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Sharply 2-transitive permutation groups. 1

Evgenii A. Kuznetsov

Abstract

In this article a sharply 2-transitive permutation groups on some
set E (finite or infinite) are studied.

Sharply 2-transitive permutation groups were described by
Zassenhaus in [1,2]. He proved (see [3] too), for example, that sharply
J-transitive permutation group G on a finite set of symbols E is a
group G of linear transformations of some near-field < EA0>:

G = {aab ’ a,p(0)=a-t+bh, az0, ab,ic E}.
In the case when the set E is infinite, the problem of description of
sharply 2-transitive permutation groups on E is opened. Some
investigations in this direction were pursued in [4,5,6,7]. The same
problem was formulated by Mazurov in |8, Ne 11.52}.

In this work we try to describe some new approach to problem

- mentioned above by means of transversals in groups. Necessary

- definitions and propositions may be found in [9] and in the author’s

article [13] in this issue too.
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§1. Preliminary lemmas and a partition on cases

Let G be a sharply 2-transitive permutation group on au

arbitrary set E.

Lemma 1. All elements of order 2 from G are in orne and the

same class of conjugate elements.

Proof was given in [3] ¥

Since G is a sharply 2-transitive permutation group, then only
the identity permutation id fixes more than one symbol from E. So we

obtain the following two cases:

Case 1. Every element of order 2 from G is a fired-point-free
permutation on E.
Case 2. Every element of order 2 from G has exactly one fixed

point from E.

Lemma 2, Let o and f be distinct elements of order 2 from G.

Then the permutation vy = af} is a fixed-point-free permutation on E.

Proof was given in [3]

Let 0 and 1 be some distinguished distinct elements from E

Denote
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§2. A loop transversal in group G and its properties

Lemma 3. In both of cases 1 and 2 there exists a left transversal

I'in G to H, which consists from id and elements of order 2.

Proof. By the definition (see [9,10] a complete system T of
epresentatives of the left (right) cosets in G 1o Hy is called a left

right) transversal in G to H,.
If case 1 takes place, then we define the following set of

jermutations from G

I'= {tj}jEE;

o ;5 0
1=\ 0o if j#0; {1)

to — ld

Then T is a left transversal in G to Hy and for any =1

0 j ..
2_ o
tf"(o J ..)*’d’

ince only the identity permutation id fixes more than one symbol

rom E. So all nonidentity elements from T have order 2.

Let the case 2 takes place. Note (see proof in {3]), that for any
iven j, € £ there exists an unique element o« G of arder 2 such
hat afiy)=1iy. So there exists an unique element «, ¢ &G of order 2

uch that a(0)=0; moreover, a, € H,. Then define the following set

Tz{t_,.}jeE;

o ;)
rjzj 0 if j =0, (2)

Iﬂ =Gy
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Then T is a left transversal in G to Hy and further proof is analogous

to the same in case 1. 3

Lemma 4. Transversal T is a normal (invariant) subset in the

group G.

Proof. Let case 1 takes place. We have for any je F and e

W = 1h, (3)
where ke E he H, (since T is a left transversal in G to Hy). If =0,
then

ntn = nid- w7 =id =4,

If j#0, then we have from (3)

b=t ("), (4)
‘By means of Lemma 2 we obtain: product in the right part of (4) has
to be equal to id. Then we obtain

h=g'(m;m ") =1d,

since he Hy. Then for any jeF and ne(G we have from (3)

-1 _
TU‘J-')T —'tk>

7! T
From the last equality we have
Tern'fn=nin"" ,
where 7'=7n"! e G. So, for any me( we have
Tg?t:T?t“',
le.

T=nIn"t
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Then T is a normal subset in G.

Proof in case 2 is analogous to that in case 1. L

Lemma 5. Sef T 1s:
a loop transversal in G to Hg in case ;

a stable transversal [10] in G to Hy in rase 2

Proof. As we can see from Lemma 4,
T=nlrn"
for any meG. Then for any ne(; the set 7"=xln =7 is a left
transversal in G to Hgy. So by means of [10, theorem 2.1] we obtain

that T is a loop (correspondingly, stable) transversal in G to Hy, H

We can correctly introduce (see {9,10]) the following operation

on the set E:

def
i.j:kc:’zitj:tkh? h&:}jo

Then we obtain from Lemma 5 (see [9,1¢] too} that the system
<E:0> is:
a loop with the identity element 0 in case 1;

a quasigroup with the right identity efement # in case 2.

Lemma 6. Let's define the following permutation representation

a
(t of a group G by the left cosets to Hgy with the help of a left

transversal in G to Hy:

A def
gx)=y gl Hy =1, H,

Then we have
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4N A
G=G and g(x)=g(x)

forany xe ik,

Proof. Let all conditions of the Lemma hold. Then we have

N
glu)=v,
gtuHO = rvHCb
gtu = f‘,h, he HO!
8,0} = £, ,(0) = £,(0),
glu)=v,
~n T
ie. glu)y=g(u) for any weE. So the reflection @ g-—>g is an

"N
isomorphism between groups G and G. N

Lemma 7. The following identities hold on <E-0>:
1. x-x=0

2. x-(x-y)=y,

3. M=V

4 x-(y-(x z)=(x-(y-x))-z; (left Bol identity)

5. System <[E-0> is a left G-quasigroup.

Proof. All definitions see in [11]
1. We have forany xeF
to=id=t:=t1 =t h heH,,

e x-x=0,

2. We have for any x,ye F

Ly, =1, A, he Hy,

y:
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=1 h=1 0 h=1 K, He Hy

x(xey)o
le. x-(x-y)=y.
3. We have
X (x y)=y.
Since system < FE.0> is a quasigroup (in both of cases 1 and 2) then

we can replace: x = % Then we obtain for any y,ze F

()z=y

4. Let us denote

Therefore

B = (e et Y = =0

Xy Xy Vv x Txey yixtxys
Then we obtain by Lemma 6 and [9]:
hx,y(”) = tx-ytxty(”)z (x-y)-(x-(y-u)) (b)

-1
he (=20t )=y (x-((x-y)-u) (6)
for any w e E. From Lemma 4 we obtain for any x,yeF

~1
LAt =Lt =1,

xIyly
where
z=L(0)=t0,,(0)=x(y-x)
Now we have
Le(ux) = Dbyl = 0yl o = U pofle vy o

So

Py = Mo (7)

X, )X

From (5)-(7) it follows that for any x,y,uec £
(x-(y-xP(x-((y-x)uP=x-(y-((y x) )
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Since system < £-0> is a quasigroup (in both of cases 1 and 2) then
we can replace: w=(y-x) -#. Then we obtain
(x-(y-x))-(x- W)= x-(y-w).
Finally, we can replace: z=Xx-w. Then we have for any x, y rec f
(x-(y-x))-c=x-(y-(x-z),
since
x-z=x-(xwW)=w,
(see 2.). We proved that the system <FE: 0> is
laft Bol loop in case 1;
left Bol quasigroup in case 2;
{see definitions in 11, 12}).
5. We have for any ac £
1, =10 he Hy,
told = ' he Hy,

a‘x*y'n a‘xy'a o
-
1
hGH{},

s Lt 0 = g 0 R

xla
ta(xaYa(yala = la(xviafalt HE Hy;
Pa{x) R(0,(0)) = R0, (x- y)),
where
0,(n)=a-(u-a) *)
is a permutation on E. Then ¢, is a left pseudoautomorphism with
the companion a. Moreover, any element a < E is a companion of the

left pseudoautomorphism ¢, of the form (*); ie system <Z£.0> is

a left G-quasigroup [11].

Let us return to the subgroup H, of the group G. Any
nonidentity element #e H, is a fixed-point-free permutation on the
set £ —{0}. Moreover, since G is a sharply 2-transitive permutation

group on K, then H, is a sharply transitive permutation group on
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k-{0}. So for a distinguished element leF {(120) and for any
je E-{0} there exists an unique element hj € Hy such that hi(1)= ;.

Then we can define correctly the following operation on £:
def
rj=koh(j)=k if 120
def
0% j = 0

(8)

Lemma 8. The following statements are tri.¢
1. xx0=0, x*l=Ixx=x,
2. <k-{0}*%]1>= Hy;
3. xx(y-z)=(x*y) (x*z},
4. The system <E,0> isa left sperial quasigroup.

Proof. Nesessary definitions are in [11]
1. We have for any x e £ {0}
x¥0=u & u=h(0)=0 > xx=0,
x*l=v < v=h(Q)=x => x*
rx=w < w=h(x)
But A(1)=1, since A =1d. So we obtain
W= R(x)=x,
ie. Fx=1x.
2. Let us define the following reflection

¢ £-{0} — Hy.

def
o(x) = hx :

It is easy to see that ¢ is a bijection; morecover
O)p(y) = hh, = h, = (=)

where
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z=h,()=hh,(1)=h(y)=x*y,
le,
e(x)0(y)= olx*y),
and ¢ is an isomorphism.
3. Since T is a normal subset in G (see Lemma 4) then for any

ie L and h, € Hy we obtain

htiy =1,
where
k=1,(0)= ht#;'(0)= ht(0)= h(i)=ui
So, for any i€ £ and we E-{0} we obtain
htihy =t (9)
Then we have for any we E-{0}:
Ity =1, b, he Hy,
Bt = bt BT, b Hy,
Mty WK =t BURAR, he H,
Lslysy = Lot s A€ Hy,
(xx)-(1x y)=1¢(x - y). (10)
Finally,
(0*x)-(0*y)=0-0=0=0%(x- y).
4. We can write the equality (10) in the following form
h(x)-h(¥)=h,(x-y)
for any u,x,y € £. So, any permutation A, € H, is an automorphism
of the system <£E, 0> Then the permutation 4, , (see (2)) is an

automorphism of the system <«<F 0> forany x,ye€ E. Since

I |
he,=LLLL,

L

then system < K. 0> is a left special quasigroup.

92



Sharply 2-transitive permutation groups.1.

Lemma 9.

G= {aa,b

0 p(x)=a-((a-byx), azh, abeE}

Proof. Since T is a left loop transversal (in case 1) or a stable
transversal (in case 2) in G to H,, then we can respresent any
element ge G in the form

g= 1l =Py,
where 1, €7, h,, € Hy, a#b. So we obtain for any xe £
g(x)=1thp(x)=t,((a - by x)=a-((a- b} x)= 0, p(x),
moreover,
g0)=a-0=a, g()=a-(a-b)=b,
ie.

8(x)=0tg0),g1y(X). (11)

Let us define the following two operations on E:

def
(x,a,y) = x-((x- yya)=a, (aj, (12)

def
(x:‘w:y): x-y. (13)

Definition. [11] Two operations <[> and <ZXe> are called

x-y=a,
xey=b

has an unique solution in Ex £ for any given a,be L.

orthogonal, if the system
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Lemma 10. The following statements are true:
(x0,y)=x; (xLy)=y,
. (xnix)=x (01)=¢
{(x,00)=x, (x,%,x)=0;
2). The operations (x,a,y) and (x,0,y) are orthogonal
forany ae k£,

3). The operations (x,a,y) and (x,b,y) are orthogonal

for any given abe E,axb

Proof. 1). We have
(x0,y)=x-0=x;
(x,,y)=x-(x y)=y,
(xswao): x-0= X,
(x,,x)=x-(0*t)=x-0=x,
(x,w,x):X'x-_—-o;
(0,£1)=0-((0- 1 1) = 0 (7).
But by means of (11) we obtain
(O, L) =ag,(r)=id(r)=1.
2). Let a be an arbitrary given element from E. Then we have
for any given b,ce £
(xsa:y):b; x'((x'y)*a):b;
p— <~
{x-(c*a) = b, { X = %c.a);
< - Y .
y=x-c Y“(%c*a))'ca
ie. there exists an unique solution (x,y)=( %m),( %c..a))- ¢) of the
initial system in ExFE.
3. Let a,b(a#5b) be an arbitrary given elements from E.

Then we have for any given ¢, de £: if c#d, then
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{(x,a,y) =G . {x-((x-y)*a) =c {O"x,y(a) =¢,
(x.b,9)=d, |x-((x-yrb)=d, |o,,b)=4,
Since G is a sharply 2-transitive permutation group on E, then by
Lemma 9 we obtain that there exists an unique such pair
(x,y)e ExE.
If ¢=d, then we have
(x.ay)=¢ |x-((x-ypa)=c, [(x-ypa=x-c
{(x,b,y)%'; Q{x-«x-y)*b):c; C’{(x-y)*b: x-c,
(e ypra=(x-ypb
((x-ypa)(x yrb)=0
(x-y)(a-b)=0
Since a#b, then a -b+0. So we get
x-y=0,

ie. x=y. Then pair (x,y)=(c,c) is an unique solution of the initial

system. 0

As we can see from Lemma 10, the system < {x,/,»),01> is
a DK-ternar [13] without the conditions 6a) and 6b) of Definition 2
from {13), and the operation (x,%,y) is a supplemented operation

to it.

Lemma 11. The following statements are true:
1). The operation (x,a,y} 1s a quasigroup for any given
azx0]1;
2). (x,(u,2,v), y)={(x,01,¥),2,(x, ¥, ¥));
3). The permutation o,; is an automorphism of the
operation (x,c,y) for any given ab,cc kE, axb; ie. any operation

(x,c,y) admits the sharply 2-transitive automorphism group G.
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Proof. 1). It is proved in [13].
2). As we can see from Lemma 9,
G = {a, plotg p(1) = (@,1,6),,a £ b,a,b & E}.
Then we have for any x,y,u,v,ze E x#y u=v.
Oy y " Oy (2) = 0y ((2) (14)
for some w,se€ E,w=s. We obtain from (14)
Oy Oy (2)=a, (1,2,v))=(x,(1,2,v),y),
W=y, (0)=a,, o, ,(0)=a, (u)=(x,uy),
5=y, s()=ay -0, (D=0, (V)=(x,v, ).
So
(x,(u,2,v), )= ((x,1, ¥),2,(x,v, ¥)).
When x=y or wu=v the last identity is a trivial corollary of 1},

Lemma 190.
3). Let a,b,c be arbitrary given elements from E, a # 5. Then

we have from 2)

(a,(x,c,y),6)=((a,x,b),c,(a, y,b)),
o, p((x, 6, ¥)) = (a, p(x),C,0, 5(¥)),

ie. the permutation «a,, is an automorphism of the operation

(xn c) y)' H

Lemma 12. The operations (x,a,y) and (x,C,¥y)=y-x are

orthogonal for any ac E.

Proof. We prove at first the following identity
(e p)- ! = (e u) 2 (u- (x-2)) 7 (15)

for any xuze L uz0,uzx.-z. Really, we have from (b) for

any =0
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(o) (x-Qu-1))= B (1) = By ) (2)= B f (%2 = (Ox- 1) (- (e 1)L,

(x-a)- (x- (u-1)) = ((x - 20)- G- (- )17 (16)
If r=u, then we have from (16)
(e-u)- (e D)) = ((x - w) xpeu™” (17)
| It r=u-(x-z), then we obtain from (16)
() (x- - D)= ((x-u) 2 (- (x- 2)) (18)

The identity (15) follows from (17)-(18).
Further on, we have for any given abcc £
a) If ¢=0, then

{(x,a.y)ﬂz {x-((x-y)*a):a
<>

& X = = Q
(%09 =0 y x=0 y
ie. the pair (x,y)=(5,8) is an unique solution of the initial system.

b), If a=0 then

s U4 ):b, :b}
{g Z i)zc- ‘”{ y).cxzc- & (5,3)=(5,%).

¢). Let a#0,c#0. Then
{(x,a,y)=b; {x-((x'y)*a):b; {x-((r yra)=1b;
< < <>

(x,0,¥)=c¢; yx=c, X=Yy-C,
{(y-c)-«(y'c)-yrm:b; {«y-c)-y}va:(y-c)-b;
<> pom—
xX=y-C, X=y-c

Let us denote: z=c ' y, b= ¢ b Then the last system is equivalent
to the following system
=D z= 1y A -1
{( )=z Bpa 19)
x=(c*z) C
If =1 then we obtain from (15)

(- x=(Ce 1 22 (x-2)) 7, (20)
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for any x,ze E x-z#1 Using (2D) in (19), we obtain the following

system

{((s-l)-b')*(l-(z-b’)) = )-bpa

x={c*z) ¢

I(Zb‘):a, (C *y)-(c ’!’fb)zi.ai
(2 D)-6=0, & (c"l*y)-lzc”i#b; A
x={c*z)-C, X=y-c,
fo _ ((C"“(l-a))/b) c.

y,b-_—c#[l«a)’, i y:(cn(lla}y.
<> ye=b, < x =B "

X=y-C,
y=5;
Assume that (x,y)::(b,%), then we obtain from the initial system:

b-((b- (G yra)=b,
(b-(Yyra=0.

Since a =0, then
b-(¥)=",
=0,
b=c¢-b,
c=0.
But ¢=0 by the conditions of the case c). Then we abtain: the pai
(x,y):(((c"(]'“%}c,(”(m%) js an unique solution of the initial system

in the case c). Proof is completed. U
Remark. Note that the collection P of operations (x.a,y)ael

and  (x,%,y) (or (x,0,¥)) is a complete system of orthogonal

operations, ie. there is no such an operation «®y  which 1

orthogonal to all operations from P.
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