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About some algebraic systems related with
projective planes

Evgenii A. Kuznefsov

Abstract

The present article is a survey of author’s results on the investigations
of algebraic structures related with projective planes, some new
theorems are proved too.

The projective plane is the incidence structure <X, /. 7>
which satisfies the following axioms:

1} Given any two distinet points from X there exists just one
line from L incident with both of them.

2) Given any two distinct lines from L there exists just one
point from X incident with both of them.

3) There exist four points such that a line incident with any
two of them is not incident with either of the remaining two.

This article is a survey of some author’s results (see [2,7]) about
algebraic structures related with projective planes (finite as a rule, if
the contrary is not stipulated), some new theorems are proved tco.
The main aim of article is to demonstrate the correlations in the

following scheme:
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About some algebraic systems..

unique solution in the set E. If in quasigroup <£FK,> there exists

element e¢e€ £ such that
X-g=¢e-x=Xx
for any xek, then system <FE.> iscalled a loop.

Definition 2. [2] A system <£E (x,,¥),01> is called a
DK-ternar (eg. a set E with ternary operation (x,r,y) and
distinguished elements 0,1 F), if the following conditions hold:

1. (x0,y)=x

2). (e Ly)=y;

3). (x,f,x)=x

4). 0,1, )=0;

D). If a,b,c and d are arbitrary elements from E and

a % b, then the system
{(x,a,y) =,
(x,0,y)=d,
has an unique solution in £ xE.
6). Either set E is finite, or
a) if ab,c are arbitrary elements from E and
¢#0, (¢,a,0)#b, then the system
{ (x,a,y)=0,
(x,t,y)#(c,1,0) Viel,
has an unique solution in £ xE.
b) if a,b are arbitrary elements from E and /=0, then
inequality
(a,t,b)#(x,10) Viek

has an unique solution in £.
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If the set E is finite, then conditions 6a) and 6h) are corollaries
of the conditions 1)-5) of Definition 2. Proof of this statement will be

given later.

Definition 3. A set M of permutations on a set X is called
sharply (strongly} 2-transitive, if for any two pairs (a,h) and (c.d)
of different elements from X there exists an unique permutation
ae M satisfying the following conditions

ala)=c, alb)=d.

Definition 4. [3] Let G be a group and H be a subgroup mn G.

A complete system T of representatives of the left (right) cosets in G
toH (e=t eH) is called a left (right} transversal in G to H.

ILet T be a transversal (left or right) in G to H. We can
introduce correctly the following operations on A (A is an index set;
left (right) cosets in G to H are numbered by indexes from A):

rj=v >t =thheH,
if T is a left transversal, and
*j=w > 11, =kt heH,

if T is a nght transversal

Definition 5. Let T be a left (right) transversal in G to H. If
the system <A,*1> (<Apel>} is a loop, then T is called a left
{right) loop transversal in G to H.
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1. Projective plane and DK-ternar

Lemma 1. Let 71 be a projective plane. It is possible to
introduce coordinates (a,b),(m), (=) for points and {[a,b],{m],[x] for
lines from =n (where a,bme E, E is some set with distinguished
elements 0 and 1), such that for operation (x,t,y), where

def
(x,t,y)=z < (x,y)elt:z],

the system < E,(x,¢, ¥),01> isa DK-ternar.

Proof. Let © be an arbitrary projective plane. Let XY, O, he

arbitrary four points in the general position on =.
Suppose, by definition,
[AY}=[»},  [Of]=]0)
0 =1(0,0); I=(}).
Then

def
[oc]~[0] = (e0).
All other points of the line [(] are attributed by definition by the
symbols (a,a) {where ag#0]l), and different points are attributed by
different symbols.
Let P be an arbitrary point from m and P ¢[x] Let us have

[AR]N[0]=(a,a); "
{YPIn[0]=(b,b).
Then suppose, by definition,

def
P =(a,b).

19
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ko] [0}

It is evident that points of the line [0} will have their own
coordinates.

Let [L} be an arbitrary line from 7 and (x) ¢ [L]. Let us
have

L] = (01 :
{u 0N v (mm 2

[L] N [x] = Z;

Then suppose by definition:

oef
Z ={(m).
In particular,
X = (0}, Y =(1).
Suppose by definition:
od
() v (d,0) =[d]} (3)

Finally, let [S] be an arbitrary line from n and {x) ¢ [S].

Let us have

11
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Sl {x] = (c);
{[]m{w] (©) @

(S}~ {0} = (d a);
Then suppose by definition:

odf
[S] = [c d].
Let us define the ternary operation (xf ¥) by the condition of

Lemma, e.g.

cef
ty=u < xyelity

and verify that conditions 1)-6) of Definition 2 hold.
a). (x,0,y)=1x.
(x,0,y)=u < (x,y)e[0,u] <
<> {(the points (x,y),(0) and (w,») lie in a common line (see (4)) —
= (u,0)={0](x, ) (D]=(x,x) = w=x
b). (x.], y)=y.
The proof is analogous to that of a).
c). (x,1,x)=x.
(x,t,x)=u < (x,x)e[t,u]
<> (the points (x,x),(¢) and (w,u) liein a common line (see (4)) —
= u=x
d). (0,t,1)=1.
0,t)=u < ODHe[t,v] <
¢»> (thepoints (0,1),(/) and (w,un) lie in a common line (see (4)) =
= (u=t (see(2)).
e). Let ab,c,d be arbitrary elements from E and a=b.
Then we have
{(r,a,y)= 5 {(x,y) e [a,¢]
(x,0,y)=d, (x,y) € [b,d]

There exists an unique such point (x,y) in the projective plane =

< (x,y)=la,cln[b,d]

12
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f). If E is a finite set, then the proof is completed. Let E be
an infinite set, a,b,c arbitrary elements from E and ¢ =#0,{(c,a,0)= 5.
Then we have
(x,y)ela,b]
(c,0) ¢ [a,b] <>

{ (x,a,y)=b,
(x, _
(x,v)u(eO)=[t,ul] Yiue

t,y)={c,t0) Vtelk,

{ (x,y) € [a,b]
(x, ¥)u(c,0)=[c]

There exists an unique such point {(x,y) in the projective plane m.

< (x,v)=[a, b]lnc]

The proof of the condition 6b) of Definition 2 is analogous to

that of 6a). Thus the system < FE (x ¢, v).0,1> is a DK-ternar. [}

Lemma 2. Let <FE.((x,,y),01> bea DK-ternar and a be an
arbitrary fixed element from E, a=0,1. Then the system <FE{(x,a,y)>

18 a quasigroup.

Proof. Let the conditions of Lemma hold. Then we have for
arbitrary bce E
(x,a,y)=c; (x,a,y)=¢;
&>
y = b, L(xLy)=b,

There exists the unique solution (x;,b) of the last system in FExF,

(x,a,c)=¢ < {

Then the equation (x,a,b)=c¢ has a unique solution x, in E. The

reasoning for the equation (b,q,y)=c is analogous. %
Lemma 3. Let the conditions 1)-5) of Definition 2 hold true

and the set E be finite. Then conditions 6a} and 6b) of Definition 2
hold.

13
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Proof. Let conditions of Lemma hold. Let a,b,c be arbitrary

elements from E, c¢#0, (c,a,0)2b. We will demonstrate that the

system

(x,a,y)=5,
(x,1,y)=(c,1,0) Vtek,

has an unique solution in £ x £ (e.g. the condition 6a} of Definition 2

holds).
Let us study the system

| (ay)=b
((x, 4, y)={c,2,0);

for every fixed ¢ € £ -{a}. This system has a unique solution (x,,y,)
in I'x k. Let us assume that
L #£ 1,
{(xrl Yo )= (%0, 30, ),
Then the system

{ (x,4,y)=(c,4,0),
(x,1y,y)=(c,15,0);

has two distinct solutions (¢,0) and (x;,3,)=(x,,y,) in Exk
((xrl Y ) # (¢,0), since (xﬁ ., Yy y=b#{c,a,0)). It contradicts the
condition 5) of Definition 2. So
(% Y )2 (X, 0,) & h#h.
Then
card{(x,,y,)] te E-{a}} = card{E-— fa}y =n-1,

where »=card £. From the other side,

card{(x,y)l (x,a,y)= b} =,

14
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since this number is equal to the number of cells with the element b
in table of the operation (x,a,y) (see Lemma 2 too). So there exists

an unique pair (x,, V) € £ x [ that satisfies the following system:

(xOsa,yO) = bs
(xoa)’())i(xn)’:) VteF- {a}:
This pair (xy,);) is the unique solution of the initial system from the

condition 6a) of Definition 2, e.g. this condition holds.

Proof of the condition 6b} is analogous to that of 6a). L]

Let us introduce the following binary operation (x,oc, ¥) on E:

def
(x,00,0) = 0,
(x,oo,y): u, def 1
() e@oy, & ZENF@L0) viek

As we can see from the condition 6b) of Definition 2, the operation

(x,,y) is defined correctly.

Lemma 4, Operation {x,w, y) satisfies the following conditions:

1) {(x’m’y):("’m’v); < (e, y)=(utv) Yiek (5)

(x, y) # (u,v),
2)  (x,o,x)=0
3}  There exists an unique solution in Ex E of the system
JL(x,a.y) = b,
(x,%0,y)=¢,
for an arbitrary fixed a bcc E.

4) System < E (x,00,y)> is a quasigroup.

15
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Proof. 1). Let
{(x,oo, yY=(u,0,v)=d,
(x, ) # (u,v),
Then we have by the definition of the operation (x,x, y):
(x,1,y)#(d,1,0) VtekE, (6)
(n,t,v)=(d,10) ViekE (7)
Assume that there exists 7, € £ such that
(x, 1, )= (0,4, v) = Wy, (8)
Then the system
{ (x.25, ¥) = wy;
(x,6,yy=(d,10) Vte L
has two distinct solutions: (x,y) and (u,v) (see (6)-(8)). It contradicts
condition 6a) of Definition 2, since
(x,0,y)=(u,r,v) Viek.
Conversely, let
(xq, 1, Y0) % (1,1,vy) VieE (9)
Then we have (when ¢=0})
Xp Uy Yo F Vo,
Le. (xg,¥0) # (14,V0)-
Let
(xp, %, ¥y)=d.
Then we have by the definition of the operation (x,x, y):

(xp,2, ¥n) = (d,1,0) VieE (10)
Let us agssume that there exists /, € £ such that
(1y.15,v) = (d,45,0) = z,. (11)
Then the system
{ (x.20.¥)= Zo;
(x, 1, ¥) = {xp,1,y9) ViekL,

16
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has two distinet solutions: (w,,vy) and (d,0) (see (9)-(11)). It
contradicts the condition 6a) of Definition 2, since
(1,8, vg) 2 (d, 1,0y Vel
Then we have by the definition of the operation (x,=x,y):
(#,%¢,vq) = d = (xy,%, yy).
2). By the definition of the operation (x,x,y) we have
(0,2,0)=0
If x+0, then
0,1,y =0=x={(x,t,x) Vtelk,
{see condition 3) of Definition 2) and thus
(x,20,x)=(0,%,0)=0
(see p. 1) of this Lemma).
3). Let ab,c be arbitrary fixed elements from E.
Case A: ¢=0,
Then the system from the condition 3) of Lemma has the
following form

(x,%,y)=0,
It is easy to see that the pair (x,y)=(bb) is a solution of system (12).
Let us assume that there exists other solution (x',)'}=(5,4) of the

system (12). Then we have

(x',a,y")=0&; (x',a,3')=b,
(x'.2,y)=0=(ho.b), — |(x.,y)=(btby=h Viek

It is impossible, since there exists an unique solution (b b) of the
system (12).

Case B: (c,a,0)=4b

Then the system from the condition 3) of Lemma has the

following form

17
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{(x,a,y) =b=(c,a0), (13)

(x,%, y)= ¢ ={c,0,0);
It is easy to see that the pair (x,y)=(c,0) is a solution of the
system (13). Let us assume that there exists other solution
(x',¥')#(c,0) of the system (13). Then we have
{(x',a,y‘):(c,a,ox { (x',a,y')=(c,a,0);
{x',0, ¥')={(c,,0), (x',1,y"y#(c,1,0) YrekE,
It is impossible, since there exists an unique solution of the
system (13).
Case C: ¢c#0 and (c,a,0)=b
Then the system from the condition 3) of Lemma has the
following form

(x,a,y)= &,
{(x, (14)

Ly)={(c,t0) Vielk,
System (14) has an unique solution in £ x E (see the condition 6a) of
Definition 2).

4). Proof is analogous to that of Lemma 3. [

Let us introduce points (a,b),(m),(«<) and lines [a,b],[m], =]
{where a,b,me F) and define an incident relation [ between points

and lines by the following way (see [2]):
(a,b)l[c,d] <> (a,c.b)=d,
(a,p)ld] < (a,%,b)=d,
(a)l[c,d] < a=c, (15)
(@)[=], ()], (2){[=],
(a,b)I[x] <> (a)l{d) <> (o)][c,d] <> False.

18
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Lemma 5. The incidence system <P, 1., I >, where
P={(a,b),(m),(x)|a,b,m & E},
L={[a,b),[m],[c}|a,b,m < E},

I 1s the incidence relation from (15)

is a projective plane.

Proof. Let us verify the axioms of projective plane.

1). An arbitrary two distinct lines are intersected in unigue

oint.
a). The lines {a.b} and [c.d}:
If a=c, then we have from (15):
[a,6]1n[c,d]=]a,b][a,d]=(a).
If we assume that there exists a point (x,y) which lies both on lines
[a,6] and [a.,d], then
{(x,y)f[a,b]; o {(x,a,y)=b;
(x, yMia,d}, (x,a,y)=d,

ie. [a,bl=[a,d]. It is impossible since [a,#] and [a,d] are distinct

= b=d,

lines.

If a=c, then we have

{(x,y)lta,b]; o {(x,a,y):b-,
(x, y)fc,d], (x,c,y)=d,

By the condition 5) from Definition 2 there exists an unique such
point (x,y).

b). The lines [a,#] and {[d]:

We have

{(x,y)l[a,b]; . {(x,a,ym;
(x, »){d]; (x,,¥)=d,

19
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As we can see from the statement 3) of Lemma 4 there exists an
unique such point (x, y).
c). The lines [a,4] and [x], [m] and [d], [m] and [x]
We have
[a, 6] [>]=(a),
[min[d]= (=),
[m} [l = ().

2). There exists an_ unigque common_line for arbitrarv_two

distinct points,
a). The points {(a,6) and (c,d):
If there exists an element 7, € £ such that
(a,1y,b)=(c.ty,d)=f, (16)

theﬁ we have

(@, by (c,d)=[fo, /1 |
As we can see from the condition 5) of Definition 2, only one element
t, € £ with the condition (16) may exist.

If
(a,1,b)# (c,1,d) ViekE,

then by the statement 1) of Lemma 4 we have

(a,%,b)=(c,0,d)=h,

and
(a,b)u(c,d)=[h].
b). The points (a,b) and (m), (a,b) and {x), {m) and (n),
(m) and ().

We have
(a,by(my=[m,(a,mb)],
(a,b) (=)= [{a,=,b}],
(m)w(m)={=},
(myw (=)= {=x]

20
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3). There exist four points in a common position.

These points are (0,0),(1,0),(0) and (). Really, we have
(0,0)0(10)=[1,0],  (1,0y(0)=[01],
(0,000(0)=10,0],  (LO)w(=)=]1],
(0,0)u(0)=10},  (O)(w)=[x}

2, Cell permutations and pair loop of DK-ternar

Lemma 6. Let the system <k (x,z,y)0,l> be a DK-ternar. Let
a,b be arbitrary elements from E and a=##h. Then any unary

operation
a, p(1)=(a,i,b) (17)

is a permutation on the set E.

Proof. Let the conditions of Lemma hold. We can prove the

following: if 4 =1, then a,,(#)#a,,(#). Let us assume that there

exist f,t, € E such that

f] z 12,
(a,’iab):(aa’?,)b): k;
Then the system
{(x, f,y)=k;
(x’ tz:y) - k:
has two distinct solutions in Ex E: (a,h) and (k k). It contradicts

condition 5) of Definition 2.

Let us prove that for any ce £ there exists ¢, € [/ such that

c=a, 5({f)). We have (see Lemmas 4 and 5):

21
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C:aa,bUO) <>
o c=(a,l,h) <
< (ab)e[fy,c] <
<> (points (a,b),(fy) and (c,c) lie
in a common line in the projective plane n) <
& (th)=[xln[(a,b)u(e,c))

There exists an unique such element £, € F.

The permutations from Lemma 6 are called cell permutations.

Lemma 7. Cell permutations satisfy of the following conditions:

1). All cell permutations are distir ~¢:

2). (a,p 18 a fixed-point-/ 2z cell permutation) <>
{(a,00,b)=(0,,1)).

3). There exists fixed-point-free permutation v on E such that
we can describe all fixed-point-free cell permutations (with the
identity cell permutation ay;(?)) by the following form:

alt)=(a,;,\a)),  (M0)=1).

4). The set M of all cell permutations of DK-ternar is sharply

2-transitive on the set E,

Proof. 1). Let us have
(=0, 4(t) Yiek

Then
a=(a,0,b)=0a,,(0)=0.4(0)=(c,0,d)=c,
b=(al,b)=0,,()=0a.4)=(c1,d)=d,

ie. (a,h)={(c,d). Thus if (a,b)#(c,d), then a,,#a.,, eg all cell

permutations are distinct.
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2). (o, is a fixed-point-free cell permutation) <<
< (a,t,b)y=t=(0,)]) VieEk <
< (a,%,6)=(0,%1)
(see 1) from Lemma 4).

3). It is a trivial corollary of 2} and the statement 4) of Lemma

4). Let ab,c,d be arbitrary elements of E and a=#bc#d.
Then we have
o, (@)=c (x,a,¥)=¢
{ax,;.(b):d; < {(x,b,y)-:d;
By the condition 5) of Definition 2 there exists an unique solution

(x,y) of the last system; moreover, x %y, since c¢#d. So the set M

of all cell permutations is sharply 2-transitive on E. [

Lemma 8, Let M= {aa,b} ; be a set of permutations on the

ahe lf
set E (E 1is a finite set with distinguished elements 0 and 1), and
the following conditions hold:
1) (IO._‘ = ld,
2) (X.a’b(O) =4, aa,b(l) = b;
3) Set M is a sharply 2-transitive set of permutations on E.

Let us suppose by definition:

def
(x’ t’ x) = x?

def
(xLy) = o (1), if x+y

Then system < £&,(x,t,y),0,1l> 1is a DK-ternar.

23
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Proof is a trivial verification of the conditions 1)-5) of

Definition 2.

Let the system <Z (x,f,y),0,l> be a finite DK-ternar. Let us
define on set
ExE-{A}= {< a,b>labe Ea+ b} the following binary operation:

def
<x, > <z,u> = <(x,z,y){x,uy)> (18)

Lemma 9. The system <ExE—-{A}, .. <0l>> 15 a loop.

Proof is given in [2].
This loop is called a pair loop of the DK-ternar < £,(x,f,v),01>.

Lemma 10. Let us have a finite set E with distinguished
elements 0 and 1. Let on the set Ex FE—-{A} a binary operation “*“
is defined such that system <ExFE-{A},,<0l>> 15 a loop. Then the
next conditions are equivalent:

1)  The system <FExE—-{A},,,<0]1>> 1is a pair loop of some
DK-ternar;

2) The following quasiidentities hold on < Ex [ —{A},,<01>>:

a) (<x,y>-<z,u>=<y,w>) = (<X, y> <UI>=<W,V>),

b} (x,y> <zju>=<yvw>nz0) = (<x,y> <0 u>=<x,w>),

c) (ex,y>-<zu>=<yw>uzl) = (<x,y> <lLus=<yw>),

Proof is given in [2]

24
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3. Pair loop of DK-ternar as a loop with conditions

on cosets by two subloops

Lemma 11, Let the system <A, e> be a finite loop of order
n(n—1). Then the following conditions are equivalent:
1). The loop < A,,e> is isomorphic to the pair loop of some
finite DK-ternar.
2). Loop < A,;,e> satisfies the following conditions:
a). There exist two subloops A, and B, in the loop A,
such that
card 4, = card B, = n—1, Ay By = {e}.
b). The loop A may be represented in a form of
disjunctive unifications of left cosets A, and B, by the subloops 4,
and B, respectively:

ieE JEE

where E 15 an index set, cardE =#n.

c). It is true forany i,je k:

1y if i=j, then
AN By ={x;},

and  X; #Xg,, when (i, j)={k,m); moreover, any
X € A may be represented in that form;
2) if 1=/, then 4,"B;=0.

d). The element a,= A4 "B, satisfies the following
conditions:
1) a, e N,.(4), where N_(4) is a right kernel of
the loop A;

2) A"'a()::BI', Bj'aU:AJ,
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e). It is true for any cy € A:
C()'A,-:Aj, C[)'B‘:-’:Bj, Yie kL,

Proof.

1) = 2). Let loop <A e> is isomorphic to the pair loop
<fx E-{A};,<0]1l>> of some finite DK-ternar. Let us verify that the
conditions 1)-5) of Lemma hold.

1). Let us study the following subsets of the pair loop:

Ay ={<0,x >x € E~{0}},
B = {< x,1>jx € E—{l}}.
If cardk=n, then cardd, =cardB =n-1. Since
<0,x> <0 y>=<0/40,y, x)>

<xl> < yl>=<(x,y1)]>
<0]l>e 4y B;;

then 4, and B; are subloops of the pair loop. Finally, it is evident

that
Ay By ={< 01>},

2). Consider the following subsets of the pair loop:
A= {< 1Ly>lyek~{},i is afixed element from E}

B;=

| (1)
{< x, j>x e E—{j}, j is a fixed element from £};
It is evident that

v 4= v <hyr=ExE-{A}= A

ieE ivelr
i#y

v Bi= v <x, jr=ExE-{A}= 4
jek FRIN
i#x

By the help of Lemma 10 we obtain
<t yg> <Qu>=<iw> = <l yy>-A4y=4;

<xp, fro<ul>maw j> D <xy, j> By =8,

26
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ie. the sets A, and B, are left cosets by the subloops 4, and B5

respectively.
3). It is evident since
{<i,j>}=A4;n 8B,
<hLi>g ExE~{A}.
4). We have
A By = {<1,0 >}
and by the help of Lemma 10 we obtain
(<x,y> <uz>r<l0>=<v,w> <l0>=<w v>=
=< X, y> <o u>=<x, y>(<uzc> <10>),
ie. <10>e N,.(4). We have too
<hLy> - <l0>=<y,i> = A-<0>=248;
<x,jr <l0>=<jx> = BJ-- <1,0>= 4
5). Let <a,b,> be an arbitrary element from /A x//—{A}.
Then we have for any i1, € E:
<@y, by >+ <y, ¥y >=<(ap,do, b ). (@, y.by) >=< jo, W >,
le,
<ay,by>-4; =A4; forsome jyelk
Analogously we obtain

<dy,by>-B;,= B, forsome kel
2) = 1)
Let the conditions 1)-5) of the present lemma hold for the

loop < A,,e>. Let us define the following reflection

0 A ExE-{A};
def
oA, "B;) = <i,j>

The reflection ¢ is a bijection (see the condition 3) of lemma). Let us

define the following operation “* on the set ExFE-{A}:
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def
<i j>-<km> = QX5 Xt )

where x, = A4,NB,. Operation “* is defined correctly, since ¢ iss
bijection. Moreover, since |
Xy - Xpm) =<4, j > < hym >= O(x;)- Xy, ),

then ¢ is an isomorphism of the loop < A4,,¢> on some pair log
<ExE-{A},,,<0]1> (and ¢(e)=0¢(4; ~B)=<0]1>).

Let us prove that this pair loop is a pair loop of some finite
DK-ternar. It is necessary to verify that the conditions 1)-3) of
Lemma 10 hold.

a). Let us have

<X, P> < Z, U=V, W >,

Then
x,,w:(p“l(<v,w>)=(p'1(<x,y>-<z,u>): |
=@ <X, y>) 0 <z, u>)= Xy Xy (20
By the help of the condition 4) we obtain
Yy @9 =(4,NB,) @ = (4,-a)"\(B, )= B, N A, =x,,, (1)
and
(Xpy " Xz} Ap = Xy - (X - ). (22)

From (20)-(22) we obtain
Xy = Xy A0 =Xy, - Xz ) Ay = Xy, (X A0} = X ) - X,
ie.
W,V 5= Xy ) =YXy, Xy ) =< X, Y >0 < th, 2 >
The quasiidentity 1) from Lemma 10 holds.
b). Let us have

<X,y > <zu>=<vw> u#0
Then

Xy = Xy " X gy,
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By means of the condition 5) we obtain
A, "B, =x,, = X "Xy = Xy (4, n,)= (23)
=(xg - A )N (xy, - B)=A4,B,

By virtue of the condition 3) we obtain for any /i, & £
4 ={zet B je E-tig) ={x, 17 e £ fi})
But the set 4; is a left coset by the subloop 4, and so there exists
Xy, € A such that
Xpg Ay = A, (24)
Since ee€ 4, then x, €4 ;eg x,=x,,; forsome j &k Then
we obtain from (24)
Xivjo Ay =4,
and since J; was an arbitrary element from F, then
Xy Ay = Ay (25)
for any x € L. From (23) and (25) it follows that
Xy Xy = Xy, (Ag VB = (X, )Xy, B = A By = xy. (26)
By the help of the conditions 2} and 3) of this lemma and the
identities {23)-{26) we obtain
A, = A, B, =B,
ie. v=mw=1{.In accord with (15)
Xy * Xy = Xxres
ie.
<x,y > <0,u>=0(xy, ) ¢(Xg,) = Xy, Xgu ) = PXyyy ) =< X, W >
The quasiidentity 2) of Lemma 10 holds.
c). Proof of quasiidentity 3) of Lemma 10 is analogously to that

H

of h).
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84. Sharply 2-transitive sets of permutations degree n

and loop transversals in §, to 5t,,(S5,)

Let us return to the set of cell permutations of some finit

DK-ternar. The following statement is true.

Lemma 12. Let E be a finite set and {E|=n. The following

conditions are equivalent:

1). Aset T is a loop transversal in S, to 81, ,(8,), wher
a,b e E are arbitrary fixed distinct elements;

2). Aset T isa sharply 2-transit:: : set of permutations on E;

3) Aset T isa sharply 2-tranc.i.we permutation loop on E;

The permutation loop is defined in [6].

Proof is given in [7]. L]

§5. Loop of points of a projective plane

In this paragraph it will be proved the definition of such binary
operation on the set of points of a projective plane, which is identical
to the operation of pair loop of DK-ternar corresponding to that plane.
This operation will be a loop (see §2) and since the loop of points

mentioned above will be called a loop of points of a projective plane.
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Let us have a projective plane =® and a DK-ternar
corresponding to it (see §1). Let us demonstrate the method of a
purely geometrical construction (with the help of an incidence relation
only) of the point (v,w) by the points (x,y) and (z,#) (where
x#y z#u), where <v,w>=<Xx,y>-<z,u> in the pair loop of the
DK-ternar mentioned above. The sequence of the construction will be

described step by step below.

X =(0), 0 =(0,0),

b Y=(1), T=(1)

are four points in a common position on the plane =

Huh={1  (00)vn=[0]
(0)w(0,0)=[00];,  (O)yu@)=[=x}

2).
3. [0,0]~[L1]=(0,)).

4), 0)yu(z,u)=[0,:z]; (Dou(z,u)y={Lul

5). [0,2]~[0)=(z,z), [, 2] [0])= (2,10},
6). (0O.Hyu(uw,u)={u,uj, (Ohu(z,z)=[zz]

7). [u,ul"{x] = (u), [z, 2] [x]=(z)

8) (x, yyo(u)y={u,(x,u, y)]=[u,w],
(@)=l (s )= (0]
9). [u, win[0]=(w,w), z,vIN[0]=(v,v).

10). (0O)u(v,v)=[0,v], (Hhu(w,w)=[l,w]
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11).  [O,v]n[L,w]=(v,w).
The point (v,w) is constructed.

| (0) |z.w]
(x.y) /

[0]

[0.0] (w.w)

[1.w]

{0.1)

[]

Fig. 1.

It is easy to see that we used the incidence relation only in the

construction described above. Then this construction is independent

from a coordinatization on the plane @ and could be done without

some coordinates on .
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