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Centrally isotopic quasigroups

Galina B. Belyavskaya

Abstract

Relation of central isotopy between usual quasigroups is considered. The con-
nection of this relation with central isotopy relation of equasigroups and with the
abelian subgroup of the multiplication group of a quasigroup corresponding to the
centre congruence of this quasigroup is established.

1. Introduction
In the work [10] and in Chapter III of [8] J.D.H.Smith has considered
the relation of central isotopy between equasigroups (i.e. primitive
quasigroups). This relation is tighter than isotopy but looser than
isomorphism. In the base of this relation lies the concept of the cen-
tre congruence of an equasigroup Q(·, \, /), introduced in the same
works. In the articles [2, 3] the concept of the h-centre Zh for an
usual quasigroup Q(·) where h is an arbitrary �xed element of Q was
introduced and it was proved that the h-centre de�nes a normal con-
gruence which is called the centre congruence of Q(·) and does not
depend on the element h. Finally, in article [5] a proof was given that
the centre congruence of a quasigroup Q(·) coincides with the centre
congruence of the equasigroup Q(·, \, /), corresponding to Q(·). Thus,
it was established that the h -centre is an inner characterization of the
centre congruence of an equasigroup.
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In this article we consider the relation of central isotopy between
usual quasigroups, establish its connection with the relation of central
isotopy of the corresponding equasigroups and also with the abelian
subgroup Γ of the multiplication group of a quasigroup Q(·). This sub-
group was picked out in [4] and corresponds to the centre congruence
of a quasigroup (Γh = Zh for any h ∈ Q).

2. Preliminaries
An algebra Q(·, \, /) with the three binary operations ·, \, / satisfying
the identities

(xy)/y = x, x \ (xy) = y, (x/y)y = x, x(x \ y) = y

is called an equasigroup [6] (or a primitive quasigroup [1]).
A groupoid Q(·) is called a quasigroup if each of the equations ax =

b, xa = b has a unique solution for any a, b ∈ Q. The equasigroup
Q(·, \, /) corresponds to quasigroup Q(·) where

x \ y = z ⇐⇒ xz = y, x/y = z ⇐⇒ zy = x.

The quasigroups Q(\) and Q(/) are called the right inverse and
the left inverse quasigroups for Q(·) respectively.

A quasigroup Q(·) is said to be isotopic to a quasigroup P (◦) if
there exist three bijections α, β, γ : Q → P such that αa ◦ βb = γ(ab)
for all a, b ∈ Q. The ordered triple T = (α, β, γ) is called an isotopy.

According to [10], two equasigroups Q(·, \, /) and P (◦, \\, //) are
called isotopic if for each operation ω from ◦, \\, // (·, \, /, respec-
tively) there exist bijections θ1, θ2 and θ3 : Q → P such that

θ1aωθ2b = θ3(aωb)

for all a, b ∈ Q.
It is easy to see that if equasigroups Q(·, \, /) and P (◦, \\, //) are

isotopic then the pairs of the quasigroups Q(·) and P (◦), Q(\) and
P (\\), Q(/) and P (//) are isotopic, and conversely, isotopy of any
such pair implies isotopy of corresponding equasigroups (it su�ces to
make the suitable permutation in the triplet of bijections).
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According to [8], a congruence α of an equasigroup Q(·, \, /) is
central i� the diagonal Q̂ = {(q, q) | q ∈ Q} is a normal subquasigroup
on α, i.e. if it is a class of some congruence V on α. In his case the
congruence α is considered as a subquasigroup of the direct product
(Q×Q)(·, \, /) containing the diagonal Q̂. This congruence V on α is
said to centre α [6].

By Theorem III.3.10 from [8] an equasigroup Q(·, \, /) has a unique
maximal central congruence called the centre congruence ζ(Q) (or
ζ(·, \, /)) of Q(·, \, /). Thus, the centre congruence ζ(Q) of an equasi-
group Q(·, \, /) is the (unique) maximal subquasigroup in (Q×Q)(·, \, /)
containing the diagonal Q̂ as a normal subquasigroup.

Let V be the congruence centering the centre congruence of an
equasigroup P (◦, \\, //).
De�nition 1. An equasigroup Q(·, \, /) is said to be a central isotope
of an equasigroup P (◦, \\, //) i� there is a bijection θ : Q → P ,
called a central shift, such that for each of the operations ◦, \\, //
(correspondingly, ·, \, /) denoted ω, there is an element (pω, p̄ω) of
ζ(P ) such that

(pω, p̄ω)V (θ(q1ωq2), θq1ωθq2) (1)
for each pair q1, q2 of elements of Q.

In [8] the following properties of central isotopy were proved.
- Centrally isotopic equasigroups are isotopic (Proposition III.4.2.).
- Isomorphic equasigroups are centrally isotopic (Proposition III.4.3).
- A central shift θ : Q → P mapping an idempotent of Q to an
idempotent of P is an isomorphism (Proposition III.4.4).

- Central isotopy is an equivalence relation. Further, if θ : Q → P
is a central shift and the centre congruence ζ(Q) of Q is centered
by W , then θ̂ζ(Q) = ζ(P ) and θW center ζ(P ), where

θ̂ : Q×Q → P × P ; (q1, q2) 7→ (θq1, θq2)
and

θ : (Q×Q)× (Q×Q) → (P × P )× (P × P ) ;
((q1, q2), (q3, q4)) 7→ ((θq1, θq2), (θq3, θq4)) .

(Theorem III.4.5).
- Centrally isotopic quasigroups have isomorphic multiplication
groups (Proposition III.4.6).
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In articles [2, 3] the concept of h-centre Zh of a quasigroup Q(·)
where h is an arbitrary �xed element in Q was introduced. It was
also proved that the h-centre Zh de�nes the same normal congruence
θz(·) on Q(·) by any h ∈ Q. This congruence is called the centre
congruence of the quasigroup Q(·). Remind that each congruence of
an equasigroup Q(·, \, /) is a normal congruence in Q(·) and conversely.

Let the centre congruence ζ(Q) of an equasigroup Q(·, \, /) be de-
noted by ζ(·, \, /). By Theorem 1 from [5]

ζ(·, \, /) = θz(·) = θz(\) = θz(/),

where Q(\) and Q(/) are the right inverse and the left inverse quasi-
groups for Q(·). Thus, the h-centre Zh is the ζ(·, \, /)-class containing
the element h.

Let G(·) be the multiplication group of a quasigroup Q(·), i.e. the
group generated by its translations La, Ra (Lax = ax, Rax = xa) for
all a ∈ Q. In [4] it was picked out an abelian normal subgroup Γ in G(·)
corresponding to the centre congruence and acting sharply transitively
on each h-centre, h ∈ Q. The subgroup Γ is characterized by means
of the groups of left and right regular mappings of a quasigroup Q(·),
in the sense of [9]. Recall these concepts.

Let Q(·) be a quasigroup. A mapping λ (ρ) of the set Q onto Q
is called left (right) regular if there is a mapping λ∗ (ρ∗) such that

λx · y = λ∗(xy), x · ρy = ρ∗(xy) (2)

for each x, y ∈ Q. The mappings λ, λ∗, ρ, ρ∗ are permutations on Q
and λ∗ (ρ∗) is called a conjugate to λ (ρ). The set of all left (right)
regular mappings of a quasigroup (the set of all mappings conjugate
to them) forms the group Λ, respectively Λ∗ (R, correspondingly, R∗).
These groups are subgroups of the multiplication group G(·) of Q(·)
since

λ∗ = R−1
x λRx = LλxL

−1
x , ρ∗ = LxρL−1

x = RρxR
−1
x (3)

for each x ∈ Q.
Let CoreG(H) be the maximal normal subgroup of a group G which

lies in a subgroup H. By Theorem 1 from [4] Zh = Γh where
Γ = CoreG(Λ ∩R) = CoreG(Λ∗ ∩R∗) ,
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Zh is the h-centre of a quasigroup Q(·), G is the multiplication group
of Q(·).

In view of Corollary 3 from [4]
Γ = {RxR

−1
y | (x, y) ∈ θz(·)} = {LxL

−1
y | (x, y) ∈ θz(·)}

= {RxR
−1
h | x ∈ Zh} = {LxL

−1
h | x ∈ Zh}

for any arbitrary �xed h in Q.

3. Isotopic quasigroups and the subgroup Γ

Let an equasigroup Q(·, \, /) be a central isotope of P (◦, \\, //). Then
condition (1) means that for all q1, q2 of Q the pairs of the form
(θ(q1q2), θq1 ◦ θq2) lie in the same class of the congruence V centering
the centre congruence ζ(P ) of the equasigroup P (◦, \\, //). Analo-
gously, in the same class by V all pairs (θ(q1/q2), θq1//θq2) (all pairs
(θ(q1 \ q2), θq1 \ \θq2) ) are contained. But, as it was noted above, the
diagonal P̂ is one of the classes of the congruence V , so all classes of
V have the form

P̂ (a1, b1) = {(p, p)(a1, b1) | p ∈ P, (a1, b1) ∈ ζ(P )}.
Thus

(θ(q1q2), θq1 ◦ θq2) = (p, p) ◦ (a1, b1)
and

θ(q1q2) = p ◦ a1, θq1 ◦ θq2 = p ◦ b1

for all q1, q2 ∈ Q. From these equalities it follows that
R−1

b1
(θq1 ◦ θq2) = R−1

a1
θ(q1q2) = p,

or

(θq1 ◦ θq2) = Rb1R
−1
a1

θ(q1q2) (4)

where Rax = x ◦ a, i.e.

T1 = (θ, θ, Rb1R
−1
a1

θ) (5)

is an isotopy of the quasigroups Q(·) and P (◦). In the same way we
establish that

T2 = (θ, θ, Rb2R
−1
a2

θ) (6)
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is an isotopy of Q(\) and P (\\), Rax = x \ \a, and
T3 = (θ, θ, Rb3R

−1
a3

θ) (7)

is an isotopy of Q(/) and P (//), Rax = x//a, for some (a2, b2), (a3, b3)
in ζ(P ). Therefore, if an equasigroup Q(·, \, /) is a central isotope of
P (◦, \\, //) and θ is a central shift of this central isotopy, then there
are the three isotopies (5), (6), (7) of the quasigroups Q(·) and P (◦)
(Q(\) and P (\\), Q(/) and P (//) correspondingly) for some (a1, b1),
(a2, b2), (a3, b3) in ζ(P ).

Let θP
z denote the centre congruence of a quasigroup P (◦). It is

natural to give the following
De�nition 2. A quasigroup Q(·) is said to be a central isotope of a
quasigroup P (◦) i� there are a bijection θ : Q → P , a pair (a, b) ∈ θP

z

such that
RbR

−1
a θ(q1q2) = θq1 ◦ θq2 (8)

for all q1, q2 ∈ Q, where Rax = x ◦ a.

In this case T = (θ, θ, RbR
−1
a θ) is an isotopy between Q(·) and

P (◦).
Let Γ(◦) be the subgroup of the multiplication group G(◦) of a

quasigroup P (◦) corresponding to the centre congruence θP
z of P (◦)

(in the sense of Theorem 1 from [4]). Then we can give the following
statement that is equivalent to De�nition 2 (see also Corollary 3 in
[4]).
Proposition 1. A quasigroup Q(·) is a central isotope of a quasigroup
P (◦) i� there are a bijection θ : Q → P and α ∈ Γ(◦) such that

αθ(q1q2) = θq1 ◦ θq2 (9)

for all q1, q2 ∈ Q.

A substitution α on P (a bijection θ) we shall call a central tor-
sion (a central shift) of the central isotopy de�ned by (9). By a cen-
tral torsion of a quasigroup P (◦) we mean its isotope P (∗), where
x ∗ y = α−1(x ◦ y) for all x, y ∈ P , α ∈ Γ(◦).
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From Proposition 1 we have
Corollary 1. If a quasigroup Q(·) is a central isotope of P (◦), then
Q(·) ∼= P (∗), where P (∗) is a central torsion of P (◦).
Proof. Indeed, let x ∗ y = α−1(x ◦ y), α ∈ Γ(◦), for all x, y ∈ P . From
(9) it follows that

q1q2 = θ−1α−1(θq1 ◦ θq2) = θ−1(θq1 ∗ θq2)

i.e. Q(·) ∼= P (∗).

Thus, a central isotopy is a sequential taking of a central torsion
and an isomorphism.

Now we shall prove the following
Theorem 1. An equasigroup Q(·, \, /) is centrally isotopic to an
equasigroup P (◦, \\, //) i� the quasigroup Q(·) is centrally isotopic
to P (◦).
Proof. Let an equasigroup Q(·, \, /) be a central isotope of P (◦, \\, //),
then as it was shown above, the quasigroup Q(·) is a central isotope
of P (◦) (see (4)).

Conversely, let a quasigroup Q(·) be centrally isotopic to a quasi-
group P (◦), i.e.

θq1 ◦ θq2 = RbR
−1
a θ(q1q2) (10)

for all q1, q2 ∈ Q where θ is a central shift, (a, b) ∈ θP
z . But then for

all q1, q2 ∈ Q

R−1
a θ(q1q2) = R−1

b (θq1 ◦ θq2) = p ∈ P
and

θ(q1q2) = p ◦ a, θq1 ◦ θq2 = p ◦ b.
Whence,

(θ(q1q2), θq1 ◦ θq2) = (p, p) ◦ (a, b) ∈ P̂ ◦ (a, b).
It means that all pairs of such form lie in the same class of the congru-
ence V centering the centre congruence of the equasigroup P (◦, \\, //)
since from (a, b) ∈ θP

z it follows that (a, b) ∈ ζ(·, \, /) (see Theorem
1 in [5]). Hence, the condition of De�nition 1 is satis�ed for the op-
erations (·) and (◦).We shall show that this condition holds for the
operations (/) and (//) ((\) and (\\)).
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From (10) it follows that

RaR
−1
b (θq1 ◦ θq2) = θ(q1q2) (11)

for all q1, q2 ∈ Q. But (a, b) ∈ θP
z , so by Theorem 1 from [4]

RaR
−1
b ∈ Γ(◦) ⊆ Λ∗ ∩R∗.

If λ∗ ∈ Γ(◦), then by (3)
λ = R−1

x λ∗Rx ∈ Γ(◦)

for any x ∈ P since Γ(◦) is a normal subgroup in the multiplication
group G(◦) of P (◦). So λ = RcR

−1
d for some pair (c, d) ∈ θP

z by
Corollary 3 in [4]. Now by the de�nition of a left regular mapping (see
(2)) we get

RaR
−1
b (θq1 ◦ θq2) = RcR

−1
d θq1 ◦ θq2

for all q1, q2 ∈ Q. Taking into account (11), we have

θ(q1q2) = RcR
−1
d θq1 ◦ θq2,

i.e. T1 = (RcR
−1
d θ, θ, θ) is an isotopy between Q(·) and P (◦). But

then T ′
1 = (θ, θ, RcR

−1
d ) is an isotopy between Q(/) and P (//).

Indeed, if αx ◦ βy = γ(xy) = γz, then γz//βy = αx = α(z/y), i.e.
(α, β, γ) → (γ, β, α).

Therefore,
RcR

−1
d θ(q1/q2) = θq1//θq2

and, as in the �rst case, we receive that

(θ(q1/q2), θq1//θq2) = (p1 ◦ d, p1 ◦ c) ∈ P̂ ◦ (d, c)

for (d, c) ∈ θP
z and for all q1, q2 ∈ Q, i.e. all pairs (θ(q1/q2), θq1//θq2)

lie in the same class. This means that the condition of De�nition 1
holds for the operations (/) and (//).

It remains to check this condition for the operations (\) and (\\).
Since Γ(◦) is a normal subgroup in G(◦) and RaR

−1
b ∈ Γ(◦) ⊆ R∗,

then RaR
−1
b = ρ∗ and ρ = L−1

x ρ∗Lx ∈ Γ(◦) for any x ∈ P (see (3)). By
Corollary 3 from [4] there exists a pair (s, t) ∈ θP

z such that ρ = RsR
−1
t

and so
RaR

−1
b (θq1 ◦ θq2) = θq1 ◦RsR

−1
t θq2
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by the de�nition of a right regular mapping (see (2)). Taking into
account (11), we get

θ(q1q2) = θq1 ◦RsR
−1
t θq2

and T2 = (θ, RsR
−1
t θ, θ) is an isotopy between Q(·) and P (◦). But

then T ′
2 = (θ, θ, RsR

−1
t θ) is an isotopy between Q(\) and P (\\) and

so
R−1

t θ(q1 \ q2) = R−1
s (θq1 \ \θq2).

From this equality it follows that

(θ(q1 \ q2), θq1 \ \θq2) ∈ P̂ ◦ (t, s), (t, s) ∈ θP
z .

This proves that Q(·, \, /) is an isotope of P (◦, \\, //) with the
central shift θ in the sense of De�nition 1.

From this proof and Proposition 1 the following result follows.
Corollary 2 The transformation of central isotopy of quasigroups is
invariant with respect to parastrophy of quasigroups (i.e. with respect
to passage to a conjugate quasigroup).
Corollary 3. If a quasigroup Q(·) is a central isotope of a quasigroup
P (◦), then there exist substitutions α, α1, α2 from Γ(◦) such that

αθ(q1q2) = θq1 ◦ θq2,

θ(q1q2) = α1θq1 ◦ θq2,

θ(q1q2) = θq1 ◦ α2θq2

for all q1, q2 ∈ Q.

Using now Theorem III.4.5 from [8], we get
Corollary 4. Central isotopy of quasigroups is an equivalence rela-
tion.

Theorem III.4.5 in [8] describes how a central shift acts at the
centre congruence. The following statement shows how a central shift
and a central torsion act at the Zh-centres, i.e. at the classes of the
centre congruence.
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Proposition 2. Let a quasigroup Q(·) be a central isotope of P (◦) with
a central shift θ and a central torsion α, Zh(·), h ∈ Q (Zh(◦), h ∈ P )
be the h-centre of Q(·) (of P (◦)). Then

αZh(◦) = Zh(◦), θZh(·) = Zθh(◦).
Proof. Let α ∈ Γ(◦). Taking into account Theorem 1 in [4], we get

αZh(◦) = α(Γ(◦)h) = Γ(◦)h = Zh(◦),
since α ∈ Γ(◦). Comparing Theorem 1 from [4] and Theorem III.4.5
from [8], we get θ̂θz(·) = θz(◦), where

θ̂ : Q×Q → P × P ; (q1, q2) 7→ (θq1, θq2).

Then for any h ∈ Q

θ̂(Zh(·), h) = (θZh(·), θh) ∈ θz(◦)
and so θZh(·) ⊆ Zθh(◦). But θz(·) = θ̂−1θz(◦), (Zθh(◦), θh) ⊆ θz(◦).
From these equalities it follows that θ−1Zθh(◦) ⊆ Zh(·) . Hence,
θZh(·) = Zθh(◦).

According to Proposition III.4.6 from [8], centrally isotopic equasi-
groups have isomorphic multiplication groups. It is found that an
analogous result is true for subgroups Γ(·) and Γ(◦).
Proposition 3. If a quasigroup Q(·) is centrally isotopic to a quasi-
group P (◦) with a central shift θ, then Γ(·) ∼= Γ(◦), namely, Γ(·) =
θ−1Γ(◦)θ.
Proof. Let x · y = θ−1α−1(θx ◦ θy), α ∈ Γ(◦). Then Ra = θ−1α−1R̃θaθ

for all a ∈ Q, where Ra (R̃θa) is a right translation in Q(·) (in P (◦)).
From the last equality we get

RaR
−1
b = θ−1α−1R̃θaR̃

−1
θb αθ, a, b ∈ Q.

Using this equality, Corollary 3 from [4] and Theorem III.4.5 from [8],
we obtain

Γ(·) = θ−1α−1Γ(◦)αθ = θ−1Γ(◦)θ,

since α ∈ Γ(◦).
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The centre Z(·) of a loop Q(·), i.e. the set of a ∈ Q such that

ax · y = a · xy, x · ya = xy · a, ax = xa

for all x, y ∈ Q is a subloop of Q(·) (cf. [7]). Note that Z(·) is also the
h-centre for h = e, where e is the unit of the loop Q(·) (cf. [2]).

It is known that every quasigroup is isotopic to a loop. This result
is not true in the case of central isotopy.
Theorem 2. A quasigroup P (◦) is centrally isotopic to a loop i� there
exists an element a ∈ P such that R̃a = L̃a ∈ Γ(◦) where R̃ax = x ◦ a,
L̃ax = a ◦ x.
Proof. By Corollary 1 it su�ces to consider the case when a central
shift is equal to the identity mapping. Let a quasigroup P (◦) be
centrally isotopic to a loop P (·) with a central torsion α. Then P (·)
is centrally isotopic to the quasigroup P (◦) with the central torsion
α−1: xy = α(x ◦ y), α ∈ Γ(·), since by Proposition 3 Γ(·) = Γ(◦). Let
e be the unit of the loop P (·), then

e · x = x · e = α(e ◦ x) = α(x ◦ e) = x,

i.e. R̃e = L̃e = α−1 ∈ Γ(◦). Conversely, let there exist an element
a ∈ P in quasigroup P (◦) such that R̃a = L̃a = α ∈ Γ(◦). Then the
quasigroup P (·): xy = α−1(x ◦ y) is a loop with the unit a.
Corollary 5. Every loop Q(◦) with nontrivial centre Z(◦) is centrally
isotopic to a loop with a nonidentical central torsion.
Proof. Indeed, if a ∈ Z(◦) 6= ∅, then Ra = La ∈ Γ(◦) since by Corollary
3 from [4] Γ(◦) = {RaR

−1
e = Ra, a ∈ Z(◦) = Ze} where e is the unit

of Q(◦) and the quasigroup Q(·): x · y = R−1
a (x ◦ y) is a loop with

the unit a , centrally isotopic to the loop Q(◦). It means that Q(◦) is
a central isotope of Q(·) with the central torsion R−1

a ∈ Γ(◦), since in
this case Γ(·) = Γ(◦) by Proposition 3.
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