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Monoquasigroups isotopic to groups

Vladimir I. Izbash

Abstract
In this work the quasigroups isotopic to groups are considered. The necessary
and su�cient conditions are found which the isotopy must satisfy so that the
corresponding group isotope be: monogenic quasigroup, momoquasigroup.

1. Introduction
The algebraic systems generated by one element (monogenic systems)
are the simplest in the lattice-theoretic sense in every class of algebraic
systems (in some cases, such as quasigroups, semigroups, in order to
be able always to talk about lattice, we need to consider the empty set
as a subsystem). These systems are contained as subsystems in some
other systems. More precisely, every non-empty system of some class
of algebraic systems includes some monogenic systems of this class as
its subsystems. Hence the structure of algebraic systems depends on
the structure of their monogenic systems.

In such classes of algebraic systems as groups and semigroups the
monogenic systems are the cyclic groups and semigroups, respectively,
which are completely described, as it is well known. In other classes
it is very di�cult to describe monogenic systems.

De�nition 1. A quasigroup generated by one its element is called a
monogenic quasigroup.
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De�nition 2. A quasigroup generated by every its element is called
a monoquasigroup.

From the de�nition it is clear that monoquasigroups have no non-
trivial subquasigroups and, hence, its lattice of subquasigroups con-
sists of one element. A nontrivial (or proper) subquasigroup is a sub-
quasigroup di�erent from the empty subquasigroup and the quasi-
group itself [1].

Researching di�erent kinds of functional completeness of universal
algebras, A. V. Kuznetzov and A. F.Danilichenko A. F. announced
during The First All-Union Symposium on the Theory of Quasigroups
and its Applications (Suchumi, 1968) that for every positive integer n
there exists a monoquasigroup with |Q| = n, where by |Q| we denote
the order of Q .

A quasigroup (Q , ·) is said to be without congruences if it has no
congruences except ε = Q × Q = Q 2 (the complete relation on Q)
and ω = {(a, a) : a ∈ Q} (the equality relation on Q, sometimes called
the diagonal of Q 2 ).

T. Kepka has proved in [4] that a quasigroup (Q , ·) such that
3 ≤ |Q| ≤ ℵ0 is isotopic to a monoquasigroup. In [3] is proved

Theorem 1.
a) Every quasigroup (Q , ·) such that 3 ≤ |Q| ≤ ℵ0 is isotopic to a
monoquasigroup without congruences.
b) Every quasigroup (Q , ·) such that 5 ≤ |Q| ≤ ℵ0 is isotopic to a
monoquasigroup without congruences and automorphisms.

A quasigroup without automorphisms is a quasigroup with the
unitary group of automorphisms. There exist no monoquasigroups
with more than the countable order, because a �nitely generated free
algebra with a �nite set of operations has at most the countable order
[5]. A quasigroup (Q , ·) with |Q| = 1 satis�es Theorem 1a and a
quasigroup (Q , ·) with |Q| = 2 is a group and does not satis�es
Theorem 1a.

In [3] a class of order 2ℵ0 of pairwise non-isomorphic monoquasi-
groups without congruences and without automorphisms is given. This
fact allows us to assert that it is not very probably to describe mono-
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quasigroups or monogenic quasigroups. Therefore to describe mono-
quasigroups we shall restrict ourselves to particular classes. In the
class of all idempotent quasigroups and the class of all loops there are
no monoquasigroups except single-element groups. In other classes it
is rather di�cult to give examples of monoquasigroups.

Below we consider only quasigroups with the order greater than 2
and smaller than ℵ0 .

2. Preliminaries
A groupoid (i.e. a set (Q, ·) with a binary operation ”∃” on Q ) is
called a quasigroup if equations ax = b , ya = b have unique solutions
for any elements a, b ∈ Q. In a quasigroup (Q , ·) a mapping x → ax
is called the left translation by a and is denoted by La . The right
translation by a is the mapping x → xa that is denoted by Ra . For
any a ∈ Q the translations Ra and La are permutations on the set
Q and belong to the permutation group S(Q) .

A non-empty subset H of the quasigroup (Q , ·) is a subquasigroup
of (Q, ·) provided (H , ·) is a quasigroup with respect to the operation
”∃”. The empty set ∅ will be considered as a subquasigroup i� the
intersection of all non-empty subquasigroups of (Q , ·) is ∅. The set-
theoretic intersection of all subquasigroups of (Q , ·) containing a sub-
set M of Q is a subquasigroup that will be denoted by 〈M〉 and will
be called the subquasigroup generated by M . The class L(Q , ·) of all
subquasigroups of a quasigroup (Q , ·) is a complete lattice with re-
spect to the set-theoretic intersection and "generate" operation. The
last element in L(Q , ·) is the intersection of all non-empty subquasi-
groups and the greatest element is (Q , ·).

Let ” ∗ ” and ” ◦ ” be two operations de�ned on Q. The operation
” ∗ ” is said to be isotopic to ” ◦ ” if there exist three permutations
α, β, γ ∈ S(Q) such that

x ∗ y = γ−1(αx ◦ βy) (1)

for all x, y ∈ Q .
We also say that (Q , ∗) and (Q , ◦) are isotopic, or that (Q , ∗)
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is an isotop of (Q , ◦) of the form (1). Shortly we write this as

(Q , ∗) : x ∗ y = γ−1(αx ◦ βy), α, β, γ ∈ S(Q) , x, y ∈ Q .

Then triple (α, β, γ) of permutations such that the relation (1) holds
is called the isotopy of (Q , ◦) .

If in (1) γ is the identical permutation ε, then (Q , ∗) is said to
be a principal isotope of (Q , ◦).

If in (1) α = β = γ , then

x ∗ y = γ−1(γx ◦ γy) ,

which means that γ is an isomorphism between (Q, ∗) and (Q, ◦). The
equality (1) is equivalent to

x ∗ y = γ−1(αγ−1γ x ◦ βγ−1γ y) .

Whence we have proved the following:

Theorem 2 ([1] Theorem 1.2). An isotope (Q , ∗) such that x ∗ y =
γ−1(αx ◦βy), α, β, γ ∈ S(Q), x, y ∈ Q is isomorphic to the principal
isotope (Q ,⊗), where x⊗ y = αγ−1x◦βγ−1y, α, β, γ ∈ S(Q), x, y ∈
Q, and γ is the isomorphism between them.

3. Group isotopes
Let (Q, ·) be a group with the unit element e. We will �nd the neces-
sary and su�cient conditions which the isotopy must satisfy in order
that the corresponding isotope of (Q, ·) be a monogenic group; mono-
quasigroup (Theorem 3). Since an isomorphism keeps the number of
generators, then taking into consideration Theorem 2 it is su�cient to
�nd these conditions for principal isotopes of a group (Q , ·).

Lemma 1. For a principal isotope

(Q, ∗) : x ∗ y = ϕx · ψy, ϕ, ψ ∈ S(Q), x, y ∈ Q
of a group (Q , ·) with the unit e there exist permutations α, β ∈ S(Q)
such that βe = e and x ∗ y = αx · βy , i.e.

(Q , ∗) : x ∗ y = αx · βy, α, β ∈ S(Q), βe = e, x, y ∈ Q . (2)
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Proof. For every x, y ∈ Q we have

x ∗ y = ϕx · ψy = ϕx · ψe · (ψe)−1ψy = Rψeϕx · L(ψe)−1ψy = αx · βy ,

where α = Rψeϕ and β = L(ψe)−1ψ . Moreover,

βe = L(ψe)−1ψe = (ψe)−1ψe = e ,

which completes the proof.

For all α ∈ S(Q), H ⊆ Q put

αH = {αh : h ∈ H } .

Lemma 2. For an isotope

(Q , ∗) : x ∗ y = αx · βy, α, β ∈ S(Q), βe = e, x, y ∈ Q
of a group (Q , ·) with the unit e the following conditions are equivalent
a) e ∈ (H , ∗) ∈ L(Q , ∗) ,

b) αH = H = βH and (H , ·) ∈ L(Q , ·) .

Proof. Let e ∈ (H , ∗) ∈ L(Q , ∗) . Then for any x ∈ H, we have
x∗e ∈ (H , ∗) and x∗e = αx ·βe = αx ·e = αx . Hence αx ∈ H and,
as x is an arbitrary element, we have αH ⊆ H. For any x ∈ H there
exists y ∈ H such that x = y ∗ e, since (H , ∗) is a subquasigroup
of (Q , ∗) and e ∈ H. From the last equality we get y = α−1x and
α−1H ∈ H since x is an arbitrary element of H. Therefore H ⊆ αH
and we have H = αH. Let h ∈ H be such that αh = e. For any
x ∈ H we have h ∗ x ∈ H and h ∗ x = αh · βx = e · βx = βx.
Therefore βx ∈ H for any x ∈ H, so βH ⊆ H. There exists y ∈ H
such that h ∗ y = x for any x ∈ H. Then

h ∗ y = αh · βy = e · βy = βy = x

and y = β−1(x). Hence β−1H ⊆ H, H ⊆ βH and �nally we have
βH = H. So, the restrictions of α and β to H are permutations on
H, and (H, ·) is an associative quasigroup isotopic to the quasigroup
(H, ∗) since x · y = α−1x ∗ β−1y, i.e. (H, ·) ∈ L(Q, ∗). Therefore we
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have proved that e ∈ (H, ∗) ∈ L(Q , ∗) implies αH = H = βH and
(H, ·) ∈ L(Q , ·).

The converse implication is trivial.

For any ϕ ∈ S(Q) put

StabL(Q ,·)ϕ = {H ⊆ Q : (H, ·) ∈ L(Q , ·) and ϕH = H } .

Lemma 3. A quasigroup

(Q , ∗) : x ∗ y = αx · βy, α, β ∈ S(Q), βe = e, x, y ∈ Q

which is isotopic to a group (Q , ·) with the unit e is generated by e
if and only if

StabL(Q ,·)α ∩ StabL(Q ,·)β = {Q} . (3)

Proof. Let (Q , ∗) be generated by the unit e and

H ∈ StabL(Q ,·)α ∩ StabL(Q ,·)β .

Then (H, ·) ∈ L(Q) and αH = H = βH. By Lemma 2 we get
(H, ∗) ∈ L(Q , ∗) and (H, ∗) = (Q , ∗) as e ∈ (H, ∗). Hence

StabL(Q ,·)α ∩ StabL(Q ,·)β = {Q} .

Conversely, let the relation (3) holds and (H, ∗) ∈ L(Q , ∗), where
e ∈ (H, ∗). By Lemma 2 we have αH = H = βH and from (3) we
get H = Q. Therefore (Q , ∗) is generated by the unit e.

Directly from Lemmas 1 and 3 we get

Corollary 1. A quasigroup

(Q , ∗) : x ∗ y = αx · βy, α, β ∈ S(Q), x, y ∈ Q ,

which is isotopic to a group (Q , ·) with the unit e is generated by e
if and only if

StabL(Q ,·)Rβeα ∩ StabL(Q ,·)L
−1
βe β = {Q} . (4)
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Proof. By Lemma 1 we get the equalities x ∗ y = Rβeαx · L−1
βe βy and

L−1
βe βe = e. The equality (4) follows from Lemma 3.
Remark that relation (4) gives αe · βe 6= e, otherwise the set {e}

is a subquasigroup of (Q , ∗), contrary to (4).

Now we will �nd the condition for a quasigroup

(Q , ∗) : x ∗ y = αx · βy, α, β ∈ S(Q), x, y ∈ Q

to be generated by any its element a ∈ Q , a 6= e.
Let us consider the isotope

(Q , ◦) : x ◦ y = x · a−1y, x, y ∈ Q

for any �xed element a ∈ Q. This isotope is a group with the unit
a and the left translation La of a group (Q , ·) is an isomorphism
between groups (Q , ·) and (Q , ◦), i.e. we have La(x · y) = Lax ◦Lay.
Then the equality

L−1
a (x ◦ y) = L−1

a x · L−1
a y

and implications

(H, ·) ∈ L(Q , ·) ⇒ (LaH, ◦) ∈ L(Q , ◦) ,

(H, ◦) ∈ L(Q , ◦) ⇒ (L−1
a H, ·) ∈ L(Q , ·) (5)

hold. The quasigroup (Q , ∗) is an isotope of a group (Q , ◦) with the
unit a since we have x ∗ y = αx · βy = αx ◦Laβy. By Corollary 1 the
quasigroup (Q , ∗) is generated by a if and only if the equality

StabL(Q ,◦)R̂
−1
Laβaα ∩ StabL(Q ,◦)L̂

−1
LaβaLaβ = {Q} (6)

holds, where by R̂x , L̂x we denote the translations by x on the group
(Q , ◦).
Remark. If the equality (6) holds, then we have αa · βa 6= a. The
following equalities hold for any a, u ∈ Q:
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L−1
u = Lu−1 ,

L̂u = LuLa−1 = Lua−1 , L̂−1
u = LaLu−1 = Lau−1 ,

R̂u = RuRa−1 = Ra−1u , R̂−1
u = RaRu−1 = Ru−1a ,

where a−1, u−1 are the inverses of a, u in (Q , ·). Then

R̂Laβaα = R̂aβaα = Ra−1·aβaα = Rβaα ,

L̂−1
LaβaLaβ = L̂−1

aβaLaβ = La(βa)−1a−1Laβ = La(βa)−1β .

Now the equality (6) can be rewritten in the following way:

StabL(Q ,◦)Rβaα ∩ StabL(Q ,◦)La(βa)−1β = {Q} . (7)

Lemma 4. For any ϕ ∈ S(Q) we have
StabL(Q ,◦)ϕ = La(StabL(Q ,·)La−1ϕLa)

and
StabL(Q ,◦)ϕ = {LaH : (H, ·) ∈ L(Q , ·) and La−1ϕLaH = H} .

Proof. If (H, ·) ∈ L(Q , ·) and La−1ϕLaH = H, then ϕLaH = LaH
and (LaH, ◦) ∈ StabL(Q ,◦)ϕ since (LaH, ◦) ∈ L(Q , ◦). Hence we have

StabL(Q ,◦)ϕ ⊇ La(StabL(Q ,·)La−1ϕLa) .

Conversely, let (Ĥ, ◦) ∈ StabL(Q,◦)ϕ. Then ϕĤ = Ĥ and we can
write

ϕLaLa
−1Ĥ = LaLa

−1Ĥ

which get
La−1ϕLaL

−1
a Ĥ = L−1

a Ĥ .

Hence,
(L−1

a Ĥ, ·) ∈ StabL(Q ,·)La−1ϕLa

as (L−1
a Ĥ, ·) ∈ L(Q , ·) by (5). Therefore

StabL(Q,◦)ϕ ⊆ La(StabL(Q,·)La−1ϕLa)

and the statement of the lemma is proved.
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Now the equality (7) can be rewritten as

La(StabL(Q,·)La−1RβaαLa) ∩ La(StabL(Q,·)L(βa)−1βLa) = {Q} ,

from which we have

StabL(Q,·)La−1RβaαLa ∩ StabL(Q,·)L(βa)−1βLa = {Q} . (8)

So, we have proved the following:

Theorem 3. A quasigroup
(Q , ∗) : x ∗ y = αx · βy, α, β ∈ S(Q), x, y ∈ Q

isotopic to a group (Q , ·) with the unit e is:
a) generated by an element a ∈ Q i� the equality (8) holds,
b) a monoquasigroup i� the equality (8) holds for any a ∈ Q .

Corollary 2. If a quasigroup (Q , ∗) isotopic to a group (Q , ·) with
the unit e is a monoquasigroup, then αx · βx 6= x for all x ∈ Q.

Proof. In fact, if αa · βa = a for some a ∈ Q, then a is an idempo-
tent. Thus (Q , ∗) is not generated by a, contrary to the assertion of
the corollary.

Proposition 1. The order of a subquasigroup of a group isotope
(Q ,⊕) divides the order of the quasigroup (Q,⊕).

Proof. Let (H,⊕) be a subquasigroup of a group isotope (Q ,⊕) and
∅ 6= H 6= Q. By Albert's Theorem the isotope

(Q , •) : x • y = R−1
a x⊕ L−1

a y

is a group for every element a ∈ H and (H, •) is a subgroup of (Q , •)
as a ∈ H. In a group the order of subgroup divides the order of the
group.
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Corollary 3. Every proper subquasigroup of a group isotope of prime
order is a single-element set.

Corollary 4. The isotope
(Q , ∗) : x ∗ y = αx · βy, α, β ∈ S(Q), x, y ∈ Q

of a group (Q , ∗) of a prime order is a monoquasigroup if and only if
αx · βx 6= x for all x ∈ Q.

Proof. Let αx · βx 6= x for all x ∈ Q and |Q| be a prime num-
ber. The isotope (Q , ∗) has not single-element subquasigroups since
x∗ = αx · βx 6= x for all x ∈ Q. From Corollary 3 we obtain that
(Q , ∗) is generated by any its element, i.e. is a monoquasigroup.

By Corollary 2 the relation αx · βx 6= x holds in (Q , ∗) for all
x ∈ Q. We will adopt some of the above results for right loops princi-
pally isotopic to groups, i.e. we will �nd the necessary and su�cient
conditions for a right loop isotopic to a group to be generated by any
its non-unit element, therefore to have no proper subloops. A results
can be obtained for left loops isotopic to groups.

Recall that a right (left) loop is a quasigroup (Q , ∗) with the right
(left) unit f (respectively - (e)) i.e. such elements that x ∗ f = x
( e ∗ x = x ) for all x ∈ Q. The sets {f}, {e} and Q are right (left)
subloops of (Q , ∗) called improper subloops. All other subloops are
called proper subloops.

For all a ∈ Q put
Sa(Q) = {ψ ∈ S(Q) : ψa = a } .

Proposition 2. A right loop isotopic to a group (Q , ·) with the unit
e is isomorphic to some right loop

(Q , ◦) : x ◦ y = x · ϕy, ϕ ∈ Se(Q), x, y ∈ Q
with the unit e.

Proof. To prove that, by Theorem 2 it is su�cient to consider right
loops principally isotopic to groups. Let

(Q , ∗) : x ∗ y = αx · βy, α, β ∈ S(Q)
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be a right loop isotopic to a group (Q , ·) and f be the right unit of
(Q , ∗). For every x ∈ Q we have x = x ∗ f = αx · βf and we obtain

α = R−1
(βf) = R(βf)−1 .

Therefore

x ∗ y = R(βf)−1x · βy = x(βf)−1βy = x · L(βf)−1βy

for all x, y ∈ Q. Let us consider the isotope

(Q , ◦) : x ◦ y = x · L(βf)−1βLfy, x, y ∈ Q .

Remark that L(βf)−1βLfe = e, i.e. (Q , ◦) is a right loop with the unit
e. The loop (Q , ◦) is isomorphic to (Q , ∗) since

Lf (x ◦ y) = Lf (x · L(βf)−1βLfy) = Lfx · L(βf)−1βLfy = Lfx ∗ Lfy

for all x, y ∈ Q.

The following assertion can be proved in a way analogous to that
used in Theorem 3.

Lemma 5. A right loop
(Q , ∗) : x ∗ y = x · αy, α ∈ Se(Q), x, y ∈ Q

isotopic to a group (Q , ·) with the unit e has no proper subloops if
and only if

StabL(Q,·)α = {{e}, Q}.

Lemma 6. A right loop
(Q , ∗) : x ∗ y = x · αy, α ∈ S(Q), αf = e, x, y ∈ Q

isotopic to a group (Q , ·) with the unit e has no proper subloops if
and only if

StabL(Q,·)αLe = {{e},Q}

Proof. The right loop (Q , ∗) is isomorphic to the right loop
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(Q , ◦) : x ◦ y = x · αLfy, x, y ∈ Q .
In fact

Lf (x ◦ y) = Lf (x · αLfy) = Lfx · αLfy = Lfx ∗ Lfy

for all x, y ∈ Q. Then the right loop (Q , ∗) has no proper subloops
provided that (Q , ◦) has no ones. Now we apply Lemma 5 to the right
loop (Q , ◦) and this completes the proof of our Lemma.

Corollary 5. The loop isotopic to a group of prime order has no
proper right subloops.

Proof. The assertion follows from Lemma 6 taking into account that
a group of a prime order has no proper subgroups.

Theorem 4. Let (Q , ·) be a group with the unit e. The right loop
(Q , ∗) : x ∗ y = γ−1(αx · βy), α, β, γ ∈ S(Q), x, y ∈ Q

with the right unit f has no proper right subloops if and only if
StabL(Q,·)L(βf)−1βγ−1Lγf = {{e}, Q}

Proof. By Theorem 2 the right loop (Q , ∗) is isomorphic to the right
loop

(Q , ∗) : x ∗ y = γ−1(αx · βy), α, β, γ ∈ S(Q), x, y ∈ Q
with the unit γf . For every x ∈ Q we have

x = x ◦ γf = αγ−1x · βf ,

hence αγ−1 = R(βf)−1 . Therefore
x ◦ y = R(βf)−1x · βγ−1y = x · (βf)−1βγ−1y = x · L(βf)−1βγ−1y .

Let us consider the isotope
(Q ,×) : x× y = x · L(βf)−1βγ−1L(γf)y, x, y ∈ Q .

This isotope is a right loop with the right unit e and the translation
Lγf is an isomorphism between (Q ,×) and (Q , ◦). Now we apply
Lemma 5 to the right loop (Q ,×) and this completes the proof.
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4. Examples
1. Let (Q , ·) = 〈h〉 be a cyclic group generated by h ∈ Q and
|Q| = r, 3 ≤ r ≤ ℵ0. Let e be the unit of the group (Q , ·), I be
the permutation of (Q , ·) de�ned by Ix = x−1, α = (e h) be the
transposition of elements e and h. Then the isotope

(Q , ∗) : x ∗ y = αx · Iy, x, y ∈ Q
is a monoquasigroup which satis�es the identity x ∗ (x ∗ y) = y. In
fact

x ∗ (x ∗ y) = αx · I(αx · Iy) = αx · Iαx · y = y .

Recall that every element of the group (Q , ·) = 〈h〉 is a power of the
element h and every its subgroup is the cyclic subgroup generated by
some power hk of h. To prove that (Q , ∗) is a monoquasigroup, by
Lemma 3, it is su�cient to prove the equality

StabL(Q,·)α ∩ StabL(Q,·)I = {Q} .

This equality holds since we have αe = h and the group (Q , ·) is the
unique subgroup of (Q , ·) which contains h.

Now we will prove that every subquasigroup (H, ∗) of (Q , ∗) con-
tains e. Really, if hk ∈ (H, ∗) for k 6= 1, then e = hk · h−k ∈ (H, ∗).
If h ∈ (H, ∗), then h−1 = e · h−1 = αh · Ih = h ∗ h ∈ (H, ∗) and
e ∈ (H, ∗) as it is proved above.
2. Let (Q , ·) = 〈h〉 be a cyclic group with the unit e generated
by h ∈ Q, |Q| = n, 3 ≤ n ≤ ℵ0 and α be a cyclic permutation
(hh2h3...hn−1). Then the isotope

(Q , ∗) : x ∗ y = x · αy, x, y ∈ Q
is a right loop with the unit e and has no proper right subloops.

Really, we have x ∗ e = x · αe = x · e = x for all x ∈ Q and
thus (Q , ∗) is a right loop with the unit e. If 1 ≤ k ≤ n − 2, then
αhk = hk+1 and αh−1 = αhn−1 = h. Now, if a subgroup of the cyclic
group 〈h〉 contains elements hk and hk+1, then it contains h as a
solution of the equation hk · x = hk+1, and thus it coincides with 〈h〉.
Hence, we have

StabL(Q,·)α = {{e},Q},
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and thus (Q , ∗) has no proper right subloops.
3. Let (Q , ·) = 〈h〉 be the in�nite cyclic group generated by the
element h ∈ Q. Let e be the unit of (Q, ·) and α be the following
permutation: αe = e, αh−1 = h, αhk = hk+1 for all k 6= 1. Like that
in the example 2 we can prove that the right loop

(Q , ∗) : x ∗ y = x · αy, x, y ∈ Q
has no proper right subloops.
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