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On topological n-ary semigroups

Wiestaw A. Dudek and Vladimir V. Mukhin

Abstract

In this note some we describe topologies on n-ary semigroups induced by families
of deviations.

1. Introduction

Topological n—groups were investigated by many authors. For ex-
ample, éupona proved in [5] that each topological n—group can be
embedded into a topological group. Zizovi¢ described topological me-
dial n—groups (cf. [20]), topological n—groups with the Baire property
(cf. [21]) and proved a topological analog of Hosszt theorem (cf. [19]).
Crombez and Six described a fundamental system of open neighbor-
hoods of a fixed element (cf. [4]). Endres proved that every topo-
logical n—group is homeomorphic to some canonical topological group
(cf. [9]). Topologies induced by norms are considered by Boujuf and
Mukhin (cf. [2]). Balci Dervis (cf. [1]) described free topological
n—groups. In [12] is described a method of embedding topological
abelian n—semigroups in topological n—group.

On the other hand, we known that topological n—semigroups have
many properties which are not true for binary semigroups.

In this paper we investigate topologies on n—semigroups and n—
groups determined by families of left invariant deviations. We describe
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the conditions under which such topology is compatible with the n—
ary operation. We find also the necessary and sufficient conditions for
the topologically embedding a semiabelian topological n—semigroup in
a topological n—group.

2. Preliminaries

Traditionally in the theory of n-ary groups we use the following abbre-

viated notation: the sequence w;,...,z; is denoted by z] (for j < i

this symbol is empty). If z;11 = ... = ;1 = x, then instead of xsz
k 0

we write ($). Obviously (a?) is the empty symbol. In this notation the

formula

f(:Cl, ey Ljy Ljq 1y ooy Lidky Ljd oty ooy l’n) y

ok
where ;11 = ... = x4, = x, will be written as f(z}, (x), TP i) -
If m =k(n—1)+ 1, then the m-ary operation g given by

9@ ) = LU SO D), a0, ) 2 22)
k—times
will be denoted by f(x). In certain situations, when the arity of g does
not play a crucial role, or when it will differ depending on additional
assumptions, we write f(), to mean f(; for some k=1,2, ...
An n-ary operation f defined on G is called associative if

FUf@D),zinh) = flar ' fai ™), 205"

holds for all x1,29,...,29,-1 € G and ¢« = 1,2,...,n. The set G
together with one associative operation f is called an n—ary semigroup
(briefly: n—semigroup). An n-semigroup (G, f) in which for for all
ai, as, ...,a,,b € G there exits an uniquely determined z; € G such
that f(ai™", z;,al ) =b is called an n—group.

From this definition it follows that a group (a semigroup) is a 2-
group (a 2-semigroup) in the above sense. Moreover, it is worthwhile
to note that, under the assumption of the associativity of f, it suffices
only to postulate the existence of a solution of the last equation at
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the places ¢ = 1 and @ = n or at one place ¢ other than 1 and n (cf.
[13], p.213'7). This means that an n-group may be considered as an
algebra (G, f, f1, fn) with one associative n—ary operation f and two
n—ary operations fi, f,, such that

f(fl(aga b)’ ag) = f(ag7 fn(ag7 b)) =0 (1)

for all a3,b € G.
Following E.L.Post ([13], p.282) the solution of the equation

f(z,a,...,a, f(a,..,a)) =a

is denoted by al=?. An n-semigroup (G, f) with an unary operation
=2 . G — @ satisfying some natural identities is an n-group (cf.
[16]). |

The map = — f(ajl_l,x, a}ﬂrl) is called an j-th n—ary translation
determined by ag,...,a,. In an n—group each n—ary translation is a
bijection.

In an n-group (G, f) for any sequence af? there exists only one
a € G such that

f(I, aT_Q’ a) = f(arll_Zv a, ZL‘) = f(a’ a?_2’ :L‘) = f(.l’, a, ayll_g) =T

for all x € G (cf. [17]). An element a is called inverse for a2, In the
binary case, i.e. in the case n = 2, when the sequence a2 is empty
by the inverse we mean the neutral element of a group (G, f) .

A sequence af is called a left (right) neutral sequence if f(al,x) =
x (respectively f(z,a}) = z) holds for all z € G. A left and right
neutral sequence is called a neutral sequence. In an n—group for every
sequence a2 may be extended to a neutral sequence, but there are
n—semigroups without left (right) neutral sequences.

Let (G, f) be an n-semigroup and let a5~ ' be fixed. Then (G, *),
where

2

zxy = flz,a57",y) (2)
is a semigroup, which is called a binary retract of (G, f) and is denoted

by retgn- (G, f). A binary retract of an n—group is a group. Moreover,

all binary retracts of a given n—group are isomorphic (cf. [7]), but n—
groups with the same retract are not isomorphic, in general.
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By so-called Hosszu theorem (cf. [11] or [7]), every n—group (G, f)
has the form

f(@]) = w1 % Blxz) * B7(x3) ... * 8" (2a) % b, (3)

where a} is a fixed right neutral sequence of (G, f) , (G,*) =

retag_1(G, f), b= f(giz) and B(z) = f(an,z,a57").

The identical result holds for n—semigroups with a right neutral
sequence.

3. Topology

An n—semigroup (G, f) defined on a topological space (G, 7)) is called
a topological n—semigroup if the operation f is continuous in all vari-
ables together.

A topological n—group is defined as a topological n—semigroup with
two additional continuous operations f; and f, satisfying (1) (cf. [5]).
A topological n—group may be defined also a topological n—semigroup
with additional continuous operation [72. These definitions are equiv-
alent (cf. [15]).

It is clear that retracts of a topological n—semigroup (n—group) are
topological semigroups (groups). Obviously all translations of a topo-
logical n—semigroup (n—group) are continuous maps. On the other
hand, every n—ary operation which may by written in the form (3),
where * and [ are continuous, is continuous in all variables together.
Thus the following lemma is true.

Lemma 3.1. Assume that an n—semigroup (G, f) with a topology T
has a right neutral sequence a%. Then (G, f,T) is a topological n—
semagroup if and only if reta;_l(G, f) is a topological semigroup and

B(x) = f(an, z, a5~ ") is continuous. O

Corollary 3.2. An n-group (G, f) defined on a topological space
(G, T) is a topological n—group if and only if there exists a right neu-
tral sequence a3 such that xxy = f(x,ay " y), B(z) = flan,z,ay™ ")
and 2 2 — 272 are continuous. U
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Proposition 3.3. An n—group (G, f) defined on a topological space
(G, T) is a topological n—group if and only if there exists a right neu-
tral sequence aly such that reta;_l(G, f) is a topological semigroup,
B(x) = flan,z,a5™") and s : v — s(zx), where f(s(z),ay ™', z) = a,,
are continuous.

Proof. Let a} be a fixed right neutral sequence on an n—group (G, f) .
If (G,x) = ’I“eta;—l(G, f) is a topological semigroup and f[(z) =
f(an,z, a5~ ") is continuous, then (G, f) is a topological n-semigroup
by Lemma 3.1.

Moreover, a, is the neutral element of (G,x) and s(z) is the
solution of f(s(x),ay ', z) = an, ie. s(x)*x =a, in (G,*). Thus
s(z) is the inverse of x in (G, x). Hence (G, x*) is a topological group,
because s(z) is continuous, by the assumption.

Since f(z,c5) = f(f(z,a5),c5) = z * f(a,,c§) for all ¢; € G,
then the solution z of f(z,¢5) = b in (G, f) is the solution of
z % f(an,cy) = b in (G,x*), then z continuously depends on b and
f(an,cy). Thus z is a continuous function of variables b,cs, ..., cp.

This, for b = ¢ = ... = ¢,-1 = x, ¢, = f(x,...,x), implies that
(2]

z = x!=? is a continuous function of x. Thus (G, f) is a topological
n—group.
The converse is obvious. 0

Corollary 3.4. Let 7 be a locally compact topology on an n—group
(G, f) with a right neutral sequence ay. If for every b € G transla-
tions = — f(x,ay ' b), x +— f(byay ', 2) and x — f(an,x, a5 ")
are continuous, then (G, f,T) is a topological n—group.

Proof. In the group (G,x*) = retag_l(G, f) translations x — x % b
and x +— b*x are continuous for every b € G. Thus, by the theorem
of Ellis (c¢f. Theorem 3 in [8]), (G,x*) is a topological group. In this
group s(z) defined in the previous Proposition is a continuous oper-
ation. Hence (G, f) is a topological n—group. O
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4. Deviations

By a deviation defined on a nonempty set X we mean every map
@ : X x X —[0,400) such that ¢(x,z) =0, ¢(z,y) = p(y,x), and
o(x,y) < p(r,2) + @(z,y) for all z,y,z € X. A deviation ¢ defined
on a semigroup (group) (G,-) is left invariant if ¢(cx,cy) = ¢(x,y)
for all ¢, z,y € G. A deviation ¢ defined on an n—semigroup (G, f) is
a left invariant if

gO(f(C?_l,ZL"), f(c?_lvy)) = QO(I, y)

for all x,y,c ' € G.

Theorem 4.1 ([2]) . A binary semigroup (group) (G,-) with a topol-
ogy T is a topological semigroup (group) if and only if there exists a
family ® of continuous left invariant deviations on G which induces
T and ¢, € ® for every z € G and ¢ € ®, where ¢, is defined by

©.(z,y) = o(xz,y2). 0

In the case of an n—semigroup (G, f) every deviation ¢ on (G, f)
induces a new deviation (¢, k,cy) defined by

(907 k7 Cg)(l’, y) = @(f(cl;m? CZJrl)v f(cgvyv CZ+1>> )

where ¢y € G and k =1, ...,n are fixed.

Theorem 4.2. Let ay be a right neutral sequence of an n—semigroup
(G, f) . If a topology T on G is induced by the family ® of deviations

such that for all x,y,z € G and ¢ €

(a) (f(z,a57 " @), f(z,a57 ", y) = o(,y),
(b) <(p7 17 a,gLil? Z)? (()07 27 a/nJ a/gil) E ®7

then (G, f) is a topological n—semigroup.

Proof. Let ® be as in the assumption. By (a) every ¢ € & is a left
invariant deviation on a semigroup (G, x) = reta;fl(G, f). From (b)
we obtain

p:(1,y) = p(x* 2,y x 2) = o(f(z, 057, 2), fy,a37, 2)) =
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= (907 L, a;z—l’ Z)(l’,y)
for every z € G, which gives ¢, € ®. By Theorem 4.1 (G, ) is a
topological semigroup.
Let ¢ > 0. If z,79 € G are such that (p,2,a,,as ") (2, z0) < &,
where ¢ € @, then

(p(ﬁ(&?),ﬁ(%o)) = @(f(amwa agil)a f(anv 2o, agil)) =
= (907 27 A, Gg_l)(ilf,.’lfo) < g,

which proves that (3 is continuous. Lemma 3.1 finish the proof. U

Theorem 4.3. An n—group (G, f) with a topology T is a topological
n—group if and only if there exists the family ® of deviations such that
a topology T is induced by ® and for some right neutral sequence ay
of G and for all x,y,z € G, ¢ € ® the conditions (a), (b) from the
previous theorem are satisfied.

Proof. Let (G, f,T) be a topological n—group. Then the retract
(G,*) = Teta;z—l(G, f) is a binary topological group for every choice
of as,...,a,_1 € G. Thus, by Theorem 4.1, there exists the family
® of continuous left invariant deviations of (G,*) which induces the
topology 7. Hence, for all x,y,z € G and ¢ € @, we have

cp(f(z,ag_l,x), f(zaag_lvy» = SD(Z *T, 2 * y) = gD(l‘,y),

which proves (a).
Moreover, since for all as,...,a,_1 € G there exista a, € G such
that a} is a right neutral sequence, then from the above follows

p(f( ™), f(d 7 y) =
= o(f(™ flan, a3, 2)), f( 7, flan, a3 y))) =
= o(f(f(I™ an), a3~ @), F(f(l™ an), a5 y))) = o(z,y)
for all ¢q,...,cp,—1 € G.
Thus every ¢ € ® is a left invariant deviation of an n-group

(G, f) . Hence also (¢, k,chy) is a left invariant deviation for ev-
ery k = 1,2,...,n and all ¢,....,c,_1 € G. Obviously (¢, k,ch) is
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also left invariant on (G,*) and (p,k,c}) € ®. Therefore (p,1,a}),
(©,2,a,,a3 ') € ®, which proves (b).

Conversely, if a topology 7 is induced by the family ® of deviations
satisfying (a) and (b), then, by Theorem 4.1, (G,*) = ret -1(G, f)
is a binary topological group. Similarly as in the proof ‘of Theo-
rem 4.2 from (p,2,a,,ay ) € ® follows that the translation 3(z) =
f(an,z, a5~ ") is continuous. Proposition 3.3 completes the proof. O

5. Embedding of topological n—semigroups

The necessary and sufficient conditions for the embedding of topolog-
ical semigroup in topological group are described by N. J. Rothman
(cf. [14]) and F. Christoph (cf. [3|). In this section we give some
generalizations of these results.

As it is well known (cf. for example [13] or [6]) an n—semigroup
(G, f) is called semiabelian or (1,n)-commutative if

flxas™y) = fly,a5™ ' x)

holds for all x,y,as,...,a,_1 € G, and cancellative if
f(ai_l,x, a?—&—l) = f(ail_la Y, (1?4_1) = r=Yy

forall ¢ =1,2,....,n and z,y,a4,....,a, € G. Every n—group is obvi-
ously cancellative.

Now we use the construction of the quotient n—group presented
during the Gomel’s algebraic conference (1995) by A. M. Gal’'mak
and V. V. Mukhin.

Let (G, f) be a cancellative semiabelian n—semigroup. Then the
relation

(z,y) ~(2,1) = fo( ¥ ,2)=[fa( t ,T)
defined on G x GG is an equivalence relation. Indeed, the reflexivity

and symmetry are obvious. We prove the transitivity.
Let (z,y) ~ (z,t) and (z,t) ~ (u,v). Then

(n=1) (n) (n=1) (n) (n—1) (n)
Jol Vv ,2)=fo( ¢t ;o) and fin( ¢t ,u)=fo( v, 2).
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Hence
(n=1) (n) (n—1) (n=1) (n) (n—1) (n=1) (n—1) (n)
foCt o, v)=fa(y .z, v)=Ffep(y, v, ,2z)=
(n=1) (n—1) (n) (n=1) (n=1) (n)
:f(3)(y7 t ,U):f(g)(t ) y7u)7
(n=1) (n) (n—=1) (n)

which by the cancellativity gives fo)(" 2, v) = fo( ¥ , ).
Since (G, f) is semiabelian, then

(n—1) (n) (n=1) (n)
Jo(Cx ', v)=fio( v, o),

and in the consequence

(n—1) (n) (n—=1) (n)
JoCv ', 2)=fo( ¥ ,u),

which proves the transitivity.
In the set G* = G x G/ ~ of all equivalence classes (z;,y;) we
define the new n—ary operation

[z y), (@2,y2)s - (@n,yn) ) = (f2), F(U1)) -
It (zi,y;) ~ (si,t;) forall i =1,2,...,n, then also

(n—1) (n) (n=1) (n)
foC v, si)=fol ti ;)
and
(n—1) (n) (n—1) (n) (n=1) () (n=1) " (n)
f(f(Z)( Y1 781)7 7f(2)( Yn 7STL>) = f(f(2)( tl aml)a 7f(2)( tn ,ZL’n))

But every semiabelian n—semigroup is also medial (see [10]), i.e.
it satisfies

FU ) fr), o fant) = f(f @), f@), - faih) -

Then the last identity may be written in the form

(n=1)  (n) (n=1)  (n)
Fo (FW), £(s1) ) = fr ( £0), (2 ),

which proves that

(F@D), fQr) ) ~ CF(sT), F(E)) -
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Hence the operation f* is well defined. It is clear that this operation
is also associative and (1, n)-commutative.

Now let

and

)= I -1 (n-tyn ).

where a, b, c,d are fixed elements from G. Then, using (1, n)-commu-
tativity, we obtain

fo(f . ) )

(n—1)—times

(n=1)(n=1) (n—1)n (n—1) (n=1)(n=1) (n—1)n (n—=1) (n
:f()(by d 7( C)7 d 7"'7ba d ’( C), d 7(61))

(n—1)—times

(n=1) (n) (n=1)*n (n—1)2n
:f()( b , 4, d ) c )ZWI
and
(n—1) (n—1) (n—1)
f()( b ,f(ﬂ?, c ),...,f(l', c ))I
n—times
(n=1)  (n=1)(n—1) (n—1)(n—2) (n—1) (n—=1)(n—1) (n—1)(n—2) (n—1)
f()( b ) Ay d ) c ’ c y ey @y d ) C ) c )
n—times
(n—1) (n) (n—1)*n (n—1)2n
=fo( b a, d ) =W
Since W7 =W, , then
(n—1) (n—1)_ (n) (n—1) (n—1) (n—1)
f()(f(y7 d )a'-'vf(y7 d )a a ) = f()( b af(Ia c )7"'af($a c ))
(n—1)—times n—times
which proves that
(n—1) (n—1)

i.e.
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f*< <[E,y>, <C’ d>7 "‘7<C7 d>) = <a7b>'

n—1times

Hence for all (a,b),(c,d) € G* the last equation has the solution
(x,y) € G*.

In the similar way we prove that for all (a,b), (c,d) € G* there
exists (z,y) € G* such that

f*(<ca d>7 "'7<C> d>’ <‘Tay>) = <a7b>'

(n—1)—times

This proves (cf. [18]) that (G*, f*) is a semiabelian n—group.
The map p(x) = (x,x) is a homomorphic embedding of an n-
semigroup (G, f) in an n—group (G*, f*). Indeed,

p(f(a1)) = {f(a1), f(z1)) =
= [ (@), o (@, 2n)) = [H(p(21), - p(20)
and p(z) = p(y) implies (x,z) = (y,y), i.e.

(n—1) (n) (n—1) (n) (n—1) (n—1)
fol e, ¥)=fo( Yy 2)=fo( v, ¥ ),
which by the cancellativity gives x = y. Thus the following lemma is
true.

Lemma 5.1. Fvery semiabelian cancellative n-semigroup may be em-
bedded into a semiabelian n-group. |

Lemma 5.2. If ¢ is a left invariant deviation of a cancellative semi-

abelian n—semigroup (G, f) , then

el (@) (2 0) = oo (T D), fo (" B

is a left invariant deviation on G* such that pq(p(x),p(y)) = o(z,y).

Proof. From the definition of ¢g follows ¢g((z,z),(x,2)) =0 and

QDG( <fL‘,y>, <Z7t> ) = QOG( <Z7t>’ <l‘, y> )
Moreover, if (x,y) ~ (u,v), where (x,y), (u,v) € G x G, then

(n—1) (n) (n—1) (n)
foCv, o)=Ffol ¥y , u)
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and

e (2 0)) = oy ("t D), s ("0 B =

(n=1) (n=1) (n) (n—1) (n—=1) (n)
=o(fe( v, t,2), foCv, ¥y ,2))=

(n=1) (n—1) (n) (n=1) (n=1) (n)
=p(fey( t, v,2), fep(Cv, ¥ ,2))=

(n=1) (n—1) (n) (n—1) (n=1) (n)
=o(fe(t , ¥ u), fepCv, ¥, z))=

(n=1) (n—1) (n) (n=1) (n—1) (n)
:Q,O(f(?,)(y; t 7u)7f(3)(y7 ?}72)):

= QO(f(Q)((ngl)v (Z)) ’ f(2)<(n{)1)7 (2)) ) = @G( <u’ U>7 <Za t> )

which proves that g is well defined.

Now, for all (z,y), (2,t) € G x G we have
(n—1) (n) (n—1) (n)
gog((x,y>,<z,t)):go(f(2)( t 7x)7f(2)< Yy 7Z>):

(n—=1) (n=1) (n) (n—1) (n—1) (n)
=o(fe( v, t ,0), fp(Cv’, ¥ ,2)) <

(n—1) (n—1) (n) (n—1) (n-1) (n)
< 90<f(3)( v, 7‘r>7f(3)( vy, t 7“))

+olfey( Yy, t ,u), fap(Cv, ¥y, 7)) =
(’I’L—l) (n—l) (n) (n—l) (77,—1) (n)
:Sp(f(?))( t , v 7x)7f(3)< t, Y 7U))
+S0(f(3)< y ., t 7u)7f(3)( v, 7Z>):

(n=1) (n) (n—1) (n) (n=1) (n) (n=1) (n)
:90<f(2)( v 7'I)7 f(2)( ) ,U))—f—@(f(z)( t ,U), f(2)( v, Z)):

= (106'( <£L',y>, <u7 U> ) + @G( <u7 U), <Zat> )
Hence ¢¢ is a deviation on G*.

To prove that (¢ is left invariant observe that forall: =1,...,n—1,
and a;,b;,a,_1,2,y,u,v € G we have

i (F (a1, br), oo (@nr,bam), (@,9)), F((a1, 1), (ano1, o), (u,0)))



On topological n-ary semigroups 85

= o ((flai™ @), FO ), (i ), FO7 7 0)) ) =
= o(f (fOF ), fBT L 0), flap ™ @), o flaf ! ),

(n—1)—times n—times
f(?)( f(b?ia y)7 ceny f(b?ilv y) ) f(a?ila U), ceey f(a/llia U) ) ) :
(n—1)—times n—times

By the associativity and (1,n)-commutativity of f, the last formula
may be written in the form

(n—1) (n) (n—1) (n)
go(f(,)(..., v ,.T),f(,)(..., ) ,u)),

which, together with the fact that ¢ is left invariant, implies

SO(f(z)((nEl), D). Ja(", (Z))) = pa((2,y), (u,v)).

This proves that ¢¢ is a left invariant deviation on G*.

Moreover
pa(p(@). ) = gol (e, 2), (0.9)) = o(F (0D, for (2", D))
= 90(f<2>((n§1)> ) fo (" v) =
— o (fa ("0, f (0 ) = e,
which completes our proof. O

Theorem 5.3. A cancellative semiabelian n—semigroup (G, f) with a
topology T may be topologically embedded in a topological n—group if
and only if a topology T is induced by a some family of left invariant
deviations defined on G.

Proof. 1If a cancellative semiabelian n—semigroup (G, f) with a topol-
ogy 7 is topologically embedded in a topological n—group (H, f) with
a topology 7y, then 7y is induced by some family ® of deviations
such that

gD(f(Z, ag_l,x) ) f(z,ag_l,y)) = 30($ay)>
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where z,y,2 € H and as,...,a, is a right neutral sequence of an n—
group H (Theorem 4.3). Since in an n—group H for all as, ...,a,—1 € H
there exists a, € H such that as,...,a, is a right neutral sequence,
then in the above formula all z,y, z,as,...,a,_1 are arbitrary. This
proves that all ¢ € ® are left invariant deviations.
Conversely, if a topology 7 on a cancellative semiabelian n—semigroup

(G, f) is induced by a some family ® of left invariant deviations, then
every ¢¢ defined in Lemma 5.2 is a left invariant deviation on G*. By
Theorem 4.3 the family {¢¢}oco induces on G* the topology 7¢ such
that G* is a topological n—group and p(z) = (z,z) is a topological
embedding of (G, f,7) in (G*, f*,15). O
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