup with the inverse
property (briefly a n-IP-quasigroup) [1] if there exist such substitutions v; of

Q, i,J ef;;, v; =& (e is the identity substitution) that the identities
i—1
A({V.!‘jxj}lj:] ’ A(xil)’ {v{jxj}'}:l'-l'l) = X;

hold for every x{ eQ", i eln

The matrix

4 € Viz Vi3 .- Vi 8.‘

Vai E V23 s Vzn g

(V,j) = | V31 Va2 £E ... V3, £
Lvnl Via Vp3 ... & € J

is called an ‘nverse matrix of Q(A)

It is known [2], that the inverse property holds only in the following
n-groups:

a) all symmetric n-groups with an identity element. For such a gfoup the

inverse matrix is

fe 1 1 .. 1 ¢)
I ¢ I ... I &
D=1 I e .. I €]|; (3)

J I I .. & ¢
b) all symmetric n-groups without an identity element. For them

(e 1L, I, T I I
I s I, I I I €
L, IL g I I I e
o= "* ; (4)
ka ka I £ I I £
L L 111 e e
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¢) all nonsymmetric n-groups without an identity element which are
reduced to binary abelian groups. For such n-groups

9’ =5, K =e,
where e is the identity element of Qf), ie.
AT ) =3, 0%y X3 QX QX - X, - K. (5)
In this case Q(A) has an odd arity and

(e 1 1 1 .. I &)
Iy ¢ Il lo ... Ip ¢
l I e I .. I ¢ '
O\ = .
) Ip Iop lo € ... Ik e}’ (6)
LI I I I .. e ]

An ordered (n+I)-tuple T=(af™) of subtitutions of @ is called an
autotopy of a n-group Q(A) if
o Ao ) = AGT).

nl
In particular, (o )=a is called an automorphism of Q(A).

The set of all autotopies of Q(A) forms a group with respect to the
multiplication of substitutions. This group is dencted by 3,.

The chief component «,,; of an autotopy 7T=(a") of a n-group is
called a quasiautomorphism of this group [1)

All quasiautomorphisms of a n-group form the group [1].

In this article it is proved that every component of an autotopy of
n-IP-group 1is its guasiautomorphism and a common form of
quasiautomorphisms and autotopies of such groups is also established.

Let T=(a},8) be an autotapy of a nonsymmetric n-IP-group  Q(A):

SA(X]) = A{{ox;Yy)- |
Denote
(@)= A({oe}isy)

Then, according to (5),

SA(xy' ) =B (x; - Pxp - X3 - QXg... QX _y - X, k) = A({ot,-x‘-}{-“___l)..
By
X| =Xy ==X F Xy ==X, =€
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we abtain
SRyx; = Li(a)o,x;,
whence
o; = L7 (a)0R; (7)
for each odd #, and
o; = L7 (a)8Ryo (8)
for cach even i, ie€l,n, where Ryx=x-k.
Thus,
T= (17" (a), L7 (a)8e871, 131 (@), L3} (a)8057",...,5R; 6 71)8R,, (9)
since

Ro=0R,: Rox=qx-k=q(x -ok)=0(x k)= oR,x.

If @A) is a symmetric n-group without an identity element, according to (1)
weput ¢@=g¢ in (9). In the case when @A) is a symmetric n-group with an
identity element we put ¢=R, =¢ in (9) according 1o (2).

Lemma 1. All components of an autotopy T=(u],d) of a n-IP-group O(A) are

quasiautomorphisms if L, (5), 0, R, @ SG), are quasiautomorphisms of Q(A4).

The proof follows from (7), (8) and the fact that the set of all
guasiautomorphisms of Q(4) forms a group.

Proposition. All components of any autotopy of a n-group Q(A4) of the form

A(xy Y =2 0xg - X3 OXge.QX, | X, - K,

where () is an abelian group, are its quasiautomorphisms.

Proof. We have for each odd i:

Li(@)A(]) = A({e e}, A e i) =
=0 € POy 03¢ POy ... PO, _1e- X)  PXp - X3 PXye..."OX;_; -
X QX Nppan Oy X, k0O € O sl PO, 8 O, e k=
=X QX - X3 Qx4 Oxy - (L€ QU E - 038 POLge- QA g€ X; ¢
QU 1€ Q28 Py, 1€ LK) QX g X QX Xy K=

= A(xi™, Ao e x {o e ), xha) = AGT Li@)xg, x0y),

ie. L,-(E) is a quasiautomorphism of Q(A).
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For each even 1
— . ,_1
Li (a)A(xi') = A({aje}_’jzl » A(x{’)r {aje};::l'-l-l) =
= 0L POLye - Cl3€- POL4e ... POL_1€° PX) * Xo - PX3 X4 PX;_)
X QX Xy QX k- A€ Q26 QU 18-y k=
= QX1 Xy QX3 X X (G1€ - OUpe - Ol3e - PUI4e-... Oliy€ Xy -
0416 Qo€ QU 18 0L, € k) X Xy Xjyp. Xy g OX, K =
0
= A({(pxj}‘jﬂ,Li (a)x;q, {(ij}?ﬂ),
ie. L (5) is a quasiautomorphism of Q(A).
We also have
Ry A(x] ) =Ry (x93 X3 @xg 9,y - X,y oK) =

= X] - OXy X3 QXge.. Xy R x, k= A(x{"l,ka,, ),

n—-1

ie. (E,Rk,Rk)ESA.
Note that ¢ is an automorphism of Q(A). Indeed,
QACX] ) = Q(X) @xy - X3 Xy QX - X,y K} =

= Xy - X QX3 Xy Xy 0X, K = A({ox 1),
If Q(A) is a symmetric n-group without an identity element, then in the
proof <wo put @=ge according (1). If Q(A4) is a  symmetric =n-group with an
identity element, then put ¢ =R, —=¢. Using Lemma 1 we complete the proof.

Lemma 2, Each quasiautomorphism § of a n-IP-group (Q(4)
A ) =% @xy - X3 Xy Xy Xy ok
has the form

where 0, issome automorphism of Qf).

Proof. Let T=(a},8) be an autotopy of a nonsymmetric n-IP-group
Q(A) without an identity element, which is reduced to a binary abelian group
Q)

A(X] ) = Xy Xy - X3 - QXye.o0X,_y - X, - K.
Transforming (7) and (8) we receive
o, = LY (@)dR, = L;(Ia)dR,
for each odd 7 and
o = I;(a)8R 0 = L;(19a)oRyo
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for each even 1, where

(Ia) A({Jo,e}" ’

i=1

(Ioa) = A({Tooe}L,).
Indeed, according to (6), by odd +{ it follows from

A({Ia e} _1,A({a e}j X, {aje}'}m.“),{Iocje}j.ﬂ.ﬂ) =x
that
Lo L(a)x=x, L'(a)x=L(la)x.

By even ¢ from

A({Too b2 A({a eVl x, o ey, ), Ugo el ) = x
it follows that
L(lga)L,(a)x=x, IL1(a)x=L(loa)x.
Hence, |
T =(1(Ia)8Ry., L (Ioa)8Ry @, L3 (1a)8Ry , Ly (Ioa)3Ryo, ..., L, (Ia)oR, ,3),
le,
SA(x!") = A(L;(Ia)8R %y, L (Ia)dR,oxy , Ly(Ta)SR, x5, .., L, (IaYoR, x,,) =
= A(ABR xy, Iase, ..., Jae), A(Toa e, 0R, 0x5 , fpae, ..., fpa,€),
L A(oe,.. Io, e,0R, %)) = Ry x; - Ipoe-. - Jo e k-
@(Joaqe- QORLOx; - Ipaze- foye-... Jopa,e k). - Joe- Tpage-.. - dR,x, k- -k =
=0Rpxy - I e-Ipoye- Toze - Ipoe-. - Jo,e - k-OR, px; - Tov e Ipaqe - Tose - Jpogye-.. - Ja e
ke OR0x,_ - Ioe Jpo,e- fage - Tpaye-. Joye- k-8R x,,
since  fpx = opix. But
BA(xT )y =d(xy- Oxy - X3 - QXg-... %, - k) = BR (X1 - @xy - X3 0X4...-X,, ),
and

loe- Ipase- Iose- Ioage. .. Ioe -k = f(dle (PO e-Oae- P e O e k) =

n
= JA({ae}f.)) = BA(e) = IB(e-pe-e-ge-...e- k) = Ik,
therefore |
6Rk (xl -(px2 -x3 -(px4-...-x”) = (Bkal Iﬁk)(ﬁRk(pxz Iﬁk)(SRk(px -1 'Iﬁk)‘ﬁkan.

Changing x,; for ¢x, (2i<n), and multiplying both parts of the last
equality by 8k we get
ORE(x) - xy...-x, ) IOk = (OR, x; - IOk) - (BRy x, - IBk)-...- (B8R, x,, - Idk).
Let ' )
OR x- Bk = 0yx. (11)
Then |
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Bo(x - X%, ) = Ogxy - Bgxy-...Bpx,,,
ie. B, is an automorphism of Q(-). It follows from (11) that
OR,x = Rg;Opx
whence (10) follows.
Note, that if Q(A) is a symmetric n-IP-group without an identity element,
then o¢=¢g, ie
A(xY =% %%, - K,
and according to (1) and (4)
a; = Li(a)8Ry = Li(IL,a)8R,, ieln,
where

L (_Isz)x = A(x,IL 04, Il 0qe, Toe, ... [a€),

Ly(ILa)x = A(IL e, x, I 0qe, Jage, ... Joe),

Ly (_I_L;c?)x = A(IL e, [ 0qe,x, Ioe,. .., Jo,e),
Ly (Ea)x = A(IL one, Il ome, fose, x, Intse, .., foue),

-------------------------

L,(ILa)x = A(IL e, I aqe, Joe,.., Jo, e, X).

Thus,
T=({L (TLga)3Re Yy, 8),
ie.
8A(x{') = A(AQGR, Xy, [L aqse, 1L 0qe, Taye,..., I e),
A(IL,one,8R x, Il 0ze, Jage, ... Jo,e),
A(lL ove, IL oqe, 0 x5, Ja e, . Jou,€),
A(IL,aqe, ILaqe, Toze, 8RR x4, l0ise, ..., I, €),
o AL e, I 0qe, Tose,... Io,,_e,0R,x,)) =
=OR, x; Jo,e-Tk-Jage- Tk - Io,e-. . - do,e k-
doe Ik-8Ryx, - Ioze - Ik lage-.. .- Joe k-
Joqe-Ik-Ioqae - Tk -8R x5 - Ioagze.. - Jo,e- k-
doye- Ik Ioqe- Ik Toqe-0Ryx, - fose-...-Io e k-
Lolane Tk Toye- Tk foge-. . T, _je-8R x, - k-k =
=(ORyx;  Jove- Iose-. Joe- Tk - (BRxy - Toye - Ioge-.. I ,e - Tk) -
O x, oy e foqee lage - T)-OR x,, .
Next, since
SA(X)) = B8R, (% Xg-...x,),
Toye-Joge.. Jae Tk =1(ae-oqe...ae k)=
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= HA({oe}ly) = BA(e) = B(e-e-..e-k) = Ik,

then, multiplying both parts of this equality by Bk, we have
OR, (x; x3-...-x, ) = (OR, xy - I0k) - (ORy x5 - BOk)-...-(8Ry x,, - IBK).
Let
. SRy x - Iok = 0,x.
Then
O (X1 -%2"...°%,, ) = 0% -0px5-..-0px,,,

ie Oy isan automorphism of Q() and (10) is true.

If Q@A) is a symmetric n-group with an identity element, then the proof is
analogous to that of a nonsymmetric n-IP-group when ¢ =g, k=e. Note that in

this case the automorphism 0,= Rg;ﬁ of @) is also an automorphism of
Q(A), since
eoA(X?) = Gg(x] : xz«...-xn) = eoxl 'eoxz'...'eox" = A(eoxl ,Qoxz,. ,.,Box,,).

Now we can easy prove the following

Theorem. Everyautotopy T=(a],d) of a n-IP-group Q(A):

A(xT) =X - Xy - X3 QX4 QX1 X, o K
has the form

T =(L7'(a) Ry, L;'(a)0p5 ' Ry, L3 (a) R,

- - ) (12)
L} (@)6p5 'Rg,,.... L, (a)Rg,, 8R; '6 ' Ry, )6,

where 0, = ngISRk is an automorphism of the binary abelian group Qf-).

Proof. Let 7=(a},8) be an autotopy of a m-IP-group @(A). Then according
to (9) this autotopy has the form '

T =(I;" (@) R, L3 (@)505 ™ Rye, L3 (@) Ry,
L' (a)5¢8 ™ Ry ..., L7 (a) Ry, 6R; ' Ry JRI6R,,.
But, by Lemma 2,

R3p8R, =8
is an automorphism of @Q(-) in all cases. The theorem is proved.

From this theorem it follows that
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1) if Q(A) is a symmetric n-IP-group without an identity element, then
according (1) with ¢ =¢ we have

I'= (L' (@) Ry, 17 (@)Rsy.,..., L (@) Rey ,OR; 87 Ry 0o,
2)if Q(A) is a symmetric n-IP-group with an identity element, then in
accord with (2), where ¢@=¢ and k=e¢, (12) takes on the form

T= ({L;'(@)Rse Yiet Roe B0, (13)
where 0, :Rg,_,lﬁ is an automoerphism of Q() and @Q(A). In this case the form
of an autotopy can be simplified. Really, since for each jieln

L (@) Rspx = Ly (T Rsx = A({Joje}'i, x-Be, (o e}y ) =
n
= Ioe Joge-. . Joy_je-x-84(e) o6 . Jo,e =
=loye-Ioqe .. . Jo; e x o dge... o8 0ue ;e ae- o e - Jo,e=

=X 0 = Ruiex,

L
Ogx = RiIox = R, Br = Bx - Joe = 84( e ,x, ¢ ) bA(e) =

= Qe . 018 OLX Oy €. e Joye oy e Joe - To, e o e =
-1
= 0% foue = Rpy 00x = R o01;X,

then (13) takes on the form
T = ({ R, Ji=1, Rse )80, (14)

where GozR;llea,- is an automorphism of Qf:) and Q(A).

Note that when n=2 the known result from [3] for abelian groups follows.
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