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On ordered n—groups

Janez Usan and Malisa Zizovi¢

Abstract

Among the results of the paper is the following proposition. Let (Q,{:,¢,b})
be an arbitrary nHG—algebra associated to the n-group (Q, A), where n > 3.
If < is a partial order defined on @, then, (@, A, <) is an ordered n—group iff
(Q,+, <) is an ordered group and for every z,y € @ the following implication holds
z <y = o) < py).

1. Preliminaries

Definition 1.1. Let n > 2 and let (Q, A) be an n—groupoid. Then:
(a) (Q,A)is an n—semigroup iff for every i,5 € {1,...,n}, i < j the
following law (called the (i, j)—associativity) holds

Alay ™ Al ™), 2 t) = Al Al ™), 2380,

(b) (@, A) is an n—quasigroup iff for every ¢ € {1,...,n} and for every
al € @ is exactly one z; € () such that

A(a?[_17 Li, a?_l) = an,

(¢) (@, A)isa Dirnte n—group (briefly: n-group) iff is an n-semigroup
and an n—quasigroup.
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A notion of an n—group was introduced by W. Dornte in [2]| as a
generalization of the notion of a group.

Proposition 1.2. [10] Let n > 2 and let (Q, A) be an n—groupoid.
Then the following statements are equivalent:

(1) (Q,A) is an n—group,
(i) there are mappings ~' and e respectively of the sets Q"1 and
Q"2 into the set Q such that in the algebra (Q,{A,”',e}) of
the type < n,n —1,n — 2 > the following laws hold:
(a) A(2i72 A(a77?), w20-1) = A(27 7 A1)
(b) Ale(ai™),a1?x) =z,
() A((@i™%a)™" a1 a) = e(al ™),

(i71) there are mappings ~' and e respectively of the sets Q"' and
Q"2 into the set Q such that in the algebra (Q,{A,~' e}) of
the type < n,n —1,n — 2 > the following laws hold:

(@) A(A(ep), ayn') = Aley, A(ey ™), 2713

(b) Az, ai™? e(ai™)

)=,
(@) Ala,ai™® (a7, a)7") = e(ai ™). =

S

(=

Remark 1.3. e is an {1, n}—neutral operation of n—grupoid (Q, A)
iff algebra (Q, {4, e}) of type < n,n—2 > satisfies the laws (b) and (b).
The notion of {i, j}—neutral operation (i,7 € {1,...,n},i < j) of an
n—groupoid is defined in a similar way (cf. [6]). In every n—groupoid
there is at most one {4, j } —neutral operation. A {1,n}—neutral oper-
ation there exists in every n—group, but there are n—groups without
{i, j}—neutral operations with {7, 5} # {1,n} (cf. |9]). Operation !
is a generalization of the inverse operation in a group. In fact, if (@), A)
is an n—group, n > 2, then for every a € ) and for every sequence

a2 over Q is



On ordered n—groups 79

where E is an {1,2n — 1}—neutral operation of the (2n — 1)—group

2 2

(Q, A) defined by A(z7"") = A(A(2}), 22"7") (cf. [7]). Obviously,
for n =2, a=! = E(a); a! is the inverse element of the element a
with respect to the neutral element e(()) of the group (@, A).

Theorem 1.4. (Hosszi-Gluskin Theorem) (cf. [5], [4])
For every n—group (Q,A), n > 3, there is an algebra (Q,{-,¢,b})
such that the following statements hold:

1° (Q,-) is a group,

2° e Aut(Q, ),

3° So(b) =0,
4° for every z € Q, ¢ Hz)-b=0b 1z,
5° for every x} € Q, A(x}) =1 - p(xs) ... " Hx,) b U

Definition 1.5. [8] We say that an algebra (Q,{-, ¢, b}) is a Hosszi—
Gluskin algebra of order n (n > 3) (briefly: nHG-algebra) iff it satisfies
1°—4° from the above theorem. If it satisfies also 5°, then we say that
an nHG- algebra (Q, {-, ¢,b})) is associated to the n—group (Q, A).

Proposition 1.6. [8] Let n > 3, let (Q, A) be an n—group, and e
its {1,n}— neutral operation. Further on, let ¢}~ be an arbitrary se-
quence over Q) and let for every x,y € Q

B(c?’z)(mﬁ y) = A(l‘, 0711_27 y) )
@(C?—%(m) = Ale(c1™?),2,¢"?)  and
b(c?_Q) = A(e(cqll72>7 e<c71L72)7 B 76(6?72))'
Then, the following statements hold
(1) (@, {B(cghz),go(c?fz),b(c?fz))} is an nHG—algebra associated to the
n—group (Q,A) and
(ii) Ca = {(Q, {B(c?_z), Pen-2); b(c?_z)}) L 72 e QY is the set of all
nHG—algebras associated to the n—group (Q, A). O

Proposition 1.7. [8] Let (Q, A) be an n—group, e its {1,n}-neutral
operation andn > 3. Then for every a} > € Q and every 1 <i < n—2

there is ezactly one x; € Q such that e(ai™, x;,a7™>) = ap_s. O
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2. Main results

Definition 2.1. Let (@, A) be an n—group, n > 2. If < is a partial
order on () such that

r<y = Al Lo, 4T <ALy ) (1)
for all z,y,21,...,2,—1 € @ and i € {1,2,...,n — 1}, then, we say that
(Q, A, <) is an ordered n—group.

Note that in the case n =2 (Q, A, <) is an ordered group in the
sense of [3].

Theorem 2.2. Let < be a partial order on Q). Also, let n > 3 and let
(Q,A) be an n—group. In addition, let (Q,{-,»,b}} be an arbitrary
nHG—algebra associated to the n—group (Q,A). Then, (Q, A, <) is
an ordered n—group iff for all x,y,z € Q the following two formulas
hold

r<y = xzz<yz A zx <zy (2)

<y = ) <o) (3)

Proof. Let (@, A, <) be an ordered n—group and let n > 3. Also, let e
be an {1, n}—neutral operation of the n—group (@, A). In addition, let
(@Q,{:,p,b}) be an arbitrary nHG—algebra associated to the n—group
(Q, A). Then, by Proposition 1.6, there is at least one sequence ¢} 2
over () such that for every z,y € @) the following two equalities hold:

Hence, by Definition 2.1, we conclude that the formulas (2) and (3)
hold in (@, {-, ¥, b}).

Conversely, let (@, {-, ¢, b}) be an arbitrary nHG—algebra associ-
ated to the n—group (Q, A). Also, let < be a partial order on (). As-
sume that an nHG— algebra (Q, {-, ¢, b}) satisfies (2) and (3). Then,
for every x,y, 2772 € Q and i € {1,2,...,n} it satisfies also (1).
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Indeed, for 1 <i<n-—1 x <y implies ¢ (z) < ¢ y),
and in the consequence

2@ i) T @) S a0 T (i) T ()

which gives

21002 (zi) e @) 0 () bz <
21t SOi_Q(Zi—l) ) @i_l(y) : SOZ(ZJ bz
Hence, by Definition 1.5, we conclude that (1) holds.
The cases © = 1 and ¢« = n are obvious. O

Example 2.3. Let (Z,+) be the additive group of all integers, and
let < by the natural order defined on Z. Then Z with the ternary
operation A defined by

Alx,y,2) =2+ (—y) + 2

is a 3—group.

Moreover, (Z,{+,¢,0}), where p(z) = —z, is an nHG—algebra
associated to a 3—group (Z, A).

Since for every xz,y € Z x <y implies ¢(y) < ¢(z), we conclude
(by Theorem 2.2) that (Z, A, <) is not an ordered 3—group. O

Example 2.4. Let (Z,+, <) be as in the previous example. Let
B(z})=x1+ 22+ ... +x,+2
for every x} € Z, n > 3. Then, (Z, B) is an n—group with (Z, {+, id, 2})
as its associated nHG—algebra. Obviously (Z, B, <) is an ordered
n—group.
Moreover, (Z,C, <) and (Z, D, <) where
Clal)=az1+x+ ... +xp,

D)=z +z+ ... + 2,4+ (—2)

are ordered n—groups as well. |
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Theorem 2.5. Let (Q, <) be a chain. Also, let (Q, A) be an n—group,
~1 ts inverse operation, e its {1,n}—neutral operation and n > 3.
Moreover, let a be an arbitrary element of the set Q and a?™> be an
sequence over Q) such that e(a} ?) =a. Then

(1) {z:a <z}, A) is an n—subsemigroup of the n—group (Q,A)
iff a < Aa),

(i1) ({z : (a7 A(@)™" < x},A) is an n—subsemigroup of the
n—group (Q, A) iff A(a) <a,

(i) let a < A(a) and let ¢ be an arbitrary element of the set Q such
that a < c. Then ({x : ¢ < x}, A) is an n—subsemigroup of the
n—group (Q, A),

(iv) let A(a) < a and let ¢ be an arbitrary element of the set Q
such that (a?2, A(a))™" < c. Then ({x :c¢ <z}, A) is an
n—subsemigroup of the n—group (Q,A).

Proof. 1) Let a be an arbitrary element of the set Q. Also let a2 be

an sequence over @ such that e(a} ?) = a. Moreover, let
(a) fL"y:A(%G?*Q,y),

(b) p(r) = Aa, z,a77?),

() b= Aa),

(d) vt = (a7, )7}

for all x,y € Q. Then:
1° (Q,{,p,b}) is an nHG—algebra associated to (Q, A),
2° a = e(a}"?) is a neutral element of the group (Q, ),
3° ~1is an inverse operation of the group (Q, ).

By Theorem 2.2 and 1°, we conclude that
4° (Q,-, <) is a linearly ordered group,
52 x<y= ¢(x) <y forall z,y € Q.

2) Assume now that ({z : @ < 2}, A) is an n—subsemigroup of the
n—group (@, A). Then for all 2} € @ from z} € {x : a < x} follows
A(z}) € {x : a < z}), whence we conclude that a < A(a).
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Conversely, let a < A(Z). Hence, by 4° and 5°, we conclude that
for every sequence z7 over () the following implications hold:

Kxie{x:agx} =a<x @) " z,) b = a < A2},
i=1

le.
(Vz;, € Q)F (Z\1 ri€{r:a<z} = A(}?) € {z:a<x}).

3) Let ({z : (a772, A(a))"" < z},A) be an n—subsemigroup of the
n—group (Q, A). Then for all

/n\xie{x:lflgx}ﬁfl(m’f)G{x:lflSm}
i=1
by (c), (d). Whence, by 4, ¢(b) = b, ©(b') = b~ we conclude that
bl <AG Lo ) =0t o) o207 b b
N e e N
i.e. b" 2 <a. Hence b<a by 4°.
On the other hand, if A(a) < a, then, by (c),(d) and 1°-4°, we
have a < b~!, whence, by 1° and ¢(b~') = b !, we obtain
bt <bpt<pt
a<b <t

bh<bht<bt
Hence, by 4°, 1° and 1.5, we conclude that
bl <o) "2 b b = AT BT, L),
i.e.

bl < AGLbL L b

whence, by (i), we see that ({x : b~! < z}, A) is an n-subsemigroup
of the n-group (@, A).

4) Let a < A(a) = b. Also let ¢ be an arbitrary element of the set Q
such that a < c. Since a < b, then
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(a) c-ple) .. @"He)ra < crple) - e) b
By 1°,2°,5° and a < ¢, we obtain: ¢ <¢, a < (c), ... , a < " 1(c),
whence, by 2°,4° and 5°, we conclude that
(b) c <c-ple) ... " He)=c-pc) ... " Hc)a.
By (a) and (b), we conclude that
c<c-plc) ... ") b,

ie. ¢ < A(¢). Hence, by (i) ({z: ¢ < z},A) is an n-subsemigroup
of the n-group (@, A).

5) Let A(a) < a. Also let ¢ be an arbitrary element of the set @ such
that b=! < c. Hence, by 1°, 1.5, 2°, 4° and 5°, we conclude

c=c-a-...-a-b-brt=c-pla) ... " %*a)-b-b!
<c -2 b b
<c-plc) ... " %) b-c
= A(0),
whence, by (i) we prove that ({z : ¢ <z}, A) is an n-subsemigroup
of the n-group (@, A). O

Remark 2.6. The above theorem describes so-called the right cone
(cf. [3]), i.e. the set K,(c) = {x:c < z}. The analogous result holds
for the left cone Kj(c) ={x:x <c}.

3. Four propositions more

Proposition 3.1. If (Q, A, <) is an ordered n—group (n > 2), then
(Vz € Q) (Vy € Q) (Vz; € Q)i
(z<y = A\, 2,27 S Ay, 7).

1=

H>:

Proof. We prove only < since the implication = is obvious.
1) In the case i =1, A(z,a} % a) < A(y,a} % a) implies
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and in the consequence
Az, a7, Aa,a77%, (a17%,0) 7)) < Aly, a7, Ala, a2, (a17%,0) 7)),
which gives
A(x,ab 2 e(ai™?)) < A(y,a} 2 e(ai?)). Hence x <y.
2) The case i =n may be proved analogously.
3) Let now i € {2,. ..,n—l} Then
Ala™ 2, a 1) < A( Ly,al™) =

AP AlaT a1, b 1) AW Alay ™y, af ), 00 =
A(A(b” ! a1 “ha),al o) < AAWGT el y) e =
A(bF~ o) <AWD e y) = <y O

Proposition 3.2. Let (Q, A, <) be an ordered n—group and let n > 2.
Also, let =1 be an inverse operation of the n—group (Q, A). Then

(Vz,y € Q)(Va; € Q)17 z<y & (ai " y)™ < (ai ' 2)7",

Proof. x <y & A((a?—%x)*l,a?-?,x) < A(ai 2 0) a2 y)

Proposition 3.3. Let (Q, A, <) be an ordered n—group and let n > 3.
Also, let e be an {1,n}—neutral operation of the n—group (Q,A).
Then

. (reQ)(WeQ) (Vo et
A (z<y e el ya”) < el z,a0q7)).
i=1
Proof. Since A(a,277%,0) = A(A(a, 477>, (7 7% e(z{7%)) 7). 4172, b)
by Theorem 4 from [7], then
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(0111 27e(a1 ! , L, CL 3))_1 S C?_27e(a1_ » Y, 4y _3)>_1 g

e(ai ',y ai") < e(ai ',z a] 7). O

Proposition 3.4. Let (Q, A, <) be an ordered n—group and let n > 3.
Also, let =1 be an inverse operation of the n—group (Q, A). Then

(Vz € Q) (Vy € Q) (Vb € Q)(Va; € Q)1

A (z<y = (a g0 0)7" < (a7 2,077 0)7").

=1

Proof. Since z <y implies

i—1 n—3 i-1 n—3 -3 -1 n—3
E(al 7y7ai 7b> al ay7ai ) S E( 7y7 7 b al ZU,(Ii )
and
n—3 i—1 n—3 i—1 n—3
E( Ly, a3 b0t o, ay™?) < E(ay ', z,al 0 byal w,al ),

then from the tran81t1V1ty of < follows that x <y implies

E( 7y7 % - b al ay7 ;L 3) S E((li_l,x, ? 3 b ,x,a?_:s),
This completes the proof because
(all 1’ 2 ? ’ b) o E(a’iilaz?a?i:s?ba a’iilaz?a?i:g). U
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