
Quasigroups and Related Systems, 4 (1997), 77�87

On ordered n−groups

Janez U²an and Mali²a �iºovi¢

Abstract

Among the results of the paper is the following proposition. Let (Q, {·, ϕ, b})
be an arbitrary nHG−algebra associated to the n-group (Q,A), where n ≥ 3.
If ≤ is a partial order de�ned on Q, then, (Q,A,≤) is an ordered n−group i�
(Q, ·,≤) is an ordered group and for every x, y ∈ Q the following implication holds
x ≤ y =⇒ ϕ(x) ≤ ϕ(y).

1. Preliminaries
De�nition 1.1. Let n ≥ 2 and let (Q,A) be an n−groupoid. Then:
(a) (Q, A) is an n−semigroup i� for every i, j ∈ {1, . . . , n}, i < j the

following law (called the (i, j)−associativity) holds

A(xi−1
1 , A(xi+n−1

i ), x2n−1
i+n ) = A(xj−1

1 , A(xj+n−1
j ), x2n−1

j+n ) ,

(b) (Q,A) is an n−quasigroup i� for every i ∈ {1, . . . , n} and for every
an

1 ∈ Q is exactly one xi ∈ Q such that

A(ai−1
1 , xi, a

n−1
i ) = an ,

(c) (Q,A) is a Dörnte n�group (brie�y: n-group) i� is an n-semigroup
and an n−quasigroup.
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A notion of an n−group was introduced by W. Dörnte in [2] as a
generalization of the notion of a group.

Proposition 1.2. [10] Let n ≥ 2 and let (Q,A) be an n−groupoid.
Then the following statements are equivalent:

(i) (Q,A) is an n−group,

(ii) there are mappings −1 and e respectively of the sets Qn−1 and
Qn−2 into the set Q such that in the algebra (Q, {A,−1 , e}) of
the type < n, n− 1, n− 2 > the following laws hold:

(a) A(xn−2
1 , A(x2n−2

n−1 ), x2n−1) = A(xn−1
1 , A(x2n−1

n )) ,

(b) A(e(an−2
1 ), an−2

1 , x) = x ,

(c) A((an−2
1 , a)−1, an−2

1 , a) = e(an−2
1 ) ,

(iii) there are mappings −1 and e respectively of the sets Qn−1 and
Qn−2 into the set Q such that in the algebra (Q, {A,−1 , e}) of
the type < n, n− 1, n− 2 > the following laws hold:

(a) A(A(xn
1 ), x2n−1

n+1 ) = A(x1, A(xn+1
2 ), x2n−1

n+2 ) ,

(b) A(x, an−2
1 , e(an−2

1 )) = x ,

(c) A(a, an−2
1 , (an−2

1 , a)−1) = e(an−2
1 ).

Remark 1.3. e is an {1, n}−neutral operation of n−grupoid (Q,A)
i� algebra (Q, {A, e}) of type < n, n−2 > satis�es the laws (b) and (b).
The notion of {i, j}−neutral operation (i, j ∈ {1, . . . , n}, i < j) of an
n−groupoid is de�ned in a similar way (cf. [6]). In every n−groupoid
there is at most one {i, j}−neutral operation. A {1, n}−neutral oper-
ation there exists in every n−group, but there are n−groups without
{i, j}−neutral operations with {i, j} 6= {1, n} (cf. [9]). Operation −1

is a generalization of the inverse operation in a group. In fact, if (Q,A)
is an n−group, n ≥ 2, then for every a ∈ Q and for every sequence
an−2

1 over Q is
(an−2

1 , a)−1 = E(an−2
1 , a, an−2

1 ) ,
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where E is an {1, 2n − 1}−neutral operation of the (2n − 1)−group
(Q,

2

A) de�ned by
2

A(x2n−1
1 ) = A(A(xn

1 ), x2n−1
n+1 ) (cf. [7]). Obviously,

for n = 2, a−1 = E(a); a−1 is the inverse element of the element a
with respect to the neutral element e(∅) of the group (Q,A).

Theorem 1.4. (Hosszú�Gluskin Theorem) (cf. [5], [4])
For every n−group (Q,A), n ≥ 3, there is an algebra (Q, {·, ϕ, b})
such that the following statements hold:

1◦ (Q, ·) is a group,
2◦ ϕ ∈ Aut(Q, ·) ,
3◦ ϕ(b) = b ,
4◦ for every x ∈ Q, ϕn−1(x) · b = b · x ,
5◦ for every xn

1 ∈ Q, A(xn
1 ) = x1 · ϕ(x2) · . . . · ϕn−1(xn) · b.

De�nition 1.5. [8] We say that an algebra (Q, {·, ϕ, b}) is a Hosszú�
Gluskin algebra of order n (n ≥ 3) (brie�y: nHG�algebra) i� it satis�es
1◦−4◦ from the above theorem. If it satis�es also 5◦, then we say that
an nHG� algebra (Q, {·, ϕ, b})) is associated to the n−group (Q,A).

Proposition 1.6. [8] Let n ≥ 3, let (Q,A) be an n−group, and e
its {1, n}− neutral operation. Further on, let cn−2

1 be an arbitrary se-
quence over Q and let for every x, y ∈ Q

B(cn−2
1 )(x, y) = A(x, cn−2

1 , y) ,

ϕ(cn−2
1 )(x) = A(e(cn−2

1 ), x, cn−2) and
b(cn−2

1 ) = A(e(cn−2
1 ), e(cn−2

1 ), . . . , e(cn−2
1 )).

Then, the following statements hold
(i) (Q, {B(cn−2

1 ), ϕ(cn−2
1 ), b(cn−2

1 ))} is an nHG−algebra associated to the
n−group (Q,A) and

(ii) CA = {(Q, {B(cn−2
1 ), ϕ(cn−2

1 ), b(cn−2
1 )}) : cn−2

1 ∈ Q } is the set of all
nHG−algebras associated to the n−group (Q,A).

Proposition 1.7. [8] Let (Q, A) be an n�group, e its {1, n}�neutral
operation and n ≥ 3. Then for every an−2

1 ∈ Q and every 1 ≤ i ≤ n−2
there is exactly one xi ∈ Q such that e(ai−1

1 , xi, a
n−3
i ) = an−2 .
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2. Main results
De�nition 2.1. Let (Q,A) be an n−group, n ≥ 2. If ≤ is a partial
order on Q such that

x ≤ y ⇒ A(zi−1
1 , x, zn−1

i ) ≤ A(zi−1
1 , y, zn−1

i ) (1)

for all x, y, z1, ..., zn−1 ∈ Q and i ∈ {1, 2, ..., n− 1}, then, we say that
(Q,A,≤) is an ordered n−group.

Note that in the case n = 2 (Q,A,≤) is an ordered group in the
sense of [3].

Theorem 2.2. Let ≤ be a partial order on Q. Also, let n ≥ 3 and let
(Q,A) be an n−group. In addition, let (Q, {·, ϕ, b}} be an arbitrary
nHG−algebra associated to the n−group (Q,A). Then, (Q,A,≤) is
an ordered n−group i� for all x, y, z ∈ Q the following two formulas
hold

x ≤ y ⇒ xz ≤ yz ∧ zx ≤ zy (2)

x ≤ y ⇒ ϕ(x) ≤ ϕ(y)). (3)

Proof. Let (Q,A,≤) be an ordered n−group and let n ≥ 3. Also, let e
be an {1, n}−neutral operation of the n−group (Q,A). In addition, let
(Q, {·, ϕ, b}) be an arbitrary nHG−algebra associated to the n−group
(Q,A). Then, by Proposition 1.6, there is at least one sequence cn−2

1

over Q such that for every x, y ∈ Q the following two equalities hold:

x · y = A(x, cn−2
1 , y) ,

ϕ(x) = A(e(cn−2
1 ), x, cn−2

1 ).

Hence, by De�nition 2.1, we conclude that the formulas (2) and (3)
hold in (Q, {·, ϕ, b}).

Conversely, let (Q, {·, ϕ, b}) be an arbitrary nHG−algebra associ-
ated to the n−group (Q,A). Also, let ≤ be a partial order on Q. As-
sume that an nHG− algebra (Q, {·, ϕ, b}) satis�es (2) and (3). Then,
for every x, y, zn−2

1 ∈ Q and i ∈ {1, 2, ..., n} it satis�es also (1).
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Indeed, for 1 ≤ i ≤ n − 1 x ≤ y implies ϕi−1(x) ≤ ϕi−1(y) ,
and in the consequence

z1 · . . . · ϕi−2(zi−1) · ϕi−1(x) ≤ z1 · . . . · ϕi−2(zi−1) · ϕi−1(y) ,

which gives
z1 · . . . · ϕi−2(zi−1) · ϕi−1(x) · ϕi(zi) · . . . · b · zn−1 ≤

z1 · . . . · ϕi−2(zi−1) · ϕi−1(y) · ϕi(zi) · . . . · b · zn−1 .

Hence, by De�nition 1.5, we conclude that (1) holds.
The cases i = 1 and i = n are obvious.

Example 2.3. Let (Z, +) be the additive group of all integers, and
let ≤ by the natural order de�ned on Z. Then Z with the ternary
operation A de�ned by

A(x, y, z) = x + (−y) + z

is a 3�group.
Moreover, (Z, {+, ϕ, 0}), where ϕ(x) = −x , is an nHG−algebra

associated to a 3�group (Z, A).
Since for every x, y ∈ Z x ≤ y implies ϕ(y) ≤ ϕ(x) , we conclude

(by Theorem 2.2) that (Z,A,≤) is not an ordered 3−group.

Example 2.4. Let (Z, +,≤) be as in the previous example. Let

B(xn
1 ) = x1 + x2 + ... + xn + 2

for every xn
1 ∈ Z, n ≥ 3. Then, (Z, B) is an n−group with (Z, {+, id, 2})

as its associated nHG−algebra. Obviously (Z, B,≤) is an ordered
n−group.

Moreover, (Z,C,≤) and (Z,D,≤) where

C(xn
1 ) = x1 + x2 + ... + xn ,

D(xn
1 ) = x1 + x2 + ... + xn + (−2)

are ordered n−groups as well.



82 J. U²an and M. Ziºovi¢

Theorem 2.5. Let (Q,≤) be a chain. Also, let (Q,A) be an n−group,
−1 its inverse operation, e its {1, n}−neutral operation and n ≥ 3.
Moreover, let a be an arbitrary element of the set Q and an−2

1 be an
sequence over Q such that e(an−2

1 ) = a . Then

(i) ({x : a ≤ x}, A) is an n−subsemigroup of the n−group (Q,A)

i� a ≤ A(
n
a) ,

(ii) ({x : (an−2
1 , A(

n
a))−1 ≤ x}, A) is an n−subsemigroup of the

n−group (Q,A) i� A(
n
a) ≤ a ,

(iii) let a ≤ A(
n
a) and let c be an arbitrary element of the set Q such

that a ≤ c. Then ({x : c ≤ x}, A) is an n−subsemigroup of the
n−group (Q,A),

(iv) let A(
n
a) ≤ a and let c be an arbitrary element of the set Q

such that (an−2
1 , A(

n
a))−1 ≤ c. Then ({x : c ≤ x}, A) is an

n−subsemigroup of the n−group (Q,A).

Proof. 1) Let a be an arbitrary element of the set Q. Also let an−2
1 be

an sequence over Q such that e(an−2
1 ) = a . Moreover, let

(a) x · y = A(x, an−2
1 , y) ,

(b) ϕ(x) = A(a, x, an−2
1 ) ,

(c) b = A(
n
a) ,

(d) x−1 = (an−2
1 , x)−1

for all x, y ∈ Q. Then:
1o (Q, {·, ϕ, b}) is an nHG−algebra associated to (Q,A),
2o a = e(an−2

1 ) is a neutral element of the group (Q, ·),
3o −1 is an inverse operation of the group (Q, ·).

By Theorem 2.2 and 1o, we conclude that
4o (Q, ·,≤) is a linearly ordered group,
5o x ≤ y ⇒ ϕ(x) ≤ ϕ(y) for all x, y ∈ Q.

2) Assume now that ({x : a ≤ x}, A) is an n−subsemigroup of the
n−group (Q,A). Then for all xn

1 ∈ Q from xn
1 ∈ {x : a ≤ x} follows

A(xn
1 ) ∈ {x : a ≤ x}), whence we conclude that a ≤ A(

n
a).
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Conversely, let a ≤ A(
n
a). Hence, by 4o and 5o, we conclude that

for every sequence xn
1 over Q the following implications hold:

n∧
i=1

xi ∈ {x : a ≤ x} ⇒ a ≤ x1 · ϕ(x2) · ... · ϕn−1(xn) · b ⇒ a ≤ A(xn
1 ),

i.e.
(∀xi ∈ Q)n

1 (
n∧

i=1
xi ∈ {x : a ≤ x} ⇒ A(xn

1 ) ∈ {x : a ≤ x}).

3) Let ({x : (an−2
1 , A(

n
a))−1 ≤ x}, A) be an n−subsemigroup of the

n−group (Q,A). Then for all
n∧

i=1
xi ∈ {x : b−1 ≤ x} ⇒ A(xn

1 ) ∈ {x : b−1 ≤ x}

by (c), (d). Whence, by 4o, ϕ(b) = b, ϕ(b−1) = b−1 we conclude that

b−1 ≤ A(b−1, b−1, ... , b−1) = b−1 · ϕ(b−1) · ... · ϕn−2(b−1) · b · b−1

= b−1 · b−1 · ... · b−1 · b · b−1,
i.e. bn−2 ≤ a. Hence b ≤ a by 4o.

On the other hand, if A(
n
a) ≤ a, then, by (c),(d) and 1◦-4◦, we

have a ≤ b−1, whence, by 1◦ and ϕ(b−1) = b−1, we obtain
b−1 ≤ b−1 ≤ b−1

a ≤ b−1 ≤ ϕ(b−1)
. . . . . . . . . . . .
. . . . . . . . . . . .
a ≤ b−1 ≤ ϕn−2(b−1)

b ≤ b ≤ b

b−1 ≤ b−1 ≤ b−1 .
Hence, by 4◦, 1◦ and 1.5, we conclude that

b−1 ≤ b−1 · ϕ(b−1) · ... · ϕn−2(b−1) · b · b−1 = A(b−1, b−1, . . . , b−1) ,
i.e.

b−1 ≤ A(b−1, b−1, . . . , b−1),
whence, by (i), we see that ({x : b−1 ≤ x}, A) is an n-subsemigroup
of the n-group (Q,A).
4) Let a ≤ A(

n
a) = b. Also let c be an arbitrary element of the set Q

such that a ≤ c. Since a ≤ b, then
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(a) c · ϕ(c) · . . . · ϕn−1(c) · a ≤ c · ϕ(c) · . . . · ϕn−1(c) · b.
By 1◦, 2◦, 5◦ and a ≤ c, we obtain: c ≤ c, a ≤ ϕ(c), ... , a ≤ ϕn−1(c),
whence, by 2◦, 4◦ and 5◦, we conclude that

(b) c ≤ c · ϕ(c) · . . . · ϕn−1(c) = c · ϕ(c) · . . . · ϕn−1(c) · a.
By (a) and (b), we conclude that

c ≤ c · ϕ(c) · . . . · ϕn−1(c) · b,
i.e. c ≤ A(

n
c). Hence, by (i) ({x : c ≤ x}, A) is an n-subsemigroup

of the n-group (Q,A).
5) Let A(

n
a) ≤ a. Also let c be an arbitrary element of the set Q such

that b−1 ≤ c. Hence, by 1◦, 1.5, 2◦, 4◦ and 5◦, we conclude

c = c · a · . . . · a · b · b−1 = c · ϕ(a) · . . . · ϕn−2(a) · b · b−1

≤ c · ϕ(b−1) · . . . · ϕn−2(b−1) · b · b−1

≤ c · ϕ(c) · . . . · ϕn−2(c) · b · c
= A(

n
c),

whence, by (i) we prove that ({x : c ≤ x}, A) is an n-subsemigroup
of the n-group (Q,A).

Remark 2.6. The above theorem describes so-called the right cone
(cf. [3]), i.e. the set Kr(c) = {x : c ≤ x} . The analogous result holds
for the left cone Kl(c) = {x : x ≤ c}.

3. Four propositions more
Proposition 3.1. If (Q,A,≤) is an ordered n−group (n ≥ 2), then

(∀x ∈ Q) (∀y ∈ Q) (∀zj ∈ Q)n−1
1

n∧
i=1

(x ≤ y ⇐⇒ A(zi−1
1 , x, zn−1

i ) ≤ A(zi−1
1 , y, zn−1

i ) ).

Proof. We prove only ⇐ since the implication ⇒ is obvious.
1) In the case i = 1, A(x, an−2

1 , a) ≤ A(y, an−2
1 , a) implies

A(A(x, an−2
1 , a), an−2

1 , (an−2
1 , a)−1) ≤ A(A(y, an−2

1 , a), an−2
1 , (an−2

1 , a)−1),
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and in the consequence
A(x, an−2

1 , A(a, an−2
1 , (an−2

1 , a)−1)) ≤ A(y, an−2
1 , A(a, an−2

1 , (an−2
1 , a)−1)),

which gives
A(x, an−2

1 , e(an−2
1 )) ≤ A(y, an−2

1 , e(an−2
1 )). Hence x ≤ y.

2) The case i = n may be proved analogously.
3) Let now i ∈ {2, . . . , n− 1}. Then

A(ai−1
1 , x, an−1

i ) ≤ A(ai−1
1 , y, an−1

i ) ⇒
A(bn−1

i , A(ai−1
1 , x, an−1

i ), bi−1
1 ) ≤ A(bn−1

i , A(ai−1
1 , y, an−1

i ), bi−1
1 ) ⇒

A(A(bn−1
i , ai−1

1 , x), an−1
i , bi−1

1 ) ≤ A(A(bn−1
i , ai−1

1 , y), an−1
i , bi−1

1 ) ⇒
A(bn−1

i , ai−1
1 , x) ≤ A(bn−1

i , ai−1
1 , y) ⇒ x ≤ y.

Proposition 3.2. Let (Q,A,≤) be an ordered n−group and let n ≥ 2.
Also, let −1 be an inverse operation of the n−group (Q,A). Then

(∀x, y ∈ Q) (∀aj ∈ Q)n−1
1 x ≤ y ⇔ (an−1

1 , y)−1 ≤ (an−1
1 , x)−1.

Proof. x ≤ y ⇔ A((an−2
1 , x)−1, an−2

1 , x) ≤ A((an−2
1 , x)−1, an−2

1 , y) ⇔
e(an−2

1 ) ≤ A((an−2
1 , x)−1, an−2

1 , y) ⇔ A(e(an−2
1 ), an−2

1 , (an−2
1 , y)−1) ≤

≤ A(A((an−2
1 , x)−1, an−2

1 , y), an−2
1 , (an−2

1 , y)−1) ⇔
(an−2

1 , y)−1 ≤ A((an−2
1 , x)−1, an−2

1 , A(y, an−2
1 , (an−2

1 , y)−1)) ⇔
(an−2

1 , y)−1 ≤ A((an−2
1 , x)−1, an−2

1 , e(an−2
1 )) ⇔

(an−2
1 , y)−1 ≤ (an−2

1 , x)−1.

Proposition 3.3. Let (Q,A,≤) be an ordered n−group and let n ≥ 3.
Also, let e be an {1, n}−neutral operation of the n−group (Q,A).
Then

(∀x ∈ Q) (∀y ∈ Q) (∀aj ∈ Q)n−3
1

n−2∧
i=1

( x ≤ y ⇔ e(ai−1
1 , y, an−3

i ) ≤ e(ai−1
1 , x, an−3

i ) ).

Proof. Since A(a, xn−2
1 , b) = A(A(a, yn−2

1 , (yn−2
1 , e(xn−2

1 ))−1), yn−2
1 , b)

by Theorem 4 from [7], then
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x ≤ y ⇔ A(a, ai−1
1 , x, an−3

i , b) ≤ A(a, ai−1
1 , y, an−3

i , b) ⇔
A(A(a, cn−2

1 , (cn−2
1 , e(ai−1

1 , x, an−3
i ))−1), cn−2

1 , b) ≤
A(A(a, cn−2

1 , (cn−2
1 , e(ai−1

1 , y, an−3
i ))−1), cn−2

1 , b) ⇔
A(a, cn−2

1 , (cn−2
1 , e(ai−1

1 , x, an−3
i ))−1) ≤

A(a, cn−2
1 , (cn−2

1 , e(ai−1
1 , y, an−3

i ))−1) ⇔
(cn−2

1 , e(ai−1
1 , x, an−3

i ))−1 ≤ (cn−2
1 , e(ai−1

1 , y, an−3
i ))−1 ⇔

e(ai−1
1 , y, an−3

i ) ≤ e(ai−1
1 , x, an−3

i ) .

Proposition 3.4. Let (Q,A,≤) be an ordered n−group and let n ≥ 3.
Also, let −1 be an inverse operation of the n−group (Q,A). Then

(∀x ∈ Q) (∀y ∈ Q) (∀b ∈ Q)(∀aj ∈ Q)n−3
1

n−2∧
i=1

( x ≤ y ⇒ (ai−1
1 , y, an−3

i , b)−1 ≤ (ai−1
1 , x, an−3

i , b)−1 ).

Proof. Since x ≤ y implies
E(ai−1

1 , y, an−3
i , b, ai−1

1 , y, an−3
i ) ≤ E(ai−1

1 , y, an−3
i , b, ai−1

1 , x, an−3
i )

and
E(ai−1

1 , y, an−3
i , b, ai−1

1 , x, an−3
i ) ≤ E(ai−1

1 , x, an−3
i , b, ai−1

1 , x, an−3
i ),

then from the transitivity of ≤ follows that x ≤ y implies
E(ai−1

1 , y, an−3
i , b, ai−1

1 , y, an−3
i ) ≤ E(ai−1

1 , x, an−3
i , b, ai−1

1 , x, an−3
i ).

This completes the proof because
(ai−1

1 , z, an−3
i , b)−1 = E(ai−1

1 , z, an−3
i , b, ai−1

1 , z, an−3
i ).
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