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On automorphisms of the Cartesian square
of a groupoid

Vladimir I. Izbash

Abstract

In this paper, we study the automorphisms of the Cartesian square of a
groupoid and give a new approach to describe them. We introduce the notion
of a medial pair of groupoids and �nd a relation between such orthogonal pairs
and automorphisms of Cartesian square of the given groupoid. For a groupoid
with the identity element this relation is concretized. Then we obtain some results
about automorphisms of the Cartesian square of a nonabelian simple group. Also
we formulate two problems about medial pairs which are necessary to solve to
describe automorphisms of the Cartesian square of a groupoid.

1. Introduction
The present notice contains some results concerning automorphisms
of systems with one operation which are various groupoids. Although
the groupoids have a simple axiomatic de�nition, it is not so simple to
describe their automorphisms, and the choice of terms for describing
them is important. In the following we give an approach to determine
automorphisms of the Cartesian square of a groupoid, namely, a re-
lation between automorphisms of the Cartesian square of a groupoid
and medial orthogonal pairs of groupoids de�ned on the basic set of
the groupoid is given. It should be noted at once that automorphisms
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of the direct product of groupoids can be studied in a similar way, but
this case is space consuming and will be reserved for later occasion.

The purpose of this paper is to introduce the notion of the medial
pair of groupoids, to show the connection between these and automor-
phisms of the Cartesian square of a groupoid, and to formulate some
problems needed to be solved to describe these automorphisms.

For fundamental concepts used in this paper, we refer to [3, 4, 5].
We consider systems (Q,A) consisting of a set Q of a �nite or in�nite
order closed with respect to a binary operation A, called multiplica-
tion, i.e. to any two elements a, b ∈ Q there corresponds a unique
third element c = A(a, b) which is called the product of a and b. Such
a system is called a groupoid.

An operation A de�ned on a set Q is said to be complete if there
exists a substitution θ on Q2 : θ(x, y) = (x′, y′) such that A = Eθ,
i.e.

A(x, y) = Eθ(x, y) = E(x′, y′) = y′

for all x, y ∈ Q, where E(x, y) = y.
Two operations L and R de�ned on a set Q are said to be orthogonal

if the system of the equations

L(x, y) = a, R(x, y) = b

has the unique solution for any a, b ∈ Q [1]. As it is proved in [1], if
the operations L and R are orthogonal then they are complete. Note
that, in this case, for each a ∈ Q there exist elements x, y ∈ Q such
that a = A(x, y).

The element e ∈ Q is the identity (or unit) of the groupoid (Q,A)
if A(e, x) = A(x, e) = x for every x ∈ Q. A groupoid (Q, A) is a
quasigroup if for each ordered pair a, b ∈ Q, there is one and only one
x ∈ Q such that A(a, x) = b and one and only one y ∈ Q such that
A(y, a) = b. An associative quasigroup is a group.

2. Medial pairs of groupoids
Suppose a set Q is �nite or in�nite. Each pair of groupoids (Q,L) and
(Q,R) on Q uniquely determines a mapping θ on the set Q×Q = Q2,
namely θ : (a, b) −→ (L(a, b), R(a, b)), a, b ∈ Q and conversely, each



On automorphisms of the Cartesian square 101

mapping θ on the set Q2 uniquely determines a pair of groupoids
(Q,L) and (Q,R): if θ(a, b) = (c, d), then we put c = L(a, b) and
d = R(a, b).

If θ is a permutation of Q2 (i.e. a one-to-one mapping of Q2 onto
itself), then the groupoids (Q,L) and (Q,R) determined by θ are
orthogonal. Conversely, to each pair (Q,L) and (Q,R) of orthogonal
groupoids there corresponds the permutation θ of the set Q2, de�ned
as above.

If (Q,C) is a groupoid and θ : (a, b) = (L(a, b), R(a, b)), a, b ∈ Q,
is an automorphism of (Q2, C), then for any a, b, c, d ∈ Q we have

θ(C((a, b), (c, d))) = C(θ(a, b), θ(c, d)) ⇐⇒
θ(C(a, c), C(b, d)) = C(θ(a, b), θ(c, d)) ⇐⇒
(L(C(a, c), C(b, d)), R(C(a, c), C(b, d))) =

C((L(a, b), R(a, b)), (L(c, d), R(c, d))) ⇐⇒
(L(C(a, c), C(b, d)), R(C(a, c), C(b, d))) =

(C(L(a, b), L(c, d)), C(R(a, b), R(c, d))) ⇐⇒{
L(C(a, c), C(b, d)) = C(L(a, b), L(c, d))

R(C(a, c), C(b, d)) = C(R(a, b), R(c, d)).

So we have proved the following theorem.
Theorem 1. Let (Q,C) be a groupoid with a binary operation C
de�ned on the set Q. A mapping θ : Q2 −→ Q2 is an automorphism
of the Cartesian square (Q2, C) i� there exist two orthogonal groupoids
(Q,L) and (Q,R) such that the equalities

C(L(x, y), L(u, v)) = L(C(x, u), C(y, v)),

C(R(x, y), R(u, v)) = R(C(x, u), C(y, v)),

(L(x, y), R(x, y)) = θ(x, y)

hold for any x, y, u, v ∈ Q.
De�nition 1. A pair of groupoids (Q,A) and (Q,B) for which the
equality

A(B(x, y), B(u, v)) = B(A(x, u), A(y, v)) (1)
holds for any x, y, u, v ∈ Q will be called a medial pair.
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By M(Q, C) we denote the class of all groupoids (Q,D) such that
the pair of (Q,C) and (Q,D) is a medial pair.

By OrtM(Q,C) we denote the class of all orthogonal pairs of
groupoids from M(Q,C).

The above theorem shows that in describing automorphisms of the
Cartesian square (Q2, C) of a groupoid (Q,C), it is necessary and
su�cient to solve the following two problems:
Problem 1. Describe elements of M(Q, T ).
Problem 2. Describe elements of OrtM(Q, T ).

3. Special cases
Now we use Theorem 1 in some special cases. At �rst we consider the
case that a groupoid (Q,A) has the identity e.

Assume that groupoids (Q,B) and (Q,A) form a medial pair, i.e.
the identity (1) holds. Since (1) for x = u = e has the form

A(B(e, y), B(e, v)) = B(e, A(y, v)),
we have that α : Q −→ Q de�ned by α(x) = B(e, x) is an en-
domorphism of (Q,A). Analogously we prove that β de�ned by
β(x) = B(x, e) is an endomorphism of (Q,A).

From (1) for u = y = e we obtain also

B(x, v) = A(β(x), α(v)) (2)

for every x, v ∈ Q and, again, from (1) for x = v = e we get

B(u, y) = A(α(y), β(u)) (3)

for every u, y ∈ Q.
Now, from (2) and (3) we have

B(x, y) = A(β(x), α(y)) = A(α(y), β(x)) (4)

for x, y ∈ Q.
Hence, the identity (1) maybe replaced by

A(A(β(x), α(y)), A(β(u), α(v))) = A(β(A(x, u)), α(A(y, v))). (5)
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From (4) and the de�nition of α and β we get

α(e) = β(e), (6)

α(x) = A(β(e), α(x)) = A(α(x), β(e)), (7)
β(x) = A(β(x), α(e)) = A(α(e), β(x)), (8)

for x ∈ Q.
Putting v = e in (5) and using (6), (7), (8), and (4), we obtain

A(A(α(y), β(x)), β(u)) = A(α(y), β(A(x, u))) (9)

for any y, u, x ∈ Q.
Since (5) for u = e has the form

A(A(β(x), α(y)), α(v)) = A(β(x), α(A(y, v))), (10)

then
A(A(β(x), α(y)), A(β(u), α(v))) = A(β(A(x, u)), α(A(y, v)))

= A(αA(y, v)), β(A(x, u))) = A(A(α(A(y, v)), β(x)), β(u))

= A(A(β(x), α(A(y, v))), β(u)) = A(A(A(β(x), α(y)), α(v)), β(u))

by (5), (4), (9) and (10). Thus

A(A(β(x), α(y)), A(β(u), α(v))) = A(A(A(β(x), α(y)), α(v)), β(u))
(11)

holds for any x, y, u, v ∈ Q.
Conversely, let us have α, β ∈ End(Q, A) such that the relations

(6), (9), (10), (11) and A(β(x), α(y)) = A(α(y), β(x)) hold in a
groupoid (Q,A) for any x, y, u, v ∈ Q. Then the pair of groupoids
(Q,A) and (Q,B), where B(x, y) = A(β(x), α(y)) for all x, y ∈ Q, is
a medial pair. Indeed, for every x, y, u, v ∈ Q we have
A(B(x, y), B(u, v)) = A(A(β(x), α(y)), A(β(u), α(v)))

= A(A(A(β(x), α(y)), α(v)), β(u)) = A(A(β(x), α(A(y, v))), β(u))

= A(A(α(A(y, v)), β(x)), β(u)) = A(α(A(y, v)), β(A(x, u)))

= A(β(A(x, u)), α(A(y, v))) = B(A(x, u), A(y, v)).
So we have proved the following
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Theorem 2. Let (Q, A) and (Q,B) be groupoids and e be the unit
of (Q,A). The pair (Q,A) and (Q,B) is a medial pair i� there exist
endomorphisms α and β of (Q,A) such that (4), (6), (9), (10) and
(11) hold.

Suppose now that (Q,A) is a �xed nonabelian simple group. Then
α ∈ End(Q,A) i� either α ∈ Aut(Q,A) or α is the zero endomor-
phism ω of (Q,A) de�ned by ω(x) = e for all x ∈ Q. Since (Q,A) is
nonabelian the identity A(β(x), α(y)) = A(α(y), β(x)) is not ful�lled
for all α, β ∈ Aut(Q,A). Clearly A(β(x), ω(y)) = A(ω(y), β(x)) and
A(ω(x), β(y)) = A(β(y), ω(x)) for all x, y ∈ Q and β ∈ End(Q,A).
Obviously the relations (9) � (11) hold in the group (Q,A) by the
associativity. Therefore we have proved the following proposition.

Proposition 1. The groupoid (Q,B) is contained in M(Q,A) for a
nonabelian simple group (Q,A) i� there exists β ∈ End(Q, A) such
that either B(x, y) = β(x) or B(x, y) = β(y) for all x, y ∈ Q.

Proposition 2. Let (Q,A) be a nonabelian simple group. Then the
pair of groupoids ((Q, B), (Q,C)) is contained in OrtM(Q,A) i�
there exist α, β ∈ Aut(Q,A) such that B(x, y) = α(x), C(x, y) =
β(y) for all x, y ∈ Q.
Proof. Let (Q,B), (Q,C) ∈ M(Q,A) be orthogonal groupoids. By
Proposition 1, there exist α, β ∈ End(Q,A) such that either B(x, y) =
α(x) or B(x, y) = α(y) and either C(x, y) = β(x) or C(x, y) = β(y)
for all x, y ∈ Q.

The case �B(x, y) = α(x) and C(x, y) = β(x) for all x, y ∈ Q�
implies that the system of equations

B(x, y) = a, C(x, y) = b (12)

has more than one solution for any �xed a, b ∈ Q, thus the groupoids
(Q,B) and (Q,C) are not orthogonal. The same is valid for the case
when B(x, y) = α(y) and C(x, y) = β(y) for all x, y ∈ Q.

Now suppose that we have B(x, y) = α(x) and C(x, y) = β(y) for
all x, y ∈ Q. If either α = ω or β = ω, then the system (12) has more
than one solution for any �xed a, b ∈ Q.

Let α, β ∈ Aut(Q,A) and B(x, y) = α(x), C(x, y) = β(y) for all
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x, y ∈ Q. In this case the system (12) becomes α(x) = a, β(y) = b
which has a unique solution for any �xed a, b ∈ Q. Therefore the
groupoids (Q,B) and (Q,C) are orthogonal. The same is valid for the
case B(x, y) = α(y), C(x, y) = β(x) and α, β ∈ End(Q,A).

Conversely, if α, β ∈ Aut(Q, A) and B(x, y) = α(x), C(x, y) =
β(y) for all x, y ∈ Q, then the groupoids (Q,B) and (Q,C) are or-
thogonal and (Q,B), (Q,C) ∈ M(Q,A), by Proposition 1.

In the case B(x, y) = α(y), C(x, y) = β(x) for all x, y ∈ Q, the
proof is similar.
Corollary 1. Let (Q,A) be a nonabelian simple group. Then θ is an
automorphism of (Q2, A) i� there exist α, β ∈ Aut(Q,A) such that
θ(x, y) = (α(x), β(y)) for every x, y ∈ Q.
Example. Let (G, ·) be a groupoid, where G = {k, p, q, t, m, e, f, b, c, a},
and (·) is de�ned by the table

· k p q t m e f b c a
k k p q t m e f b c a
p p q t p p p p b c a
q q q t q q q q b c a
t t t t t t t t b c a
m m p q t m e f b c a
e e p q t e e f b c a
f f p q t f f f b c a
b b b b b b b b a a a
c c c c c c c c a a a
a a a a a a a a a a a

It is easy to check that (A, ·), (B, ·), (C, ·), (D, ·), where C =
{a, b, c}, A = {e, a, b, c}, B = {m, a, b, c} and D = {e,m, a, b, c}, are
commutative, associative subgroupoids of (G, ·) such that C = A∩B.
The element k is the unit of (G, ·) and (G, ·) is not associative, since
p(pq) = p 6= t = (pp)q.

Consider two mappings α, β : G −→ G de�ned by

α(x) =

{
e, for x 6∈ C
x, for x ∈ C,

β(x) =

{
m, for x 6∈ C
x, for x ∈ C.

It is easy to check that α, β ∈ End(G, ·) and α(x) = x for any x ∈ A,
β(x) = x for any x ∈ B and A · B = D. By the commutativity of
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(D, ·) and the de�nition of α and β we have β(x) · α(y) = α(y) · β(x)
for all x, y ∈ G. Now by the associativity of (D, ·) we have

(β(x) · α(y)) · (β(u) · α(v)) = ((β(x) · α(y) · α(v))β(u)

for all x, y, u, v ∈ G.
By Theorem 2, the groupoid (G, ∗), where x∗y = β(x)·α(y), forms

a medial pair with (G, ·).
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