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Some results on the up to fourth length
balanced identities

Oleg U. Kirnasovsky

Abstract

In the work the up to fourth length balanced identities having a groupoid
signature are classi�ed in the class of all quasigroups: the list consisting of 33 such
identities is determined and for each arbitrary identity of this form it is shown
which identity from this list is equivalent to the given identity in the class of all
quasigroups. From next works of the author it will be follow that these 33 identities
are pairwise non-equivalent in the class of all quasigroups.

A term is called repetition-free, i� every propositional variable ap-
pears in its record at most one time. The number of the propositional
variables appearing in the record of this term is called the length of
this term. A formula v = w is called a balanced identity, i� v and w
are repetition-free terms containing no propositional constant and con-
sisting of the same propositional variables. The length of this term
v (it, of course, is equal to the length of the term w) is called the
length of such balanced identity. A balanced identity is called a bal-
anced identity of the �rst kind, i� the order of the appearing of all
propositional variables in the both sides of the identity is the same
(otherwise the balanced identity is called a balanced identity of the
second kind). Along with selecting and with study of the quasigroup
classes determined by one or many identities, in the quasigroup the-
ory, it is observed an aspiration to classify all identities of some type.
Thus, for example, in [3] it is given some full classi�cation of the iden-
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tities of the minimal length. Also in the works [1], [5], [7] and [8] some
classi�cations of the balanced identities were studied.

Formulas Φ and Ψ are called equivalent in a class K, i� from
the the fact that the formula Φ is truth in algebras from the class
K it follows that the formula Ψ is truth in all algebras from K and
conversely. The lists of identities from the works [1], [5], [7] and [8]
are incomplete and contain equivalent identities. The question of the
classi�cation of the balanced identities (even, of the �rst kind only)
of one binary operation signature by the equivalence relation in the
class of all quasigroups is rather di�cult and is unsolved up to now.
The question on the full classi�cation of the up to fourth balanced
identities was open, although balanced identities on quasigroups were
studied in many various works. For example, a result of series of
V.D. Belousov's, M.A. Taylor's, J. Duplak's and other's works is the
statement: if in a primitive quasigroup an identity of the form

. . . (. . . x . . . y . . . ) . . . z · · · = . . . x . . . (. . . y . . . z . . . ) . . .

holds, then the quasigroup is isotopic to some group (see, for example
[1], [4], [2], [6] and [10]).

We say that a class K of quasigroups is selected by an identity
v = w, i� for each quasigroup (Q; ·) the identity v = w holds in (Q; ·)
i� (Q; ·) belongs to the class K. There exist exactly 33 classes of the
quasigroups which are selected by the up to fourth length balanced
identities. The author �nd the list consisting of 33 identities selecting
these 33 quasigroup classes.

We prove that every up to fourth length balanced identity of a
groupoid signature in the class of all quasigroups is equivalent to at
least one of the identities from the list (1). In reality, here we obtain
a more general result: we indicate for an arbitrary given identity of
the considered type, which an identity from the list (1) is equivalent in
the class of all quasigroups to the given identity. The author expresses
his sincere thanks to Dr. F. Sokhatsky for the permanent attention to
the work.

Note that all identities of the list (1) are pairwise-nonequivalent in the class of
all quasigroups, that will be following from next works of the author. After that
the words �at least� can will be replacing here with �exactly�.
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The list of 33 identities selecting these 33 quasigroup classes is as
follows:

1. x = x
2. xy = yx
3. xy · zt = xz · yt
4. xy · zt = ty · zx
5. xy · zt = tz · yx
6. xy · z = xz · y 6∗. x · yz = y · xz
7. (xy · z)t = (xt · z)y 7∗. x(y · zt) = z(y · xt)
8. xy · z = x · zy
9. (xy · z)t = (yt · z)x

10. xy · z = zy · x 10∗. x · yz = z · yx
11. (xy · z)t = (zt · x)y 11∗. x(y · zt) = z(t · xy)
12. (xy · z)t = (ty · z)x 12∗. x(y · zt) = t(y · zx)
13. (x · yz)t = (x · yt)z
14. (x · yz)t = (x · tz)y 14∗. x(yz · t) = z(yx · t)
15. (xy · z)t = y(x · tz)
16. (x · yz)t = (z · tx)y 16∗. x(yz · t) = z(tx · y)
17. (xy · z)t = y(z · tx)
18. (x · yz)t = z(ty · x)
19. xy · zt = xz · ty
20. xy · zt = (x · yt)z 20∗. xy · zt = y(xz · t)
21. xy · z = x · yz
22. (xy · z)t = z(yx · t) 22∗. x(y · zt) = (x · tz)y
23. (xy · z)t = x(yz · t) 23∗. x(y · zt) = (x · yz)t





(1)

It is possible to show that the number of the possible brackettings
in a repetition-free term of a length n is equal to an, where

a1 = 1, ai =
i−1∑
j=1

ajai−j, i ∈ N\{1},

or
a1 = 1, ai =

2(2i− 3)!

i!(i− 2)!
, i ∈ N\{1}.

Then with such notation the number of the balanced identities of a
length n of a groupoid signature and with a �xed set of variables
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consisting of n variables is equal to (n! ·an)2. A balanced identity of a
binary operation (·) signature is said to be 4-identity, i� the identity
is written by the variables x, y, z and t. From the above, we have
that the possible number of the brackettings in a repetition-free term
of the length 4 is equal to 5, and the number of all 4-identities is equal
to 14400.

Let abcdn, where a, b, c and d are metavariables and n is a natural
number, which is not greater than 5, denotes the term





ab · cd, if n = 1,
(ab · c)d, if n = 2,
(a · bc)d, if n = 3,
a(bc · d), if n = 4,
a(b · cd), if n = 5.

The number n is called the bracketting in the term abcdn. The bal-
anced identity

xyztm = abcdn, (2)
where metavariables a, b, c and d have values from the set of the
variables {x; y; z; t}, is denoted by abcdmn. The substitution

(
x y z t
a b c d

)

is called a conversion substitution of the identity (2). We say that
the substitutions α on a set of the variables {x; y; z; t} is greater than
β, i.e. α > β, i� the word 〈αx, αy, αz, αt〉 follows lexicographically
after the word 〈βx, βy, βz, βt〉 in the ordered alphabet 〈x, y, z, t〉. A
4-identity is canonical i� it has the form abcdmn, where either m = n
and the conversion substitution of this 4-identity is not greater than
the inverse for it substitution, or m < n.
Theorem 1. From every balanced identity of length 4 of a groupoid
signature by the way of variable renaming and by swapping of the left-
hand and right-hand sides it is possible to obtain a unique canonical
4-identity. For this it is enough either to rename the variables so that
they, in the left-hand side of the identity, follow in the order x, y, z,
t, or to make the same action after the swapping of the left-hand and
right-hand sides of the identity.
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Proof. Since each variable renaming operation commutes with the
operation of the swapping of the left-hand and right-hand sides of the
identity, it is clear that no canonical 4-identity di�erent from the 4-
identities obtained by two given ways can be obtained from a balanced
identity of the length 4 of a groupoid signature. Let us prove that
among two such 4-identities there is exactly one canonical (or both
coincide and are canonical). Let one of them have the form abcdmn.
Let us denote with metavariables p, q, r and s such value variables x,
y, z and t, that

(
x y z t
a b c d

)−1

=

(
x y z t
p q r s

)
. (3)

For obtaining from the 4-identity abcdmn the second of these identi-
ties, it is enough to swap the left-hand and right-hand sides and after
that to rename the variables a, b, c and d to x, y, z and t respectively.
Such renaming is equivalent by the formula (3) to the renaming of the
variables x, y, z and t on p, q, r and s respectively. Hence, we obtain
the 4-identity pqrsnm. If m 6= n, then it is obviously, that exactly one
of the 4-identities abcdmn and pqrsnm is canonical. Let m = n. If

〈a, b, c, d〉 = 〈p, q, r, s〉,
i. e., the conversion substitutions of the given identities are involu-
tions, then these two 4-identity coincide and, obviously, are canonical.
Two cases remain:(

x y z t
a b c d

)
>

(
x y z t
p q r s

)

and (
x y z t
a b c d

)
<

(
x y z t
p q r s

)

It is easy to see, that in the �rst case the second identity is canonical
only, and in the second case the �rst one is canonical only.

The canonical 4-identity, obtained by the way described in Theo-
rem 1 from a given balanced identity of length 4 of a groupoid signature
is called the canonical form of this identity. An identity is called the
canonical form of a balanced identity v = w of a length n < 4 and of
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a groupoid signature i� it is the canonical form of the 4-identity

(. . . ((v · x1) · x2) · . . . ) · x4−n = (. . . ((w · x1) · x2) · . . . ) · x4−n,

where x1, . . . , x4−n are di�erent propositional variables, which do not
appear in the terms v and w. In the quasigroups, such canonical form
is equivalent to the identity v = w, because both the left and right
divisions are ful�lled uniquely. Recall that a groupoid (Q;⊕) is called
the commutation of a groupoid (Q; +) i� the identity

x⊕ y = y + x

holds. Identities I and J of the signature of a groupoid operation (·)
are called conjugate (denote this by the equalities I∗ = J and J∗ = I)
i� one is obtained from other by the replacement of the operation (·)
to its commutation (◦) with respective replacements of all subterms
and the subsequent formal renaming of the symbol of the operation
(◦) to the symbol of the operation (·). A class K of groupoids is said
to be the conjugate to a class L of groupoids (denote such class by L∗)
i� for each groupoid from the class K in the class L the commutation
of this groupoid is contained and vica versa. A class of groupoids is
said to be self-conjugate i� it is conjugate to itself. Everywhere in this
work by an identity we consider a closed formula, that is a formula
that starts with generality quanti�ers on all propositional variables
appearing in the identity.

Theorem 2. If A is a propositional form (that is a boolean func-
tion) with n variables, I1, . . . , In are identities of a binary operation
signature, and K is a class of groupoids, then the formula

A(I∞, . . . , I\) (4)

holds in all groupoids of the class K i� the formula

A(I∗∞, . . . , I∗\ ) (5)

holds in all groupoids of the class K∗.

Proof. Since the transformations of the conjugating of identities and
of the conjugating of classes of groupoids are involutions, it is enough
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to prove the theorem in one direction only. Let (4) be hold in every
groupoid from the class K. We consider an arbitrary groupoid (Q; ·)
from K. Let (Q; ◦) be the commutation of this groupoid. Then the
formula obtained from (4) by replacement of each subterm uv with
v ◦ u holds in (Q; ◦). But so obtained formula is transformed to the
formula (5) by the formal renaming of the symbol of the operation
(◦) to the symbol of the given signature. Hence, (5) holds in (Q; ◦).
But since groupoid (Q; ·) is selected from the class K arbitrary, the
formula (5) holds in every groupoid from the class K∗.

Corollary 1. If K is a self-conjugate class of groupoids, A is a propo-
sitional form (that is a boolean function) with n variables, and I1, . . . ,
In are identities of a binary operation signature, then the formulas (4)
and (5) either are ful�lled simultaneously in all groupoids from K, or
each of them is not ful�lled at least in some ones.

Let M195 denotes the set of such 195 canonical 4-identities, for
which

〈m,n〉 /∈ {〈1, 4〉; 〈1, 5〉; 〈3, 5〉; 〈4, 4〉; 〈4, 5〉; 〈5, 5〉}.

Theorem 3.For every balanced identity I of the length 4 of a groupoid
signature the canonical form of at least one of the identities I and I∗

belongs to the set M195.

Proof. It is easy to see that two identities conjugated to two balanced
identities of length 4 of a groupoid signature with the same canonical
form have the same canonical form as well. Therefore, we can consider
without loss of generality that I is a canonical 4-identity. Then 〈m,n〉
may have the values 〈1, 1〉, 〈1, 2〉, 〈1, 3〉, 〈1, 4〉, 〈1, 5〉, 〈2, 2〉, 〈2, 3〉,
〈2, 4〉, 〈2, 5〉, 〈3, 3〉, 〈3, 4〉, 〈3, 5〉, 〈4, 4〉, 〈4, 5〉, 〈5, 5〉 only. The pair
〈i, j〉, where i and j are brackettings respectively in the left-hand and
right-hand sides of the canonical form of the identity I∗, respectively
has the values 〈1, 1〉, 〈1, 5〉, 〈1, 4〉, 〈1, 3〉, 〈1, 2〉, 〈5, 5〉, 〈4, 5〉, 〈3, 5〉,
〈2, 5〉, 〈4, 4〉, 〈3, 4〉, 〈2, 4〉, 〈3, 3〉, 〈2, 3〉, 〈2, 2〉. Thence we see that in
the occasion, when I does not belong to the set M195, the canonical
form of the identity I∗ belongs to it.
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11 12 13 22 23 24 25 33 34
xyzt 1 21 21 1 21 23 21 1 21
xytz 2 8 20 6 8 9 8 13 8
xzyt 3 8 8 6 8 8 9 2 8
xzty 19 8 6 6 8 8 9 9 8
xtyz � 8 8 � 8 9 8 � 8
xtzy 19 8 8 7 8 11 8 14 8
yxzt 2 11 8 2 8 8 8 6∗ 8
yxtz 2 8 8 8 8 9 15 8 8
yzxt 19 8 8 8 8 8 9 8 8
yztx 19 8 8 8 8 8 17 8 9
ytxz 19 8 8 8 8 9 8 8 8
ytzx 19 10 8 9 8 8 8 11 9
zxyt � 11 8 � 2 8 8 � 8
zxty � 8 8 � 9 8 8 � 8
zyxt 19 8 8 10 2 22 8 10∗ 8
zytx 19 8 8 8 9 8 8 15 9
ztxy 2 8 8 11 9 11 8 16 8
ztyx 2 10 8 8 9 8 8 8 18
txyz � 8 8 � 8 2 8 � 8
txzy � 8 8 � 8 8 8 � 8
tyxz � 8 11∗ � 8 2 8 � 8
tyzx 4 8 8 12 8 8 8 10 2
tzxy � 8 11∗ � 8 8 2 � 8
tzyx 5 8 8 8 8 8 2 8 2

We decompose the set of all 325 canonical 4-identities on 33 classes:
Ck and C∗

k , where k is an up to 23 natural number. Moreover, we
identify the classes Ck and C∗

k when

k ∈ {1; 2; 3; 4; 5; 8; 9; 13; 15; 17; 18; 19; 21}

(therefore there are 33 classes). Classes Ck and C∗
k are called conjugate.

Identi�ed classes are called self-conjugate. Determine by the table for
each given canonical 4-identity I, to which class the identity is referred:
if I ∈ M195 and I has the form abcdmn, then the number of index of
the class is on the intersection of the row with the name �abcd� and
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of the column with the name �mn� in the table, and if I /∈ M195, then
the identity belongs to the class conjugated to the class having the
canonical form of the identity I∗.

Lemma 4. All identities from the class C1 hold in every groupoid.

Proof. Indeed, that follows from the coincidence of the left-hand and
right-hand sides of each of these identities.

Denote by Lc and Rc the left and right translation of the operation
(·) by an element c, with ε � the identical substitution for a clear
from context set. Let T i

a denotes one of the translations La or Ra of
the groupoid (Q; ·) in some non-�xed dependence from values of the
variable i.

Lemma 5. If in a quasigroup (Q; ·) a 4-identity which can be rewritten
by the equality

(T 1
a T 2

b c)d = c(T 3
p T 4

q d),

where a, b, c, d are di�erent variables and p, q are metavariables
having di�erent values from the set of the variables {a; b}, holds, then
there exists a substitution α on the set Q such that

T 1
a T 2

αa = ε, (6)

and
{

T 3
a T 4

αa = ε, if p = a,

T 3
αaT

4
a = ε, if p = b.

(7)

Proof. For all c ∈ Q there exists a bijection between such a and b, that
T 1

a T 2
b c = c. Fix some value of c and denote the respective bijection by

α (b = αa). Then, with b = αa, we have that T 1
a T 2

b c = T 1
a T 2

αac = c,
whence

T 3
p T 4

q d = d, (8)

that is T 3
p T 4

q = ε. Hence, the respective equality from (7) holds as
well. Consider the given identity again, but not �xing c. Let b = αa,
the equality (8) holds. Thus T 1

a T 2
αac = c, i. e., (6) holds also.



22 O. U. Kirnasovsky

Lemma 6. From every identity of the set M195 ∩ (C2 ∪ C9 ∪ C19)
commutativity of the quasigroup (Q; ·) follows.

Proof. Use in identities ytzx11, ytzx22, ztyx23, xtyz24 the equality
t = x; in zyxt11, zxty23, yxtz24, xzty33 the equality t = y; in xtzy11,
yzxt11, zytx11 the equality z = x; in ytxz11, xytz24, ytxz24 the
equalities t = y = x; in tyxz24, tzxy24 the equality t = xy · z; in
xzty11 the equality z = y; in yxtz11 the equality t = z; in yztx11
the equalities z = y = x; in ztyx11 the equalities z = x and t = y;
in zyxt23 the equality z = xy; in tzyx25 the equalities t = zz and
z = xy; in tyzx34 the equality t = x · yz; in tzyx34 the equalities
t = xx and x = yz; in zytx23 the equalities t = x and z = xy; in
ztxy23 the equalities t = y and z = xy. After that, the obtained
identities and xytz11, yxzt11, ztxy11, yxzt22, zxyt23, txyz24, xzyt33
too by the way of cancellations and of replacements are reduced to the
identity of commutativity. For the identities xzty25, yzxt25, ytzx34,
zytx34 the application of Lemma 5 gives the equality of translations
Lu and Ru, that is commutativity. For the identity xzyt25 it gives
the equalities RuRαu = LuLαu = ε, after that the substitution in the
identity of the equalities z = x and t = αx gives (xy·x)αx = x(x·yαx),
i. e., RαxRxLxy = Lx(x · yαx), whence y = x · yαx, and hence,

x(αx · y) = LxLαxy = y = x · yαx,

that after cancellation gives commutativity. At last, for the iden-
tity yztx34 Lemma 5 gives LuRαu = RuLαu = ε, and substitution
x = αt gives (αt · yz)t = y(zt ·αt), i.e, RtLαtLyz = Ly(zt ·αt), whence
z = zt · αt, and therefore tz = t(zt · αt) = LtRαt(zt) = zt.

Corollary 2. In the quasigroup every identity from the class C2 is
equivalent to commutativity.

Proof. Each of these identities follows from the commutativity. On the
other hand, by Lemma 6, every of the identities of the set M195 ∩ C2

implies commutativity, whence by Corollary 1 from each of the rest
identities of the class C2 commutativity follows as well.
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Corollary 3. In the quasigroup the identities from the class C9 are
pairwise-equivalent.
Proof. Indeed, by Lemma 6 and Corollary 1, each of these identi-
ties implies the commutativity, and all of them are obtained one from
other by permutation of the places of the factors in some products
(subterms) after respective replacements.

Recall, that identity
ab · cd = ac · bd (9)

is called mediality and a quasigroup in which it holds is called medial.
Corollary 4. In the quasigroups every identity from the class C19 is
equivalent to the conjuction of commutativity and mediality.
Proof. Indeed, by Lemma 6, each of them implies commutativity, and
on the other hand, all of them are obtained from (9) by replacements
of variables and by permutations of the places of the factors in some
products (subterms).

Lemma 7. In the quasigroup every identity from the class C6 is equiv-
alent to the identity

ab · c = ac · b. (10)
Proof. Indeed, from the identities xzty13, xytz22, xzyt22, xytz44 by
trivial replacements and cancellations the identity (10) is obtained,
and from the identity xzty22, by the substitution t = y,� the iden-
tity, which reduces after replacements and cancellations to (10). On
the other hand, the identity (10) is equivalent to the commutation of
right translations, whence (xy ·z)t = RtRzRyx = RyRtRzx = (xz ·t)y,
that is xzty22 holds.

Recall that in the quasigroup the solutions of the equations a·x = b
and y · a = b are denoted respectively as x = a\b and y = b/a. As
usual, the left and right local unit for an element a of a quasigroup
(Q; ·) are respectively the elements a/a and a\a, which are denoted
respectively by fa and ea. The left and right units respectively of left
and right loops are denoted respectively by f and e.
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Lemma 8. If in a quasigroup (Q; ·) the formula T 1
uT 2

v a = T 1
wa, where

a is a propositional variable, u, v, w are terms of a signature (·) which
do not contain this variable, and some propositional variable b appears
in one of the terms u and w only, and exactly one time, holds, then
(Q; ·) is a left loop when T 2

v = Lv and is a right loop when T 2
v = Rv.

Proof. Due to the uniqueness of the left and right divisions in the
quasigroup there exists such value of b that u = w. But then T 2

v a = a,
whence

v =

{
fa, if T 2

v = Lv,
ea, if T 2

v = Rv.

And since v does not depend on a, then (Q; ·) is respectively a left or
right loop.

Lemma 9. From every identity of the set M195 ∩ C21 associativity of
the quasigroup (Q; ·) follows.

Proof. Indeed, from xyzt12, xyzt23, xyzt34 by trivial replacements
and cancellations the identity of associativity is obtained. By Lemma
8 a quasigroup with the identity xyzt13 is a left loop. Then, replac-
ing in xyzt13 the variable x with the left unit we have the identity of
associativity. Finally, for a quasigroup with the identity xyzt25 asso-
ciativity follows from the work [9].

Corollary 5. Every identity from the class C21 is equivalent to asso-
ciativity of the quasigroup (Q; ·).
Proof. By Lemma 9 and by Corollary 1 each identity from the class
C21 implies associativity. On the other hand, from associativity all
balanced identities of the �rst kind follow.

Lemma 10. A quasigroup with the identity yztx22 is a group.

Proof. Let t = z = x in the given identity. After cancellations, we
obtain the commutativity. Accounting that, from the given identity
we see that (xy · z)t = x(yz · t) for z = xy\x may be rewritten in the
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form xt = x(y(xy\x) · t). Thus t = y(xy\x) · t, whence y(xy\x) = ft.
Therefore the given quasigroup is a left loop, and due to commuta-
tivity it is a right loop. When t = e the given identity reduces to the
identity of associativity.

Lemma 11. If in a groupoid with a unit a balanced identity of the
second kind holds, then this groupoid is commutative.

Proof. Indeed, let a and b be variables appeared in the sides of the
identity in a di�erent order. Then substituting instead of all other
variables the unit we obtain the identity of commutativity.

Lemma 12. If in a quasigroup (Q; ·) an identity from M195∩C8 holds
then (Q; ·) is commutative or associative.

Proof. First note that it is enough to prove that (Q; ·) is a loop or in
(Q; ·) one of the identities

a · bc = ca · b, a · bc = ac · b, a · bc = ba · c,
ab · c = ca · b, ab · c = c · ba, a · bc = b · ca.

holds. Indeed, by Lemma 11 a loop (Q; ·) must be commutative, by
Lemma 8 a quasigroup with the �rst of these six identities is a loop,
and other �ve enumerated identities respectively by the substitutions
a = b, a = c, b = c, c = ab, a = b and by subsequent trivial replace-
ments and cancellations reduce to the identity of commutativity. Use
in identities tyxz12, tyzx12, tzyx22, yztx23, ytzx23, tyzx23, tzyx23,
tzyx33 the equality t = x; in zyxt12, zytx12, yzxt22, zytx22, xzyt23,
tzyx24 the equality z = x; in tyzx24, tzxy24, txyz25, txzy25, tyxz25,
tyzx25 the equality t = xy · z; in xzty12, zxty12, txzy12, xtzy13,
zxty13 the equality y = zt; in xtzy12, xzty23, xtzy23, txzy23, tzxy23
the equality t = y; in tzyx12, zytx13, ztyx13, tyzx13, tzyx13 the
equality x = zt; in yxtz22, xytz23, xtyz23, ytxz23, yxtz33 the equal-
ity t = z; in yztx22, ytxz22, xzyt24, ztyx33 the equalities t = z = x;
in txyz34, txzy34, tyxz34, tzxy34 the equality t = x · yz; in yxtz23,
yxzt24, zxty24 the equalities t = z = y; in xzyt12, txzy24 the equality
z = y; in tzxy12, ytzx13 the equalities x = y = zt; in xtyz12 the
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equalities t = y and z = xy; in yztx12 the equalities t = y and x = zy;
in ztxy13 the equalities z = x and y = xt; in txzy13 the equalities
y = zt and x = t; in ztyx22 the equalities t = x and z = y; in tyxz23
the equalities t = z = xy; in yztx33 the equalities t = y = x; in
ytxz33 the equalities y = x and t = z. After that the obtained identi-
ties and also xytz12, ztxy12, yztx13, zxyt13, txyz13, yxzt23, yzxt23,
txyz23, zxyt24, ztxy25, yzxt33 by cancellations and by replacements
reduce to one of such identities, that stipulate commutativity or as-
sociativity. The identities zxty13, yxtz33, zytx22, tzyx22 constitutes
exception only, which after the described substitutions, cancellations
and replacements reduce to the identity

a · bc = b · ac (11)

(the �rst two ones) or to

ab · c = ac · b

(the last two ones). These two obtained identities with a = fc and
with c = ea respectively reduce after simpli�cations to the equalities
fc = fbc and ea = eab, and hence, ful�ll in left and right loops only
respectively. Use now in zxty13, yxtz33, zytx22, tzyx22 respectively
the equalities x = z = f , x = y = f , y = t = e, y = t = e, after
obtaining everywhere the identity of commutativity. The application
of Lemma 5 to the identities xzty24, ytzx24, xytz25, yxzt25, ytxz34,
zxty34 gives after simpli�cations the equality of the translations Lu

and Ru, that is commutativity, and to yztx24, yxtz34, ztxy34 one gives
respectively the equalities (for some substitution α)

RuLαu = RαuLu = ε, LuRαu = ε, LuLαu = RαuRu = ε.

Use in yztx24 the equality y = αx:

(xαx · z)t = αx(zt · x) = LαxRx(zt) = zt,

whence xαx · z = z, that is xαx = fz, and hence, the quasigroup with
the identity yztx24 is a left loop, i. e., Lf = ε, whence Rf = ε, that
means, that this quasigroup is a loop as well. Substitute t = αx in
yxtz34 (x · yz)αx = y(xαx · z), whence y(xαx · z) = RαxLx(yz) = yz,
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and therefore xαx = fz, that is (Q; ·) is a left loop, whence from
yxtz34 when x = y = f we have commutativity. Let t = α(yz) in
ztxy34:

(x · yz)α(yz) = z · (α(yz) · x)y,

that is
z · (α(yz) · x)y = Rα(yz)Ryzx = x,

whence
z · (α(yz) · (yz · x))y = yz · x,

that is
yz · x = z(Lα(yz)Lyzx · y) = z · xy.

Applying to all other identities from M195 ∩ C8 Lemma 8, we obtain
the existence of the left or right unit, after what substitution respec-
tively f or e instead of some variables after simpli�cations leads to one
of such identities, that stipulate either commutativity or associativity,
or the identities of the type uf = u or eu = u, which are equivalent
respectively to f = eu and to e = fu, that is we have that the given
quasigroup is a loop.

Lemma 13. In a quasigroup (Q; ·) an arbitrary �xed identity from the
class C8 holds i� (Q; ·) is an abelian group.
Proof. If (Q; ·) is an abelian group then all balanced identities hold in
it. But if an identity I from the set M195∩C8 holds in the quasigroup
(Q; ·) then by Lemma 12 this quasigroup is commutative or associa-
tive (in the last occasion the quasigroup is a group and therefore by
Lemma 11 it is commutative as well). But if (Q; ·) is commutative
then we obtain again a true in (Q; ·) identity by permutating in some
products (subterms) of the identity I the factor places. Note that we
can obtain by such manipulation from I after respective replacements
either an identity from the class C21, or yztx22. By Corollary 5 and
by Lemma 10 then (Q; ·) is a group.

Lemma 14. In the quasigroup each identity from the class C10 is
equivalent to the identity

ab · c = cb · a. (12)
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Proof. From the identities ztyx12, zyxt22, xtzy44, tyzx33 this iden-
tity is obtained by the way of trivial cancellations and replacements.
Substitute x = zt in ytzx12. After cancellations and replacements
we again have the identity (12). On the contrary, let (12) hold in a
quasigroup then xy · zt = (zt · y)x = (yt · z)x.

Lemma 15. Every quasigroup with (12) is medial.

Proof. Indeed, xy · zt = (zt · y)x = (yt · z)x = xz · yt.

Lemma 16. In the quasigroup with the identity (12) each identity from
the classes C11, C22 and C23 is equivalent to the identity (11).

Proof. If we replace in identities yxzt12 and ytzx14 the left-hand sides
with xz ·yt, then by Lemma 15, we obtain identities, which are equiva-
lent to the respective initial ones. Moreover, these obtained identities
reduce by variable replacements to zxyt12 and ztyx14 respectively.
Further, if replacing similarly in yxzt12 and ytzx14 the left-hand sides
with (zt · y)x, in xyzt24 and xtzy24 with (zy · x)t, and in xyzt24 the
right-hand side with x(tz · y), then we obtain ones equivalent to ini-
tial identities, because the motivation of the truth of all such changes
follows from the identity (12).

From the obtained identities after replacements we obtain respec-
tively ztxy22, zyxt24, zyxt24, ztxy24, xtzy24. If replacing in ytzx33
(by the same considerations as before) the left-hand side with (t ·yz)x,
then after cancellation and replacements we obtain the identity (11).
The last one is equivalent to the identity

xt · (xy · z) = xy · (xt · z),

from which by replacements of the left-hand side with (xy · z)t · x,
and of the right-hand side with (xt · z)y · x (as before again) after
cancellation we have the identity xtzy22, which reduces to ztxy22 after
replacement of the rigght-hand side with (zt · x)y. It remains to prove
that the identities yxzt12 and ytzx14 are equivalent in the class of all
quasigroups. Accounting the already proved, that yxzt12 is equivalent
to (11), we replace in yxzt12 the right-hand side at �rst with tz · yx,
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and later with y(tz · x). Hence, from yxzt12 it follows the identity
ytzx14.

On the contrary, let ytzx14 hold in a quasigroup with the identity
(12), then

xy · zt = y(tz · x) = y(xz · t).
But also ty · zx = y(xz · t), whence

xy · zt = ty · zx.

By Lemma 15 the quasigroup is medial, therefore ty · zx = tz · yx.
Hence,

xy · zt = tz · yx = (yx · z)t,

that is yxzt12 holds.

Lemma 17.In the quasigroup every identity from the class C11 implies
the identity (12).

Proof. By Lemma 8 a quasigroup with one of the identities yxzt12,
zxyt12, ytzx14 or ztxy24 is a left loop. Substitute in yxzt12 at �rst
y = t = f and after replacements we have that

af · bf = ab · f, (13)

later substitute z = f and after replacements and cancellation we get

ab = ba · f, (14)

and �nally substitute y = f :

xf · zt = (fx · z)t = xz · t,

whence
xz · t = xf · (tz · f) = (x · tz)f = tz · x.

From zxyt12 analogously when x = t = f we obtain the identity (14),
when y = t = f we obtain the identity xf · zf = (zx · f)f, that is the
identity (13), when t = f we obtain that xy · zf = (zx · y)f, whence

(zx · y)f = (yx · f) · zf = (yx · z)f,
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that is zx · y = yx · z. From ytzx14 we have when x = f the identity
(14), when y = t = f the identity af · bf = ba, when t = f we obtain
that xy · zf = y · zx, whence

(zx · y)f = (yx · f) · zf = z · yx = (yx · z)f,

that is (12) holds. From ztxy24 we have when t = f the identity (14),
when z = f we have that (xy · f)t = tx · y, that is yx · t = tx · y. Using
in the identities ztyx14, ztxy22 and xtzy24 respectively the equali-
ties z = xy, t = y and x = tz we'll obtain after cancellations and
replacements the identity (12). At last, substitute x = t in ytzx33:
(t · yz)t = (y · tz)t, whence (t · yz)x = (y · tz)x = (x · yz)t, that is (12)
holds again.

Corollary 6. In the quasigroups each identity from the class C11 is
equivalent to the conjuction of the identities (11) and (12).

Proof. It follows from Lemmas 17 and 16.

Lemma 18. In the quasigroups from the identity xytz33 it follows
mediality, and also the conjugate to xytz33 identity.

Proof. Let c be an element of a quasigroup (Q; ·) with the identity
xytz33, then (due to the uniqueness of the left and right divisions
in the quasigroups) there exists a bijection α between such a and b
(b = αa), for which

a · cb = c.

Substitute y = c and z = αx in xytz33:

(x · cαx)t = (x · ct)αx,

whence ct = (x · ct)αx, that is

b = ab · αa,

or also RαaLa = ε. Let u = z/αy, v = t/αy, then xytz33 can be
rewritten in the form

x(y · uαy) · vαy = x(y · vαy) · uαy,
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that is
xLyRαyu · vαy = xLyRαyv · uαy,

whence

xu · vαy = xv · uαy, (15)

that is (9) holds. Let also p = u/αy, q = v/αy, then, when y = x, we
have from the identity (15) that

(y · pαy) · vαy = (y · qαy) · uαy,

whence p · vαy = q · uαy, or also

(p · vαy)(αy · w) = (q · uαy)(αy · w),

and from mediality we have that

pαy · (vαy · w) = qαy · (uαy · w),

that is u(vαy · w) = v(uαy · w), whence it is obtained by variable
replacement the identity, which is conjugate to xytz33.

Corollary 7. In the quasigroup the identities from the class C13 are
pairwise-equivalent.

Proof. Indeed, one of them is the identity xytz33, the second one re-
duces by variable replacement to the identity conjugated to xytz33,
but there are no other identities in this class. The inverse implication
follows from Corollary 1 and from involutivity of the transformation
of the conjugating of identities.

Lemma 19. In the quasigroups every identity from the class C15 is
equivalent to the conjuction of the identities (12) and

a · bc = c · ba. (16)



32 O. U. Kirnasovsky

Proof. Since zytx33 after variable replacement becomes conjugate to
ytzx44, then by the Corollary 1 it is enough to prove our statement
for yxtz25 and for zytx33 only. Let at �rst the identities (12) and (16)
ful�l in a quasigroup. Then

(xy · z)t = tz · xy = y(x · tz),

(x · yz)t = (t · yz)x = (z · yt)x.

Now let in the quasigroup yxtz25 hold. When t = xy, this identity
reduces by replacements and cancellation to (12), whence

(xy · z)t = y(x · tz(= tz · xy.

Finally, let in quasigroup zytx33 hold. Substitute in the identity the
equality p = x. After cancellation and replacements we obtain the
identity (16). Then from zytx33 we have that

(x · yz)t = (z · yt)x = (t · yz)x,

which completes the proof.

Theorem 20. In each of 33 classes Ck and C∗
k of the partition on the

canonical 4-identities all identities are pairwise-equivalent.

Proof. Indeed, for the classes C1, C2, C6, C8, C9, C10, C11, C13, C15,
C19 and C21 this follows respectively from Lemma 4, Corollary 2, Lem-
mas 7 and 13, Corollary 3, Lemma 14, Corollaries 6 and 7, Lemma
19 and Corollaries 4 and 5. The classes C3, C4, C5, C7, C12, C14, C16,
C17, C18, C20, C22 and C23 consist of one identity each. Finally, for
the classes C∗

k we used Corollary 1.

Theorem 21. Each balanced identity I of a signature with one binary
operation only and of the up to fourth length is equivalent in the class
of all quasigroups to at least one of 33 identities of the list (1), namely:
to the identity having in the list (1) the same number, as number k or
k∗ of the respective class Ck or C∗

k , to which the canonical form of the
identity I belongs.



Some results on balanced identities 33

Proof. Without loss of generality, we can consider that I is a canonical
4-identity. But the canonical form of every identity with a number k
or k∗ in the list (1) respectively belongs to the class Ck or C∗

k , therefore
by Theorem 20 the identity I is equivalent to the respective identity
from the list (1).

The variety of quasigroups satisfying the identity with a number k
or k∗ is denoted by Vk or V ∗

k , respectively.
Theorem 22. The following formulas are true:

V9 ⊂ V2, (17)
V10 ⊂ V3, (18)
V13 ⊂ V3, (19)

V8 = V2 ∩ V21, (20)
V15 = V10 ∩ V ∗

10, (21)
V19 = V2 ∩ V3, (22)

V11 = V10 ∩ V22 = V10 ∩ V23 = V10 ∩ V ∗
6 . (23)

Proof. By Theorem 21 we can consider each identity from the respec-
tive class of the partition on the canonical 4-identities instead of the
respective identity of the list (1). Then by Lemma 6 we have the for-
mula (17), by Lemma 15 the formula (18), by Lemma 18 the formula
(19), by Lemma 13 the formula (20), by Lemma 19 the formula (21),
and by Corollary 4 the formula (22). By Corollary 6 we have

V11 = V10 ∩ V ∗
6 .

Thus by Lemma 16 we obtain (23).
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