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On superassociative group isotopes

Fedir Sokhatsky

Abstract

it is proved ihai every Menger quasigroup {grouplike Menger algebra) is
an Q-algebra. Relations between such algebraw notions das. hormmomorphism,
subquasigroup, congruence relations and so on of a Menger gquasigroup and the
corresponding notions of its decomposition algebra are found. A criterion for the
group isotope to be a superassociative is established. Some main algebraic
notions in superassociative group isotopes are considered.

One of the well known generalization of the binary
associativity is the superassocialivity. it s an  abstract
characteristic of the class of all (ntljaiy Menger algebras of
n-ary transformations of a set. When 21, « Menger aigebra 1s a
semigroup of transformations and the superassociativity is the
binary associativity ({see [l]). In this conrection works appear,
where algebraic structure of Menger alzebras and grouplike Menger
algebras (i.e. superassociative guasigroups! are oesont Por example,
the warks of VS, Trokhimenkes 0L WA Dudek {31,
Ya.N. Yaroker {b}], HL. Skala [6] and so on

The main purpose of the aiticle is (o begin the study of
superassotiative group isotopes, but it 15 necenary 1o consider some
modification of the fundamental results f Menver alpaebras, We do it

in sections 1 and 2. The principal results «f secivernc 5 are a canonical
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decomposition of an arbitrary group isotope and its  uniqueness
{(Lemma 3.1); conditions for a group isotope to be
superassociative and linear (Theorem 3.2 and Corollary 3.3);
conditions for a transformation of the basic :et to be a
homomorphism or an isomorphism of superassociative group
isotopes of the same group (Theorem 3.6) as well as an
endomorphism or an automorphism of a superassociative group
isotope of a group (Corollary 3.7);, criteria for a subset to be a
subquasigroup and a normal subquasigroup of a superassociative
group isotope (Theorem 3.8).

The author expresses his great thanks to Mr. Vassyl

Bassovsky, who gave the possibilities of the computer teatment of the

text.

1. General notes

A groupoid (O, f) of an arity n+l1 is called
superassociative or Menger algebra of rang n, if the superassociative
law holds:

S s Y2t o z) = SO S D22 H s 5 (1)

Let (O;f) be a Menger algebra. A binary groupoid (QO;),
defined by

x-y=fx,y,..,¥) (2)
is associative. It follows from the equality {1), when
YW=y =.=2y,=y and =I5, =.=z,=C. (():) 1s called a diagonal

semigroup of (({; f).
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To expound the text we firstly recall (see [B)]), that i-th shift
defined by a of the (n+1)-ary groupoid (Q,/) 1is a transformation
Ai, defined by

Aia(x)= fla,. .,a,x,a, .a)

i times
“Shift” 1is understood as a translation where all elements defining 1t
are equel.

If the i-th shift defined by an =lement e is a
substitution of the set @, then the element a is called i-invertible,
and if A, ,{(x) is an identity transformation, then it is called
i-unit element of the groupoid (Q;f); U-invertible (0-unit) and
n~invertible (n-unit) elements also will be called right invertible

(right unit) and left invertible (left unit) respectively.

Lemma 1.1. If a is a left (right) invertible element in a
binary semigroup ((J;), then the element ¢, =3, (a) (e, = X7 ()
is its left (right) unit and the element

a' =27 (@) (a,'=1} () is aleft (right) inverse of a.

Proof. We shall prove the lemma for the Tright” case only,
since the proof of the “left" case is dual The assotiative law implies
the following equalities

Ao xyy=x-yya=x-(aj=x-Ar_ (v
Replacing x with A7, (x) and applying ,,(x) to the both side
of this equality we have
Moo (X p)=x-2g (V).

Using this equality we can infer the following e:jualities
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x-e=x-1,, @)= A7, (x-a) =4, A, (x)=x
a-a”' =a A (@ =xy (a- A, @) =X (@)=L (ar=e
The lemma is proved.

Thus, the following assertion is evident.

Corollary 1.2. A binary semigroup has a left (right) unit iff it
has a left (right) invertible element. A binary semigroup has a unit

iff it has an invertible element.

It is easy to see that the right shift of a superassociative
groupoid will be a right shift of its diagonal semigroup. The same is
true for the right invertible and right unit elements. This permits

to establish the truth of the following statement.

Corollary 1.3. A superassociative groupeid has a right unit if

and only if it has a right invertible element.

We define n-ary operation [..] on the set Q@ by

def
[x]r":xﬂ]:f(€>xls---:xn)a {3)
where e is a right unit of the superassociative groupoid (Q, 7). Using
this relation it is easy to prove the following statement, which is «

generalization of Theorem 3.8 from [4]

Theorem 1.4. If an (n+1)-ary superassociative groupoid (O, 1)
has at least one right invertible element a, then its diagonal
semigroup operation () defined by (2), the operation {.} defined
by (3} with e=1] (a), and the operation [ are connected by the

following relations:
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fx e nz)=x05,..,2,1 (4)

oo ¥nl 2=y 2,050, 2] (5)
And conversely, if an associative operation () is right distributive
under some  mn-ary operation [.], then the operation f defined by
(4) will be superassociative,

In this case ((Q;,[..]) will be called a decomposition algebra of

the superassociative groupoid (0, f).

Proof. By Lemma 1.3, the element e is a right unit of the
diagonal semigroup, so the equalities (4) and (5) follow from the
equalities (1) with y =y, =.=y, =~¢ and «=e, z,=z,= =z =z
respectively. The converse statement is a partial case of Lemma 3.7

from [4). L

For example, if (Q,+,) is a ring, then the ternary groupoid
(@, f) defined by
Feey,z)=x(y+z)
is a Menger algebra. Some other examples can be found in [4].

This theorem implies immediately the following result.

Corollary 1.5. Let a superassociative groupoid has a right
invertible element a, then its diagonal semigroup has a left unit if
ond only if the operation [.] defined bty the equality (3) with

e=My.(a) is idempotent.
Proof. Let the diagonal semigroup of the groupoid (Q;f)

has left wunit, then it coincides with a right unit e of the

semigroup. According to (2), the equality ¢-x=x is equivalent to
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the equality  f(e,x,..x)=x, which, in turn, is equivalent to the

equality [x,..,x]=x. The corollary is proved. &

Corollary 1.6. {7] A superassociative groupoid (Q,f) of the
arity n+1 is a quasigroup if and only if there exist a group (Q;) and
an idempotent quasigroup (Q;[..]) such that the relations (4), (5
hold.

Proof. In the quasigroup (Q,f) every element is right
invertible and, hence, according to Theorem 1.4 the relations
{4), (5) hold. Since the operation [.] is defined by the equality
(3), then it is a quasigroup as well. It remains to use the following

statement, which is a corollary of Theorem 1 from [11] O

Proposition 1.7. If one of functions f,g, h 1is a repetition-
free superposition of two others and two of them are quasigroups,

then the third one will be a quasigroup as well.

A superassociative quasigroup is called grouplike Menger
algebra. The following assertion is a corollary of Lemma 1.1 and
Theorem 1.4

Corollary 1.8. The diagonal semigroup of a superassociative
groupoid is a group if and only if every element of the groupoid
is right invertible and the diagonal semigroup has a left

invertible element.

To prove this corollary note that a semigroup is a group if it has

a unit and every element has a right inverse.
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Ya.N. Yaroker in {[5] has found another criterion: a diagonal
semigroup is a group if and only if the Menger algebra has no proper
s- and v-ideal, that is iff the diagonal semigroup has no proper left

and right ideals.

Corollary 1.9. If in a superassociative groupowd the diagonal

semigroup is a grou=, then tts decomposition clgebra 1s an {2-group.

The truth of the corollary follows directly from Corollary
1.8 and the definition of an Q-group: an algebra (0+Q) is called
an -group ,if (@4 i1sa group and A0, 03-- 0 for all operations
nefd.

A T1ing is a {I-group as well, while the cperation from Q1 ={}
is distributive under the group operation of the ring, but in the
superassociative groupoid the situation is quite the reverse. From
Corollary 1.9 aad the conclusions from  [9] one can  get a

number of results for such (O-groups

2. On some algebraic notions

&

Let us consider a connection between e «dgebralc notions of a

Menger quasigroup and its decomposition algebra.
Theorem 2.1. A subset of a grouplike Menger algebra is a

subguasigroup of it if ond only if it is o subguasigroup of its

decomposition algebra.
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Proof. Let (Q,f) be a grouplike Menger algebra of an arity
n+1 and let (QO.[...]) be its decomposition algebra.

e

If H is a subquasigroup of (O, /), then for arbitrary

elements a, b from H a-b=f(ab, b)eH and a'=H, since it is a
solution of the equation
b=x-a=f(x,a,..q)

So, the set H is a subgroup of the diagonal group (Q;,). In
particular, it means that the unit e of the group is in the set H,
and then for arbitrary elements a,,..,a,,6 from the set H the
results [a,,..,a,]=f(e,a,,..,a,)e H and a solution of the equation

b={a,,. . .a ,xa,,. .al=f(ea,. .a_.xa.,, .a)
belongs to the set H. Thus, the set H is a subquasigroup of the
algehra (0,.[...)).

Conversly, if a subset H of the set Q is a subquasigroup of
the quasigroup algebra (¢, [..]), then the equality (4} implies
that the subset H is closed under the operation f The solution of
the equation

b=f{x,a, . ,a)=xla,..a.l
belongs to the set H since H is a subgroup of the diagonal group.
The equation
fay,a,,..,a_,x,a,..,..a)=b
one can rewrite as
[a,,...,a,.,_,,x,am,...,an]za(;]-b,
then an element x exists, it is unique and belongs to H as soon as

the elements a,,a,,..,a,b belong to the set H. The theorem is

catly

proved.
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Theorem 2.2. A mapping © from one grouplilce algebra ointo
the other will be homomorphic (isomorphic) if and only & © ‘s a
homomorphic (isomorphic) mapping between ihe correspondimg

decomposition algebras.

Proof. Let (0, 7). (G.h) be grouplike slgebras and let
(0.0 and (G,+,[..1) be their decomposition: algebiras, then
@e{x V) =pf(x,y, yY=hlex @v, . Qv)=@x gy,
olfx,,...x, D=gf(e,x., . x,)=h{pe.qx,, . ax ) -
= 0,@x,, QX ) =[x, ]

The converse 1s evident.

Corollary 2.3. Any endomorphism (aeutomarphismi or a
grouplike algebra is an  endomorphism  (automorphism) of the

corresponding decomposition algebra and vice versa

Recall, a congruence of a quasigroup is called normal, if
the corresponding quotient-groupoid is a  quasigroup also; a
subquasigroup is called mormal, if it is a <¢iass by a normal
ccngruence.

¥

In a group every congruence is normal and exactiy one of 1ls

classes is a normal subgroup, namely, the class ‘ontainung the unit
element of the group In a quasigroup this i« w0 e Hhere exyst
infinite quasigroups having non normal congruences and theye exist
quasigroups having congruence with no subguasigroup as its class Ip
an idempotent quasigroup every class by a normal congruence is a
subquasigroup. There is the same situation i the theory of n-ary
sroups and polygroups as in the theory of quasigroups. The

following resoning shows, that in a groupitke Menger algebra the
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uniqueness is the same as in the group theory. Immediatly from

Theorem 2.2 we have the truth of the following statements.

Corollary 2.4. Any normal congruence of a grouplike algebra
is a normal congruence of the corresponding decomposition algebra

and vice versa.

Corollary 2.5. Exactly one of congruence classes of a grouplike
algebra 1s a subquasigroup, namely, the class containing the wunit

element of the diagonal group.

Corolilary 2.6. Every normal congruence of a Menger
quasigroup s an equivalence relation corresponding to a partition by
the normal subgroups of the diagonal group, which are normal

subquasigroups of the decomposition algebra.

A full description of all congruences {including one-side
congruences) in grouplike Menger algebras was obtained by

V.S.Trokhimenko in [2}

3. Superassociative group isotopes

In this section superassociative group isotopes are under

consideration.
A group 1isotope or an isotope of a group ((;#) of the

arity n+{ is a groupoid (Q,f) defined by

f(x05x]""axn): T"I(Yﬂx() . y}x!.“'.}’n"rn )s (6)
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where 7v,,..,7,,Y are bijections between the sots @ and &. If all
of the bijections are linear transformations of the group () (a is
linear, iff ox=0x+a for some ae( and an automorphism 6 of the
group (Gpe)), then the isotope (G;f) is called Ilinear. It is easy to
prove that a groupoid being isomorphic to a lincar group isotope is a

linear group isotope as well. The following statement is true.

Lemma 3.1. Let (Q;f) be an (n+1)-ary isotope of a group,
then for any element e of the set @ there exists exactly one
sequence of operations (,dg,...,o,,a) such that (O:) is a group
with a unit element e; o,..,o, ore unitary substitutions of the set @,
ie. afey=¢, i=0L. ,m aeQ and the following equality

F(Xg, Xy, .0, %, ) = 0pXy - O Xy, @, X, & (7)

holds. The isotope (O, f) 1is linear iff «,,.,¢, are aumorphisms

of (Uy)-

In this case, let us use the following terminology: a
decomposition (7} will be called e-canonical, permutations ay,. o,
will be called decomposition coefficients, and the clement a will be

called a free member.

Proof. Let (6) holds. On the set & we define a group

operation (+):

xty=y" (yxeyy)
Then we rewrite the equality (6} as follows:

...,L ' ~] ..m.‘g__ N
f(x():"':xn):’y f0x0+y Y])fi“i”{‘? f_:»*;r”}'

Replacing (+) with (), where x.-y=y-c+y, ie sv4y=(x+e) y,

and y"l'yx,, by «,, *y""ﬁyx,-Re by o, /=01 .4 1  we have
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f(x{bxl:“-sxn):aoxﬂ'a'lx!""'a'nxn’ (8)
It is clear, the operations  (-) and (+) are isomerphic and the unit
element in (Q;) is e Suppose, that g, .,¢,; are unitary

and ae=+e, i=01..n then we consider the following notation
_ -1 1 _ . .

ali Xp = QX - (Cl,;e) ’ Ay Xipy ~ (C{,t’)- (af Xk

As a result we have the relation
J (X0, Xy, 00 ) = Glg X 01X, g O X Oy Xy Oy Xy O,
where the first substitutions «y,..,0,;,@'; are wunitary. After the
finite number of the steps we obtain the equality (8), where the
substitutions o,,...,0,.; are unitary. Consider a new notation
-1
al" x" = a!lxﬂ ' (aﬂe) ? aﬂd a-= aH{"

Thus, we obtain the equality (7). To prove the wuniqueness we

assume that the decomposition
S0, %,..,%,)= Boxo @ By @ BB x, & b
is e-canonical as well, ie. e@x=x®e=x, PBe=Pe- Be-e. Then
a=fle,..,e})=b and
ax -a=fe,..,ex)=Bx @b

So, we obtain

QoXy @ X, 0= f(xg,e,..,e,x,)=Byx, BB x, ©b=B,x (o x -a)
for all x,ye Q. Replacing «,x, -a with y we have

oy, -y =Pox, By,

Since the element e is a common unit of the operations ()} and
(®), then from the last equality and y=e we have o, B,, and so
the operations () and (®) coincide. Hence,

ax-aa’ = fle,..,x,e, . e)a" =@x®b)ya =Ppx a-a - B x
for all xe(, then o, =B, forall /-0l » YLemma is

proved.

112



On superassociative group isotopes

Using this lemma we may establish the truth of the following

Theorem 3.2. A group isotope (Q,f) is superassociative if and
only if
S, X, X, ) =X, -a,x, -0, X, (9)
for some wnitary substitutions «,,..,o, of the group (Q,), which
satisfy the following conditions:
a0y =y, (10)

ay.a yol{x-y)=ax-oy.ay, i=0..n {11)

Proof. Let a superassociative quasigroup (¢, /) of arity »+l
be an jsotope of some group and let (7} be its  e-canonical
decomposition, where e is a unit of its diagonal group From the
uniqueness of the e-canonical decomposition of the group isotope
(,+), from the equalities (4), (7) and the idempotence of the
operation [..] the relations o ,=e, (»=() and

b, yl=0y o,y ay, (12)

follow, since

Corel. 1.5 (3) Lemmpia 3.}
e = le,..e}=f(ee,. &) = a

The idempotence of [.] is equivalent to the identity (10).
Thus, the distributivity relation (5) will be rewritten as follows:
QX 0, X, X, Y=o, (), (g, o e - ),
Setting x, =e forall j#i in the last equality we obtain
ax-y=o(y). . a (y)o (x-y)-a {v) . a )
In the left side of it we replace y with its value from the equality
(10), and then we cancel it out of «,,y..-a_y. As a result we obtain

the relation (11).

113



Sokhatsky F.N.

Converse, let the operation f on the set @ be defined by
the equality {9) by such unitary substitutions «o,,...a, of the
group (Q,), that the relations (10) and (11) hold. To prove the
superassociativity of the operation f we defined an operation

i..] by (12). Hence, we obtain the following equalities:
[xla--':xu]'y =

(109
=0y QX X, Y =

{h

=0 X WXy O X, Oq YOy P O, Y
(1hH
=Xy QX Uy Xy "0 G Ve Oy Ve an{xn ¥y =
an
=X QaXy . Oy 2 Xy g YO Y. Oy 2 V- o, (X, 1 V) an(xn "y =
(i1) (1)

==X 'Cll_}«"(lz(x"z '_}’)'.,:(X,,(xn y) =

02)
:U.](x] ) y)'a.?(xfi ' y} "an(xn .)") =

:[xl‘y"“:xn'y}'

By Theorem 1.4 the triple (Q,.{...]) Is a decomposition of
the superassociative groupoid (@,f), which is a quasigroup, since
the operation f is a repetition-free superposition of the

guasigroup operations (-} and [..] (see Proposition 1.7) Theorem &

proved.

Corollary 3.3. For any superassociative group isotope {(Q,f
with a canonical decomposition (9) the following statements are
equivalent:

1} the isotope ((Q,f) 1is linear,;

2} w, is an automorphism of the group (Q,);

3) the group (Q,) 1is commutative.
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Proof. The relations (11} with /=2 give the following

equality:
ay-o,{xy)=o,x-a,y-a,y,
are equivalent 1f, in addition, the

which implies that 2) and 3)
(L1} mean that

is commutative, then the relation.

autemnnrphism  of  the

group (Q&')

of the substitutions o, 1S an

every
group.

An (n+lj-ary sotvpe /73 of an abelian

Corollary 34.
1if and only i theve cwist an abelian

group will be superassociative
group (Q;+) and a sequence

that the following equalities are true
S, X, )= X o x oo X, E

a,,a,,..,a, of its automorphisms such

By Theorem 2.2, an isomorphism of greuplike algebras implies
that the

an isomorphism of its diagonal groups. It isc easy o prove

converse is true as well.

Proposition 3.5. If groups are isomorphic. then there exists a
hijection between the sets of superassociative isoispes of this groups

such that the corresponding isotopes are isomorph

Hence, from here on it suffices to consider superassociative
(¢ % An isomorphism

isotopes of the same arbitrary fixed group

criterion for them is in the following

6 of the wt Q@ 1s «

of o supsrcssocatioe isotope
({720 of o oagroup (Q0) with

Theorem 3.6. A transformation

homomorphism (isomorphism)

{0, 1) in a superassociative sotope
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the canonical decompositions &.a,,. o) and €.B,,...B,)
respectively if and only if g is an endomorphism
(automorphism) of the group (Q,) and the follmving relations are

true
0B, =00, i=12,. .7

Proof. From Theorem 2.2 and the relation (12) it follows
that the group isotopes are homomorphic (isomorphic} if and only
if the transformation 8 is an endomorphism (automorphism} of the
diagonal group (Q,) and the following relation fulfils:

8B, x, Pox, B x, )= bx,-a,0x, a Bx
for all x,x,,..x,€0. In particular, when x =e for all j=i, we

obtain the necessary relations. The converse is evident,

Corollary 3.7. A transformation @ of a2 set @ is an
endomorphism (automorphism)} of a superassociative 1sotope ((,f)
with a canonical decomposition (9) if and only if 6 is an
endomorphism  (automorphism) of the diagonal group (Q,)
and commutes with every coefficient of the canonical

decomposition.

In the following assertion we shall describe the subquasigroups

of the superassociative group isotopes.

Theorem 3.8. A subset of a superassociative group
isotope is a subquasigroup of it if and only if it is a subgroup of the
diagonal group and invariant wunder all components of its

canonical decomposition.
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Proof. Let (Q,f) be a superassociative isotope and (9) be
its canonical decomposition. After Theorem 2.1 it remains to
elucidate which conditions are necessary for a subgroup H of
the diagonal group to be a subquasigroup of the quasigroup
()LD, where (12) defines the operation {.]. Hence, the
subgroup H is a subquasigroup of ({;[..]) iff in the equality

0L, X, + O, X, 0L, X, = A
any n elements from the set H uniquely determine the
(n+1)-th element which is in the set H as well The first part of
this assertion is fulfilled, since (Q;[..) is a quasigroup. It
remains to show the belonging of this element to the set H. From the

last equality with 4 =e for all ;#i we have the following
statement: in the equality ok =k the elements »# and h belong

to the set H simultaneously, that is all=H. The reverse is

7

obvious. The theorem is proved. L

Corollary 3.9. A subset of a superassociative group isotope is
its mormal subquasigroup if and only if it is a normal subgroup
of the diagonal group and it is invariant under all components of

its canonical decomposition.

Comparing the results of the article [12} with the
assertions given here we have the f{ollowing properties for

superassociative isotopes of the cyclic groups:
1) superassociative cyclic group isotopes are nonisomorphic,

if their canonical decomposition groups coincide and the

corresponding sequences of coefficients are different;
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2) endomorphisms, automorphisms, subguasigroups, normal
subquasigroups, congruences of a superassociative isotope of a cyclic

group are the same as in the group;

-+ (=D(p -1
3) there exist exactly ((p D % of

(nit)-ary (n>1) superassociative group isotopes of prime order p

up to isomorphism.
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