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Free R-n-modules
L3crimioara lancu

Abstract

We define the canonical presentation of an R-n-module, in terms of its largest
n-submodule with zero and of an idempotent commutative n-group. We give a
construction for the free R-n-module with zero, as well as a canonical presentation
for the free R-n-module. We give the number of zero-idempotents of a finitely
generated free R-n-module. The last theorem states that, for n > 3, free R-n-
modules are isomorphic if and only if their free generating sets have the same

cardinality.

1. Notations and preliminary results

In [1], N. Celakoski has defined n-modules as a natural generalization
of the usual binary notion; however, for his further results he imposed
a strong restriction, namely that the commutative n-group involved
has a unique neutral element. In [4] we restart the study of n-modules
by dropping this restriction.

In this section we shall briefly recall some of the definitions and
results in [4] and we shall make some additional comments. We use
the following conventional notation: the sequence a;, ..., a; of j—i+1
terms of an n-ary sum is denoted by af andifa; = a1 = ... =a; =a

—i+1

then the sequence is denoted by v a ); if © > j, then af denotes an
empty sequence. Denote by a'® the k-th power of a, which is defined
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by:
n—1
' =a and o = [a<’“_1>,( a )]+, kel

In particular, a'=" = @, where @ denotes the querelement of a.
Throughout this paper R denotes an associative ring with unity

1 0.

Definition 1.1. We call left R-n-module a commutative n-group
(M,[]+) together with an external operation p: R x M — M which
satisfies the axioms:

Al) [2]4) = [pu(r @), ..., p(r, xn)Lr

A2) p((ri+--+rn),x )Z[M(T’1,Jf)7-~;ﬂ(rmx)]+

p(r,
A3) p(r-r',x) = u(r p(r',x))
Ad) u(l,x) =

for all z,x1,...,2, € M and all r,7",r,...,7, € R.

We describe a right R-n-module by replacing in the above definition
axiom A3) by A3") u(r-r',z) = p(r’, u(r,z)). As in the binary case,
the theory of right n-modules can be deduced from the theory of left
n-modules and conversely. For this reason, we shall deal in the sequel
with left n-modules, and by R-n-modules we shall always understand
left R-n-modules.

Since we are dealing with left n-modules, denote the element p(r, x)
by rx. As immediate consequences of the axioms, note:

(n—2) n—3
(ri+r)x = [riz,rox, 0x |4, (—r)x = [0x, Oz, (Tx),rf]Jr,

TT = IT, T=(-n+2)z = ((-1)+- - +(-1))z.

The empty n-group may be regarded as an R-n-module for any ring
R. If M is a non-empty R-n-module, then it necessarily has at least
one neutral element; indeed, for every x € M, the element Oz is a
neuter in (M, []+) (or an idempotent, since the two notions coincide
in commutative n-groups). Note that 0% = 0z, Vo € M, Yk € Z (in
particular 0z = 07T).

n-Submodules, congruences and homomorphisms are defined in the
obvious way. If S is a non-empty n-submodule of an R-n-module M,
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then the relation pg defined by zpsy < sy € S : y = [z,sh], is
a congruence on M. This correspondence is not a bijection, still it
allows us to define the factor module M/S = M/ps.

The set of all neuters of the n-group (M,[];) is denoted by Ny,
(or simply by N) and the set of all neuters of the form Oz, for some
r € M, is denoted by Noys (or sometimes just Np). Ny is an n-
submodule of V" and they are both n-submodules of M. The elements
of Ny are characterized by the following: e € Ny < re = e, Vr € R.
The elements of Ny will be called zero-idempotents; in particular, if
Ny consists of exactly one element, then this element is called a zero
of the n-module and it is denoted by 0.

If f: My — Ms is a homomorphism of R-n-modules, then:

1) f(N) CN; and f(Nor) € Nog;

2) [(@) = [(x), Vo € My;

3) the set Ker f = {x € My | f(x) € Ny2} is an n-submodule of M;
and Ny C Ker f.

2. The canonical presentation

2.1. We have introduced in [4] a class of n-submodules of an R-n-
module which will play an important role in the study of n-modules.
Let M be an R-n-module. For each e € N, the set

M,={zx e M |0z =ce}

is an n-submodule with zero (the element e) of M. The n-submodules
M, are all isomorphic and they form a partition of M. Note that
M/Ny ~ M,. In fact, the whole structure of an R-n-module is de-
termined by: the structure of an R-n-module with zero (M,.) and the
structure of an idempotent commutative n-group (Np).

Indeed, if we start from an R-n-module (B, [], ) with zero 0 and
an idempotent commutative n-group (A, [],), we can build an R-n-
module M (unique up to isomorphism) such that M, ~ B,Ve € Ny
and Ny ~ A, as follows:
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e the set M is defined as the disjoint union, indexed by A, of copies
of the set B: M = UBE5 denote by (z,e) the elements of B;

e€cA

e the external operation v: R x M — M is defined by
v(r,(2,¢)) = (u(r2).€)

e n-ary addition is defined by
[(:cl, e1)y - (xn, en)Lr = ([:cﬁ, [e?]o).

A straightforward computation shows that (M,[],,v) is an R-n-
module such that

Nom ={(0,¢e) |e€ A} ~¥ A and M, = {(z,e) |z € B} ~ B,

for each (0,e) € Noy. Moreover, given an R-n-module T' and per-
forming the above construction by using some 7, instead of B and
Nor instead of A one obtains an R-n-module M which is isomorphic
to T'. A very natural isomorphism to consider is

n—2
o: T — M, ¢(x)= ([x,(Ox),e]+,Oa:).

This shows that an R-n-module M is completely described by its
largest n-submodule(s) with zero M, and by Ngy. This way of de-
scribing an R-n-module will be called canonical presentation. We have
used disjoint union in order to construct an R-n-module with a given
canonical presentation, because this was the natural way to make the
connections with the M,’s and with Nj. Yet, for practical reasons, it
is simpler to consider the R-n-module being described as the Carte-
sian product B x A, together with the operations defined above. Note
that the map p;: B x A — B, pl((x,e)) = x is a homomorphism
of R-n-modules, and the map ps: B x A — A, pQ((.r,e)) =eis a
homomorphism of n-groups.

2.2. The canonical presentation of an R-n-module will prove its use-
fulness in the study of n-submodules and in the study of homomor-
phisms. Indeed, let M be an R-n-module with the canonical presen-
tation (B, [], ) and (A4,[]s), as above. Then any n-submodule of M
has a canonical presentation of the form (B’,[], u) and (A, [],), where
B’ is an n-submodule of B and A’ is an n-subgroup of A.
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Now let f: M; — My be a homomorphism of R-n-modules and
take an arbitrary zero-idempotent e € Ny;. Then ¢: Ny; — No,
o(r) = f(x) and Y: My — My, Y¥(x) = f(x) are both homomor-
phisms. Moreover, the converse also holds, namely: if ¢: A — As is
a homomorphism of n-groups and ¢ : By — B5 is a homomorphism of
R-n-modules, then the map f: M; — M defined by

f(@,e)) = (¥(z),¢(e))
is a homomorphism of R-n-modules (where M; and M, have the
canonical presentations By, A; and By, Ay respectively).
Injective and surjective homomorphisms can be also characterized
in terms of the data of the canonical presentation.

Proposition 2.3. Let f: My — My be a homomorphism of R-n-
modules. Then
1) f is injective iff Ker f = Ny1 and the restriction f|n,, 18
mjective;
2) f is surjective iff for each ¢ € Ny there exists e € Ny such
that Mse = f(M;,).

Proof. 1) Suppose f is injective and x € Ker f, i.e. f(z) € No2. Then
f(x) =0f(x) = f(0x), which implies © = 0x and hence x € Ny,.

Conversely, if Ker f = Ny and the restriction f|y;, is injective,
let f(x1) = f(x3). Then, for an arbitrary e € Ny, we have

(n=3) __
f([xla T ,$2,€]+) - f(e) S J\/027
n—3
ie. [xl,(xz ),x_Q, e]l+ € Ker f = Npyi. Since f|n,, is injective, it follows

(n=3) _
that [z, xo ,T3,e|+ = e, hence z1 = 5.

2) Suppose [ is surjective and € € Nyy. Then there exists 2 € M
such that ¢/ = f(x); but ¢ = 0’ = 0f(x) = f(0z) € f(No1). Denote
0z by e € No; and let y € My (this means Oy = €’). Now there exists

n—2
u € Noy and z € My, such that y = f(z). The element [z,( u ),e]+
n—2
belongs to M;. and f([z,( u ), e]+) = f(2) = y. Thus, we have proved
that for each ¢ € Npy there exists e € Ny such that My C f(My.);
the other inclusion is obvious. The converse follows immediately from
the fact that the n-submodules My, form a partition of M. O
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3. Free n-modules with zero

R-n-modules with zero can be regarded as universal algebras having
as domain of operations: an n-ary operation, a nullary operation and
a family of unary operations, indexed by R, all of which satisfy the
axioms Al)-A4). The class of R-n-modules with zero is a variety
— it is closed under taking homomorphic images, subalgebras and
direct products. This ensures the existence of free R-n-modules with
zero. In this section we will provide a construction, very similar to
the binary case, of the free R-n-module with zero having an arbitrary
free generating set X.

Let A be an R-n-module with zero. The elements aq,...,a, € A,
where k = t(modn—1), are called linearly independent if

[rai, ..., reag, (n()t)h =0 implies r=...=r,=0

and linearly dependent otherwise. A subset X of A is linearly indepen-
dent if any finite subset of X is linearly independent. X is a basis of A
if X is not empty, if X generates A, and if X is linearly independent.
It is easy to prove that if X is a basis of A, then in particular A # {0}
it R # {0} and every element of A has a unique expression as a linear
combination of elements of X.

Proposition 3.1. An R-n-module A with zero, which has a basis X,
15 free on X in the variety of R-n-modules with zero.

Proof. Let T be an R-n-module with zero and a mapping a: X — T
Every element a € A has a unique expression of the form:
(n—t)
a=[rioy,...,reE, 04 ]y

where k = t(modn—1) and ry,...,r. € R, xq,..., 7 € X.
(n—t)
Define a: A — T by a(a) = [ra(z),...,mka(xg), Or |1; asimple

computation shows that « is a homomorphism of R-n-modules and
aoi = a. Moreover, & is the unique homomorphism with this prop-
erty. |

Corollary 3.2. Two R-n-modules with zero, having bases whose car-
dinalities are equal, are isomorphic.

For this reason, we denote the R-n-module with zero free on X by
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Fo(X).
Let X # () be an arbitrary set and a mapping f: X — R. As
usual, define

supp [ = {z € X | f(z) # 0}
and
R = {f € R* | [supp f| < co}.

We define a natural structure of R-n-module with zero on R as
follows:

1o fali () = fo@) + -+ ful), (rf)(2) =7 f(2).

The zero element is the function o: X — R, o(z) =0, Vz € X.

Proposition 3.3. If R # {0} is a ring and X # 0 is an arbitrary set,
then R has a basis of the same cardinality as X.

Proof. A basis of R™) is the set B = {f, | v € X}, where f,: X — R

is defined by f.(y) = { (1)’ z ; i )

One can easily check that B is linearly independent; furthermore,
if f € RX) with supp f = {z1,..., 2}, where k = t(modn—1), then

f =) Forr s fan) - fon "0 T O

Like in the binary case (see [5]), one can easily prove that if
Fo(X) ~ Fy(Y) and X is infinite, then Y is infinite too and | X| = |Y].

4. Free n-modules

The class of all R-n-modules is again a variety, so free R-n-modules
exist. We will give in this final section a canonical presentation for the
free R-n-module on an arbitrary set as well as a theorem concerning
the number of zero-idempotents of a free R-n-module with a finite free
generating set.

Note that, similar to the case of R-n-modules with zero, two free
R-n-modules having free generating sets whose cardinalities are equal,
are isomorphic.
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Theorem 4.1. Let X # () be an arbitrary set and F be the R-n-mo-
dule having the following canonical presentation:

(a) Fo(X) as largest n-submodule with zero;

(b) the abelian n-group G with the presentation

(X () =2, Vo e X)
as idempotent commutative n-group.
Then the R-n-module F' 1s free and X 1is its free generating set.

Proof. First, let us make some necessary remarks.
1) The n-group G described in (b) is the free idempotent abelian n-
group with the free generating set X (it is easy to see that the class
of idempotent abelian n-groups is a variety; as for the construction of
free abelian n-groups, see the paper of F. M. Sioson [6]).
2) By 2.1, the elements of F' have the form (y,g), where y € Fy(X)
and g € G. We shall identify each x € X with the pair (z,z) € F; in
other words, we define an "inclusion" a: X — F, by a(z) = (z,x).
Let M be an arbitrary R-n-module having the canonical presenta-
tion B, A, where B is an R-n-module with zero and A is an idempotent
abelian n-group, as in 2.1. This means that we will describe the el-
ements of M as pairs (b,a) € B x A. Let now f: X — M be an
arbitrary map. We will use f for defining two other maps u and v as:

u: X' = B, u(x) = p:(f(x)) (1)
vi X = A, w(x) =pa(f(2)) (2)

Since Fyp(X) is the free R-n-module with zero on X and B is an R-n-
module with zero, it follows that there exists a unique homomorphism
u: Fo(X) — B such that u(x) = u(x), Vx € X. By using a similar
argument, it follows that there exists a unique homomorphism of n-
groups 0: G — A such that v(z) = v(z), YV € X. We are now able

to define the homomorphism f which makes the following diagram
commutative:
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namely, for all (y,¢) € F, put f ((y,9)) = (@(y),7(g)). We have seen
in 2.2 that a map defined in the above way is a homomorphism of
R-n-modules. Further, for all x € X we have

(foa)(z) = f((z,2)) = (0 (f(2)),p(f(2))) = f(2)

which shows that fo « = f. The uniqueness of ffollows from the
uniqueness of © and v and from 2.2. |

Corollary 4.2. Let X, Y be two non-empty sets. If FI(X) ~ F(Y)
and X is infinite, then Y is infinite too and | X| =Y.

Proof. 1t follows immediately from the preceding theorem and from
the similar result for free R-n-modules with zero. U

Lemma 4.3. Let n be an integer, n > 3, X a set with | X| =k, k> 1
and F(X) the R-n-module free on X. Then Norx) has (n—1)""1
elements.

Proof. Indeed, N, is equal to

(t1)  (t2) (k)

[0z1,0xg,...,0z]4+ |0 <t <n—2, t; + -+t = 1(modn—1)}
or, equivalently, Ny ~ G, where G is the idempotent abelian n-group
described in Theorem 4.1. Every element of Ny can be described by
a uniquely determined function f: {1,...,k—1} — {0,1,...,n—2} as
follows:

(f(1) (f(k=1)) (n—r)
e=1[0x1,..., Oxk_q, Oxg |4
where f(1) 4+ --- + f(k—1) = t(n—1) +r, 2 < r < n. This corre-
spondence between elements of Ay and such functions is obviously a
bijection and so [Ng| = (n—1)F1. 0

Corollary 4.4. Let n be an integer, n = 3 and X, Y two non-
empty sets. If F(X) ~ F(Y) and X is finite, then Yis finite too
and | X| =Y.

Proof. 1t follows from 2.2, Theorem 4.1 and the preceding lemma. U

The following theorem is a direct consequence of the preceding results
in this section.

Theorem 4.5. Let n be an integer, n = 3, and let X, Y be two non-
empty sets. Then F(X) ~ F(Y) iff | X| =1|Y].



22

L. Tancu

Acknowledgements. This paper was written while the author was
a visitor at Université Paris VII, in 1999. Thanks go to the members
of the "Equipe des Groupes Finis" for their hospitality and support.
The stay was supported by a scholarship from the Noesis Foundation,
which is gratefully acknowledged.

References

[1] N. Celakoski, On n-modules, Godisen Zb. Elektro-Mas. Fak.
Univ. Skopje 3 (1969), 15 — 26.

[2]| P. M. Cohn, Universal algebra, Second edition, Mathematics
and its Applications 6, D. Reidel Publishing Co., Dordrecht —
Boston, Mass. , 1981.

[3] W. Dornte, Untersuchungen idber einen verallgemeinerten
Gruppenbegriff, Math. Z. 29 (1928), 1 — 19.

[4] L. Iancu, Redefining n-modules, Bul. St. Univ. Baia Mare, Ser.
B, Mat.-Inf. 14 (1998)

[5] I. Purdea, Tratat de algebra modernda, Vol.Il, (Romanian) ( Trea-
tise on modern algebra. Vol.II) Ed. Academiei RSR, Bucharest,
1982.

|6] F. M. Sioson, Free Abelian m-Groups, I, II, III, Proc. Japan

Acad. 43 (1967), 876 — 888.

Received January 27, 1999

current address:

North University of Baia Mare Institut Girard Desargues
Victoriei 7 Bat. 101, Université Lyon 1
RO-4800 Baia Mare 43 Bd du 11 Novembre 1918
Romania, F-69622 Villeurbanne Cedex
e-mail: liancu@ubm.ro France

e-mail: iancu@desargues.univ-lyonl.fr



