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On n-modules with chain conditions

L crimioara Iancu

Abstract

We show that the maximal n-submodules of an n-module are determined by the
maximal n-subgroups of the n-group of its zero-idempotents and by the maxi-
mal n-submodules of its maximal n-submodule with zero. We state some results
concerning R-n-modules with chain conditions analogous to the Jordan�Hölder
Theorem, to Fitting's Lemma, to Krull�Remack�Schmidt Theorem.

1. Introduction
R-n-modules are de�ned as a natural generalization of the usual bi-
nary notion. In [5] and [6] we restart the study of n-modules by
dropping the restriction imposed by N. Celakoski in [1], namely that
the commutative n-group involved has a unique neutral element. In
this paper we continue our investigation on R-n-modules by studying
the maximal n-submodules of an n-module in terms of its canonical
presentation and by retrieving some of the results on modules with
chain conditions for the n-ary case.

In the sequel, we use the same conventional notations as in [5] and
[6]: the sequence ai, . . . , aj of j−i+1 terms of an n-ary sum is denoted
by aj

i and if ai = ai+1 = . . . = aj = a then the sequence is denoted by
(j−i+1)

a ; if i > j, then aj
i denotes an empty sequence. Denote by a〈k〉

the k-th power of a, which is de�ned by:

a〈0〉 = a and a〈k〉 = [a〈k−1〉,
(n−1)

a ]+, k ∈ Z
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In particular, a〈−1〉 = a, where a denotes the querelement of a.
The purpose of this introductory section is to recall some of the

de�nitions and results in [5] and [6], which will be used in the sections
to follow.

Throughout this paper R denotes an associative ring with unity
1 6= 0. For reasons similar to the ones employed in the binary case, we
deal only with left n-modules and so by R-n-module we will always
understand left R-n-module.
De�nition 1.1. We call left R-n-module a commutative n-group
(M, [ ]+) together with an external operation µ : R ×M → M which
satis�es the axioms:
A1) µ(r, [xn

1 ]+) =
[
µ(r, x1), . . . , µ(r, xn)

]
+
,

A2) µ
(
(r1 + · · ·+ rn), x

)
=

[
µ(r1, x), . . . , µ(rn, x)

]
+
,

A3) µ(r · r′, x) = µ
(
r, µ(r′, x)

)
,

A4) µ(1, x) = x

for all x, x1, . . . , xn ∈ M and all r, r′, r1, . . . , rn ∈ R.

Denote the element µ(r, x) by rx and as immediate consequences
of the axioms, note:

(r1+r2)x = [r1x, r2x,
(n−2)

0x ]+ , (−r)x = [0x, 0x,
(n−3)
rx , rx]+ ,

rx = rx , x = (−n+2)x =
(
(−1)+ · · ·+(−1)

)
x.

The empty n-group may be regarded as an R-n-module for any
ring R. If M is a non-empty R-n-module, then it necessarily has at
least one neutral element; indeed, for every x ∈ M , the element 0x is
a neuter in (M, [ ]+) (or an idempotent, since the two notions coincide
in commutative n-groups). Note that 0x〈k〉 = 0x, ∀x ∈ M, ∀k ∈ Z (in
particular 0x = 0x ).

n-Submodules, congruences and homomorphisms are de�ned in the
obvious way. If S is a non-empty n-submodule of an R-n-module M ,
then the relation ρS de�ned by xρSy ⇔ ∃sn

2 ∈ S : y = [x, sn
2 ]+ is

a congruence on M . This correspondence is not a bijection, still it
allows us to de�ne the factor module M/S = M/ρS.

The set of all neuters of the n-group (M, [ ]+) is denoted by NM (or
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simply byN ) and the set of all neuters of the form 0x, for some x ∈ M ,
is denoted by N0M (or sometimes just N0). N0 is a n-submodule of N
and they are both n-submodules of M . The elements of N0 are called
zero-idempotents and they are characterized by:

e ∈ N0 ⇐⇒ re = e, ∀r ∈ R,
which shows that the n-submodules of N0 coincide with the n-sub-
groups of N0. If N0 consists of exactly one element, then this element
is called a zero of the n-module and it is denoted by 0.

If f : M1 → M2 is a homomorphism of R-n-modules, then:
1) f(N1) ⊆ N2 and f(N01) ⊆ N02,
2) f(x) = f(x), ∀x ∈ M1,
3) the set Ker f = {x ∈ M1 | f(x) ∈ N02} is an n-submodule of M1

and N01 ⊆ Ker f .
The set HomR(M1, M2) is a commutative n-group with respect to the
operation:

[f1, . . . , fn]+(x) =
[
f1(x), . . . , fn(x)

]
+

.

Any homomorphism α with α(M1) ⊆ N02 is called nullary homomor-
phism and it is a neutral element of this n-group. For each e ∈ N02,
denote by θe the homomorphism given by θe(x) = e, ∀x ∈ M1. The
set EndR M is an (n, 2)-ring with respect to the above addition and to
the usual multiplication of maps. An endomorphism f of M is called
nilpotent if there exists an integer k ≥ 1 such that fk is a nullary
endomorphism.

We have introduced in [5] a class of n-submodules and a class of
automorphisms of an R-n-module which play an important role in the
study of n-modules. Let M be an R-n-module. For each e ∈ N0, the
set Me = {x ∈ M | 0x = e} is an n-submodule with zero (the element
e) of M . The n-submodules Me are all isomorphic and they form a
partition of M . The maps ϕe,f : M → M, ϕe,f (x) = [x,

(n−2)
e , f ]+ are

all automorphisms, for each pair of zero-idempotents e, f ∈ N0, and
ϕe,f (Me) = Mf . Note that M/N0 ' Me. In fact, the whole structure
of an R-n-module is determined by: the structure of an R-n-module
with zero (Me) and the structure of an idempotent commutative n-
group (N0). This is called the canonical presentation of the R-n-
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module M (see [6]).
Injective and surjective homomorphisms are characterized in [6] in

terms of the data of the canonical presentation.
Proposition 1.2. Let f : M1 → M2 be a homomorphism of R-n-
modules. Then f is

(1) injective i� Ker f = N01 and the restriction f |N01 is injective,
(2) surjective i� for each e′ ∈ N02 there exists e ∈ N01 such that

M2e′ = f(M1e).

2. Maximal submodules of an n-module
We study in this section the maximal submodules of an R-n-module,
in terms of the canonical presentation of the R-n-module considered.
Theorem 2.1. Let M be an R-n-module. Then:

(1) If N is a maximal n-subgroup of N0, then there exists a unique
maximal n-submodule S of M such that N0S = N .

(2) If S is a maximal n-submodule of M , which does not contain
N0, then N0S is a maximal n-subgroup of N0.

Proof. (1) It is easy to check that the set S =
⋃
e∈N

Me is an n-submodule

of M , with N0S = N .
Take now an n-submodule T of M with S ⊂ T ⊆ M and let

x ∈ T \ S. Then e = 0x ∈ T and e 6∈ S (since e ∈ S implies x ∈ S).
This shows that N0T ⊃ N0S = N , hence N0T = N0.

For any y ∈ M one of the following holds: (a) f = 0y ∈ N (and
so y ∈ S ⊂ T ) or (b) f ∈ N0 \N (and so y 6∈ S). We show that even
in the latter case, we still have y ∈ T . Indeed, ∀s ∈ S ∃! t ∈ N0S ⊂ S

such that: y = [f,
(n−2)

s , t]+. Since f ∈ T , s, t ∈ S ⊂ T it follows that
y ∈ T . Hence T = M and so S is maximal.

Let V be a maximal n-submodule of M , with N0V = N = N0S.
Then V ⊆ S (indeed, if x ∈ V then 0x ∈ N0V = N0S = N , so x ∈ S)
which, together with maximality of V , implies V = S.

(2) Let S be a maximal n-submodule of M with N0 \ S 6= ∅, i.e.
N0S ⊂ N0. Consider an n-submodule A of N0 such that N0S ⊂ A ⊆
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N0 and let e ∈ A \ N0S. Then 〈S ∪ {e}〉 = M and ∀a ∈ N0 ∃ k ∈ N
and sn

k+1 ∈ S such that a = [
(k)
e , sn

k+1]+. By multiplying with zero, we
obtain: a = 0a = [

(k)
e , en

k+1]+, with ei = 0si, i = 1, . . . , n and e ∈ M ,
ei ∈ N0S ⊂ A, i = k + 1, . . . , n. Now, since A is an n-submodule, we
deduce that a ∈ A and so A = N0.

The above theorem shows that there exists a bijective correspon-
dence between the set of maximal n-submodules of N0 and the set
of maximal n-submodules of M which do not contain N0. A natural
question arises: what can one say about the maximal n-submodules
of M which do contain N0 ?
Theorem 2.2. Let M be an R-n-module with the canonical presen-
tation: B ' Me, A ' N0. Then:

(1) If B has a maximal n-submodule, then M has a maximal n-
submodule which contains N0.

(2) If M has a maximal n-submodule which contains N0, then B
has a maximal n-submodule.

Proof. (1) Let V be a maximal n-submodule of B and take an arbitrary
zero-idempotent e ∈ N0. Since B ' Me, it follows that Me has a
maximal n-submodule Se which is isomorphic to V . Then for every
f ∈ N0, the set Sf = ϕe,f (Se) is a maximal n-submodule of Mf . De�ne
the subset S of M by: S =

⋃

f∈N0

Sf . We will show that S is a maximal

n-submodule of M which contains N0. Clearly N0 ⊆ S (since f ∈ Sf ,
∀f ∈ N0); equality holds when V = {0}.

Let x ∈ S; then ∃f ∈ N0 such that x ∈ Sf . Since Sf is an
n-submodule it follows that rx ∈ Sf , ∀r ∈ R and so rx ∈ S, ∀r ∈ R.

Let x1, . . . , xn ∈ S; then ∃fi ∈ N0 such that xi ∈ Sfi
and, conse-

quently, ∃yi ∈ Se such that xi = [yi,
(n−2)

e , fi]+. Now we have

[xn
1 ]+ = [y1,

(n−2)
e , f1, . . . , yn,

(n−2)
e , fn]+

= [[yn
1 ]+,

(n−2)
e , [fn

1 ]+]+ ∈ ϕe,[fn
1 ]+(Se) = S[fn

1 ]+ ⊆ S

and so S is an n-submodule of A.
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Let T be an n-submodule of M , S ⊂ T ⊆ M and take x ∈ T \ S.
De�ne u = 0x and we have x ∈ Mu \ Su. Then x̃ = ϕu,e(x) ∈ Me \ Se

(if x̃ ∈ Se then ϕe,u(x̃) = (ϕe,u ◦ ϕu,e)(x) = x ∈ Su, contradiction)
and x̃f = ϕe,f (x̃) ∈ Mf \ Sf , ∀f ∈ N0 (if x̃f ∈ Sf then ∃z ∈ Se such
that x̃f = ϕe,f (z), or ϕe,f (x̃) = ϕe,f (z) which implies x̃ = z ∈ Se,
contradiction). Hence T contains at least one such element x̃f for
each set Mf \ Sf , f ∈ N0 and so Mf = 〈Sf ∪ {x̃f}〉, ∀f ∈ N0. Now
∀y ∈ M ∃f ∈ N0 such that y ∈ Mf ; then there exists k ∈ N and

sk+1, . . . , sn ∈ Sf such that: y = [
(k)

x̃f , s
n
k+1]+. Since x̃f ∈ T and

sk+1, . . . , sn ∈ Sf ⊆ S ⊂ T , it follows that y ∈ T and this shows that
T = M .

(2) Let S ⊂ M be a maximal n-submodule of M which containsN0.
For each e ∈ N0 de�ne the subset Se of S by: Se = {x ∈ S | 0x = e}.
Clearly, Se = S ∩Me and so Se is an n-submodule of Me (and of S).
Moreover, S =

⋃
e∈N0

Se.

We show that, for any e ∈ N0, the n-submodule Se is maximal
in Me. For this, let T be an n-submodul of Me, Se ⊂ T ⊆ Me and
take x ∈ T \ Se. Then x 6∈ S and so 〈S ∪ {x}〉 = M . It follows that
∀y ∈ Me ∃k ∈ N and sk+1, . . . , sn ∈ S such that

y = [
(k)
x , sn

k+1]+ = [
(k)
x ,

(n−k−1)
e , [

(k)
e , sn

k+1]+]+.

By multiplying with 0 we obtain that the element [
(k)
e , sn

k+1]+ ∈ S be-
longs to Me, which means that [

(k)
e , sn

k+1]+ ∈ Se. Since x ∈ T and
e, [

(k)
e , sn

k+1]+ ∈ Se ⊂ T , then y ∈ T . Hence T = Me.

The above theorem shows that an n-module M has maximal n-sub-
modules which contain N0 if and only if the n-submodules Me have
maximal n-submodules.
De�nition 2.3. An R-n-module M is simple if its only congruences
are the equality and the universal relation.
Remark 2.4. 1) M is simple i� its only non�void n-submodules are:
{e}, with e ∈ N0 and M itself.
2) M is simple i� it has one of this canonical presentations:
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(a) a simple R-n-module with zero and N0 = {0},
(b) the R-n-module with zero is B = {0} and N0 is a simple idempo-
tent commutative n-group.
Theorem 2.5. Let M be an R-n-module and S ⊂ M be a non-void
n-submodule. S is maximal i� M/S is simple.
Proof. Suppose M/S is simple and let T be an n-submodule of M ,
with S ⊆ T ⊆ M . Then T/S is an n-submodule of M/S and
so T/S either consists of exactly one coset (which is obviously S,
since T ⊇ S), or T/S = M/S. Now T/S = M/S implies that
∀x ∈ M, ∃t ∈ T, sn−1

1 ∈ S ⊆ T such that x = [t, sn−1
1 ]+, i.e. x ∈ T .

This shows that either T = S or T = M .
Suppose S is maximal and consider two cases: N0 ⊆ S or N0 \S 6=

∅. If N0 ⊆ S then M/S is an n-module with zero. Let now T be an
n-submodule of M/S. Then p−1(T ) is an n-submodule of M which
contains S, so we have either p−1(T ) = S or p−1(T ) = M . This shows
that T is either the zero n-submodule or T = M/S.

If N0 \ S 6= ∅, then M/S does not have a zero element; we prove
�rst that each coset x̂ ∈ M/S contains at least one idempotent e ∈ N0

or, equivalently, that each coset is an n-submodule of M . Take now
a coset ŷ ∈ M/S, ŷ 6= S and a zero-idempotent e ∈ N0 \ S. Then
S ⊂ 〈S ∪ {e}〉 and so 〈S ∪ {e} = M , hence y can be expressed as
y = [

(k)
e , sn

k+1]+, with k ≥ 1, sn
k+1 ∈ S, and further

y =
[
[
(k)
e ,

(n−k)

f ]+,
(k−1)

f , sn
k+1

]
+

= [e′,
(k−1)

f , sn
k+1]+,

for any f ∈ N0 ∩ S. This shows that e′ ∈ ŷ.
Thus we have proved that each coset x̂ ∈ M/S is an n-submodule

of M . If ê ∈ M/S and f ∈ N0 ∩ S, then ϕf,e(S) is a maximal n-
submodule of M , which is contained in ê, hence ϕf,e(S) = ê. Take
now an n-submodule T of M/S. If T consists of more than one el-
ement, say ê, f̂ ∈ T , then we have ê ⊂ p−1(T ) ⊆ M . This implies,
since ê � as n-submodule of M � is maximal, that p−1(T ) = M , and
so T = M/S.
Proposition 2.6. If M is a simple R-n-module, then every endomor-
phism of M is either of type θe or an automorphism.
Proof. If M is simple, then by Remark 2.4 it follows that either M
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has a zero element and exactly two n-submodules: {0} and M , or
M = N0M and its submodules are: {x}, ∀x ∈ M and M . In the �rst
case, if f ∈ EndR(M) then either Ker f = {0} or Ker f = M , i.e. f
is either injective or the zero endomorphism. If f is injective, then
Imf = M .

In the second case, either Imf = M or Imf = {e}, e ∈ M , i.e.
either f is surjective or f = θe. If f is surjective, let e ∈ M . Then
f−1(e) is a non�void n-submodule of M , so it is either a one�element
set or the whole of M . Since f is surjective, it follows that ∀e ∈ M ,
the set f−1(e) consists of one element only.

3. Artinian and Noetherian n-modules
De�nition 3.1. An R-n-module M is called Artinian if the set of its
n-submodules satis�es the DCC (Descending Chain Condition), and
it is called Noetherian if the set of its n-submodules satis�es the ACC
(Ascending Chain Condition).

Note that every n-submodule of an Artinian (Noetherian) n-modu-
le is Artinian (Noetherian) too.

As in the binary case, the following characterization of a Noethe-
rian n-module holds:
Proposition 3.2. An R-n-module is Noetherian i� any n-submodule
of M is �nitely generated.
Proof. Similar to the one for the binary case (see [8]). If M is Noethe-
rian and S is an n-submodule of M , it follows that the set of all
�nitely generated n-submodules of S contains a maximal element A.
Since A is �nitely generated, it follows that ∀x ∈ S, the n-submodule
[(n−1)

A , Rx
]
+
of S is �nitely generated which, together with the maxi-

mality of A, implies
[(n−1)

A ,Rx
]
+

= A, and so x ∈ A. This proves that
S = A. For the converse, see the proof for the binary case.

Proposition 3.3. If A
f→ B

g→ C → 0, is an exact sequence of
R-n-modules and the homomorphism f is injective, then:

1) B is Artinian i� A and C are Artinian,
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2) B is Noetherian i� A and C are Noetherian.
Proof. 1) Suppose B is Artinian. Since f is injective, it follows that A
is isomorphic to the n-submodule f(A) of B, and hence it is Artinian.
Let C1 ⊇ C2 ⊇ C3 ⊇ . . . be a descending chain of n-submodules of
C. Then g−1(C1) ⊇ g−1(C2) ⊇ g−1(C3) ⊇ . . . is a descending chain of
n-submodules of B (with g−1(Ck) 6= ∅, if Ck 6= ∅). Since B is Artinian,
it follows that there exists k > 0 such that g−1(Cm) = g−1(Ck), for
m > k. But this implies � since g is surjective � that Cm = Ck, for
m > k.

Conversely, assume A and C are Artinian and let

B1 ⊇ B2 ⊇ B3 ⊇ . . . (dc)

be a descending chain of n-submodules of B. By intersecting the
terms of the chain (dc) with f(A), we obtain a descending chain of
n-submodules of f(A):

B1 ∩ f(A) ⊇ B2 ∩ f(A) ⊇ B3 ∩ f(A) ⊇ . . . .

Since f(A) is Artinian, it follows that there exists k > 0 such that
Bm∩ f(A) = Bk ∩ f(A), for m > k. By applying g to the terms of the
chain (dc) we obtain the descending chain of n-submodules of C:

g(B1) ⊇ g(B2) ⊇ g(B3) ⊇ . . . ,

so there exists l > 0 such that g(Bm) = g(Bl), for m > l. De�ne
t = max{k, l}; we show that Bm = Bt, for m > t. Note that if
g(Bl) = ∅, then Bl = ∅, hence Bm = Bl = ∅, for m > l; similarly, if
Bk ∩ f(A) = ∅, then Bk ∩ N0B = ∅ (because f(A) = Ker g ⊇ N0B),
hence Bk = ∅, i.e. Bm = Bk = ∅, for m > k. We may therefore assume
that Bk∩f(A) 6= ∅ and g(Bl) 6= ∅. Let b ∈ Bt ; g(Bt) = g(Bm) implies
that ∃b′ ∈ Bm such that g(b) = g(b′). For e ∈ Bm ∩ N0B (such an
element exists, since Bm 6= ∅) we have:

[
g(b),

(n−3)

g(b′), g(b′), g(e)
]
+

= g(e) ∈ N0C

and hence [b,
(n−3)

b′ , b′, e]+ ∈ Ker g. Since m > t, we have Bm ⊆ Bt and

[b,
(n−3)

b′ , b′, e]+ ∈ Bt ∩Ker g = Bt ∩ f(A) = Bm ∩ f(A).
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Now [b,
(n−3)

b′ , b′, e]+ ∈ Bm, b′, e ∈ Bm implies b ∈ Bm. This shows that
Bt ⊆ Bm.

2) The fact that if B is Noetherian then A and C are Noetherian
is proved by a similar argument as above.

For the converse, we make the same constructions and use the
same notations (of course by using an ascendant chain this time). We
will show that Bm = Bt, for m > t. Let b ∈ Bm; g(Bt) = g(Bm)
implies that ∃b′ ∈ Bt such that g(b) = g(b′). For e ∈ Bt ∩ N0B we

have
[
g(b),

(n−3)

g(b′), g(b′), g(e)
]
+

= g(e) ∈ N0C and hence [b,
(n−3)

b′ , b′, e]+ ∈
Ker g. Since m > t, we have Bt ⊆ Bm and

[b,
(n−3)

b′ , b′, e]+ ∈ Bm ∩Ker g = Bm ∩ f(A) = Bt ∩ f(A).

Now [b,
(n−3)

b′ , b′, e]+, b′, e ∈ Bt implies b ∈ Bt and this shows that
Bm ⊆ Bt.
Corollary 3.4.
1) If S is an n-submodule of the R-n-module A, then A is Artinian

(Noetherian) i� S and A/S are Artinian (Noetherian).
2) Let A1, . . . , Am be R-n-modules with zero. The R-n-module

A1 × · · · × Am is Artinian (Noetherian) i� A1, . . . , Am are all
Artinian (Noetherian).

Proof. 1) The sequence S
i→ A

p→ A/S → 0 , where i is the inclusion
and p is the natural homomorphism, satis�es the hypotheses of the
preceding proposition.

2) The sequence A1 × · · · × An−1
f→ A1 × · · · × An

pn→ An → 0 is
exact and the homomorphism f de�ned by

f
(
(a1, . . . , an−1)

)
= (a1, . . . , an−1, 0)

is injective.
Lemma 3.5. Let B1, B, C1, C be n-submodules of the R-n-module M ,
with B1 ⊆ B ⊆ M, C1 ⊆ C ⊆ M, B1 ∩ C1 6= ∅. Then
〈B1 ∪ (B ∩ C)〉/〈B1 ∪ (B ∩ C1)〉 ' 〈C1 ∪ (B ∩ C)〉/〈C1 ∪ (B1 ∩ C)〉.
Proof. Identical to the one for the binary case (see [4]); we can apply
the isomorphism theorems because B1 ∩ C1 6= ∅.
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Lemma 3.6. (Schreier) Let M = S0 ⊇ S1 ⊇ . . . ⊇ Sr = e and
M = T0 ⊇ T1 ⊇ . . . ⊇ Ts = e be two chains of n-submodules of the
R-n-module M , where e ∈ N0. De�ne Sij = 〈Si ∪ (Si−1 ∩ Tj)〉 and
Tij = 〈Tj ∪ (Tj−1 ∩ Si)〉, for all 0 6 i 6 r, 0 6 j 6 s, and we obtain
isomorphic re�nements of the two chains:

Si−1 = Si0 ⊇ Si1 ⊇ . . . ⊇ Sis = Si, 0 6 i 6 r

Tj−1 = T0j ⊇ T1j ⊇ . . . ⊇ Trj = Tj, 0 6 j 6 s

Si,j−1

/
Sij ' Ti−1,j

/
Tij .

Proof. Identical to the one for the binary case (see [4]); the preceding
lemma is applicable because the zero-idempotent e belongs to each
term of the two chains.

The de�nition of a composition series of an R-n-module is naturally
transferred from R-modules, namely: a composition series of an R-n-
module M is a �nite, strictly decreasing series of n-submodules of M ,

M = S0 ⊃ S1 ⊃ . . . ⊃ Sm = {e}, e ∈ N0 (c)

which does not admit strictly decreasing re�nements. The series (c)
is a composition series of M i� each Si, i = {1, . . . , m} is a maximal
n-submodule of Si−1, i.e. i� the factor n-modules Si−1/Si are simple.
One can easily check the validity of the Jordan-Hölder Theorem, with
just one additional comment: if

M = S0 ⊃ S1 ⊃ . . . ⊃ Sm = {e} (c1)
M = T0 ⊃ T1 ⊃ . . . ⊃ Tr = {f} (c2)

are two composition series of M , then in order to use Schreier's Lemma
one needs that the series (c1) and (c2) have the same last term. For this
purpose, we apply to each term of the series (c2) the automorphism
ϕf,e and we obtain the series:

ϕf,e(M) = M ⊃ ϕf,e(T1) ⊃ . . . ⊃ ϕf,e(Tr) = {e} (c3)

which is still a composition series. Schreier's Lemma may now be
applied. So, if an R-n-module M has a composition series, then all
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its composition series have the same length, and this will be called the
length of M (and we say that M has �nite length). If M does not
have composition series, then we say it has in�nite length.

As in the binary case, the following hold:
1) If S is an n-submodule of M , then l(M) = l(S) + l(M/S).
2) If S1, S2 are n-submodules of M , then

l(S1) + l(S2) = l(
〈
S1 ∪ S2

〉
) + l(S1 ∩ S2).

3) If the sequence A
f→ B

g→ C → 0 is exact and the homomor-
phism f is injective, then l(B) = l(A) + l(C).

By using a similar argument to the one employed for usual R-
modules (see [8]), one proves the following
Theorem 3.7. An R-n-module M has composition series (i.e. M
has �nite length) i� M is Artinian and Noetherian.
Proposition 3.8. Let f : M → M be an endomorphism of the R-n-
module M .

1) If M is Artinian, then f is an automorphism i� f is injective.
2) If M is Noetherian, then f is an automorphism i� f is surjective.

Proof. 1) Assume f is injective; then M ⊇ f(M) ⊇ f 2(M) ⊇ . . .,
hence there exists m such that fm(M) = fm+1(M) = . . .. This implies
that ∀y ∈ M∃x ∈ M such that fm(y) = fm+1(x), so y = f(x).

2) Assume f is surjective; then N0 ⊆ f−1(N0) ⊆ f−2(N0) ⊆ . . .,
hence there exists m such that f−m(N0) = f−(m+1)(N0) = . . .. Now
take x ∈ Ker f , that is, f(x) ∈ N0. Since fm is surjective, ∃x′ ∈
M such that x = fm(x′), whence fm+1(x′) = f(x) ∈ N0, or x′ ∈
f−(m+1)(N0) = f−m(N0). So fm(x′) ∈ N0 and x ∈ N0. This proves
that Ker f = N0 and, since f is surjective, that f(N0) = N0. We may
then de�ne the surjective endomorphism

f1 : N0 → N0, f1(x) = f(x), ∀x ∈ N0.

Being Noetherian, M is �nitely generated, which in turn implies that
N0 is �nite (see [6], Theorem 3.3) and so f1 is injective too. This
shows (by 1.2) that f is also injective.
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Corollary 3.9. If f : M → M is an endomorphism of an R-n-module
of �nite length, then the following are equivalent:

1) f is an automorphism,
2) f is injective,
3) f is surjective.

De�nition 3.10. Let M be an R-n-module and let {Mi}i∈I be a
family of n-submodules of M . We say that M is the (internal) direct
sum of the family {Mi}i∈I if

(1) M = 〈
⋃
i∈I

Mi〉

(2) there exists an n-submodule N of N0 such that for every j ∈ I

we have Mj ∩ 〈
⋃

i6=j

Mi〉 = N .

In this case, we say that M is the N-direct sum of the family {Mi}i∈I ;
in particular, for N = ∅ or N = {e} we call it 0-direct sum or 1-direct
sum, respectively.
Remark 3.11. 1) Every n-submodule ∅ 6= N ⊆ N0 determines an
N -decomposition of M , namely: M =

⋃
e∈N

Me ⊕N0. In particular, for

each zero-idempotent e ∈ N0 we have a decomposition of M into a
1-direct sum:

M = Me ⊕N0 (D)
2) For each zero-idempotent e ∈ N0 we have a class of decompositions
of M into 0-direct sums:

M = Me ⊕
(⊕f 6=eTf

)
(D')

where each Tf is equal either to Mf or to {f}.
De�nition 3.12. An n-module B with zero is called decomposable if
B can be expressed as a direct sum B = B1 ⊕B2, with B1 6= {0} and
B2 6= {0}. Otherwise, B is called indecomposable.

An n-module M is called indecomposable if Me is indecomposable
and N0 is simple.
Remark 3.13. 1) Simple n-modules are indecomposable.
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2) An n-submodule N of N0 is indecomposable i� it is simple.
3) If the n-module M is indecomposable, then its only decompositions

in which M itself does not appear as a summand, are those of the
forms (D) and (D').

De�nition 3.14. A decomposition of an n-module into a direct sum
of n-submodules is called a canonical decomposition if
(1) it is obtained from (D) by further decomposition of the two sum-

mands,
(2) the direct sum employed is a 1-direct sum,
(3) it does not contain summands which are one-element sets or the

empty set.

In a canonical decomposition the summands are either n-modules
with zero or n-submodules (n-subgroups) of N0.
Theorem 3.15. (Fitting's lemma) If M is an R-n-module of �nite
length and f : M → M is an endomorphism, then there exists an
integer m > 1 such that M = fm(M)⊕Ker fm.
Proof. Similar to the one for the binary case (see [7] or [8]). Since
M is Artinian, it follows � as in the proof of the preceding theorem �
that there exists m > 1 such that fm(M) = fm+1(M) = . . ., whence
fm(M) = f 2·m(M). De�ne the map g : fm(M) → fm(M), g(x) =
fm(x) and note that g is a surjective endomorphism. Now fm(M) is
Noetherian, being an n-submodule of M , so g is an automorphism.
Therefore, we have

fm(M) ∩Ker fm = Ker g = N0fm(M) ⊆ N0.
In addition to that, for any x ∈ M there exists y ∈ M such that
fm(x) = g

(
fm(y)

)
and so

[
fm(x),

(n−3)

fm(fm(y)), fm(fm(y)), fm(e)
]
+

= fm(e),

∀e ∈ N0. It follows that the element u =
[
x,

(n−3)

fm(y), fm(y), e
]
+
belongs

to Ker fm and: x = [fm(y), u,
(n−2)

e ]+.
This shows that M =

〈
fm(M) ∪Ker fm

〉
.

Corollary 3.16. Assume that M is an indecomposable R-n-module
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of �nite length.
1) If f is an endomorphism of M , then:

a) f is an automorphism or
b) Ker f = N0, ∃e ∈ N0 : f(M) = Me and the map

g : Me → Me, g(x) = f(x) is an automorphism or
c) f is nilpotent in the (n, 2)-ring EndR M .

2) If M is with zero, then any endomorphism of M is either
nilpotent or an automorphism.

3) If M is with zero, and fi ∈ EndR M, i ∈ {1, 2, . . . , m},
m ≡ r(modn−1), while f = [f1, . . . , fm,

(n−r)

θ ]+ is an auto-
morphism, then there exists i0 ∈ {1, . . . ,m} such that fi0

is an automorphism.
Proof. 1) It follows from the preceding theorem that there exists m > 1
such that M = fm(M) ⊕ Ker fm. Since M is indecomposable, we
have either fm(M) = N0 or Ker fm = N0. In the �rst case, fm is
a nullary endomorphism and so f is nilpotent; in the second case we
have either fm(M) = M or fm(M) = Me, for a certain e ∈ N0. If
fm(M) = M , then f(M) = M , so f is a surjective homomorphism and
from Corollary 3.9 it follows that f is an automorphism. If fm(M) =
Me, then (as in the proof of the preceding theorem) Me = fm(M) =
fm+1(M) = f(Me) and therefore the endomorphism g : Me → Me is
surjective, so (by Corollary 3.9 ) it is an automorphism.

Now Ker fm = N0 implies that Ker f = N0, while the fact that N0

is simple implies that f(N0) is either a one-element set or the whole
of N0. If f(N0) = N0, then the map h : N0 → N0 is a surjective
endomorphism, so an automorphism. But this fact, together with
Ker f = N0, implies that f is injective, hence f is an automorphism,
which contradicts fm(M) = Me. Therefore there exists u ∈ N0 such
that f(N0) = {u}; now f(Me) = Me implies that u = e. Take now
y ∈ f(M) and x ∈ M cu y = f(x). If x ∈ Me, then y = f(x) ∈ Me; if
x ∈ Mv, v 6= e, then let x′ be the uniquely determined element of Me

such that x = [x′,
(n−2)

e , v]+. Now we have

y = f(x) = [f(x′),
(n−2)

f(e), f(v)]+ = [f(x′),
(n−1)

e ]+ = f(x′) ∈ Me

which proves that f(M) ⊆ Me.
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2) Direct consequence of 1).
3) The proof is by induction on m.

If m = 1, then f = [f1,
(n−1)

θ ]+ = f1, so f1 is an automorphism. Let
now m > 2 and assume that the statement is true for m−1. The
equation f = [f1, . . . , fm,

(n−r)

θ ]+ implies, by right multiplication with
f−1, the following:

idM = [g1, . . . , gm,
(n−r)

θ ]+ ,
where gi = fi ◦ f−1. If g1 is an automorphism, then f1 is an automor-
phism and i0 = 1; otherwise, it follows from 2) that g1 is nilpotent,
i.e. ∃k > 1 such that gk

1 = θ. It follows now

[idM ,
(n−3)
g1 , g1, θ]+ ◦ [idM , g1, . . . , g

k−1
1 ,

(n−t)

θ ]+

= idM = [idM , g1, . . . , g
k−1
1 ,

(n−t)

θ ]+ ◦ [idM ,
(n−3)
g1 , g1, θ]+

and so the map

[idm,
(n−3)
g1 , g1, θ]+ = [g2, . . . , gm,

(n−r+1)

θ ]+

is an automorphism for which we can apply the induction hypothesis.
This completes the proof.

Using arguments identical to those employed in the binary case
([7], [8]), one can prove the following
Theorem 3.17. If A is an R-n-module with zero, Artinian or Noethe-
rian, then M can be decomposed as a �nite direct sum of indecompos-
able n-submodules.
Also the Krull�Remack�Schmidt Theorem can be immediately trans-
ferred to the case of R-n-modules with zero: Let B 6= {0} be an
R-n-module with zero which is both Artinian and Noetherian. Then
B is a �nite direct sum of indecomposable n-submodules. Up to a
permutation, the indecomposable components in such a direct sum
are uniquely determined up to isomorphism.
Remark 3.18. Let us return now to the general case of R-n-modules
(not necessarily with zero): it follows that the problem of decom-
posing an R-n-module M of �nite length into a �nite direct sum of
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indecomposables can be reduced to the decomposition of N0M (since
M = Me ⊕ N0M and Me is an n-module with zero). Recall that if
M is Noetherian, then the idempotent abelian n-group N0M is �nite
and |N0M | divides (n−1)k−1, where k is the cardinal of the generat-
ing set. Also recall that, by Remark 3.13, an n-submodule of N0 is
indecomposable if and only if it is simple. Take e ∈ N0M and let
G = redeN0M be the binary reduce of N0M with respect to the ele-
ment e (i.e. x + y = [x,

(n−2)
e , y]+); G is a (bi)group of exponent n−1.

Note that x1+ · · ·+xn = [xn
1 ]+, which shows that N0M = extn G. Take

the decomposition (unique up to isomorphism) of G into a direct sum
of indecomposable subgroups of the form Zpr , with p prime:

G = G1 ⊕ · · · ⊕Gt (d1)

and immediately obtain the following decomposition for N0M :

N0M = extn G = extn G1 ⊕ · · · ⊕ extn Gt (d2)

We still did not solve the problem, since not all these summands are
simple: in fact, extn Gi is simple i� Gi is of the form Zp, p prime. So,
it remains to describe the possible decompositions of extn Zpr , r > 1,
where pr | n−1. Unfortunately, for this case one cannot prove the
uniqueness of decomposition, as the following example shows.
Example 3.19. Take n = 9 and A = ext9 Z8. The 9-group A has
four 9-subgroups of order 2, namely: A1 = {1, 5}, A2 = {2, 6}, A3 =
{3, 7}, A4 = {0, 4} and the following decompositions into direct sums:

A =A1 ⊕ A2 = A1 ⊕ A4 = A3 ⊕ A2 = A3 ⊕ A4

=Ai ⊕ Aj ⊕ Ak = A1 ⊕ A2 ⊕ A3 ⊕ A4

where i, j, k are distinct numbers in {1, 2, 3, 4}. Note that the four
9-subgroups of order 2 are mutually disjoint, which means that any
decomposition of A into direct sum of indecomposables is necessarily
a 0-direct sum; it is easy to check that in fact this statement is true
for any n-group of the form extn Zpr , with r > 1 and pr | n−1. Also
note that A1 ⊕ A3 = {1, 3, 5, 7} ' ext9 Z4, which shows that 0-direct
sums with respectively isomorphic summands can give non-isomorphic
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results.

Summarizing, if M is a Noetherian R-n-module, then one of the
following situations occurs:

• N0M is simple. This is precisely the case when its order is a
prime number p (with p | n−1);

• N0M is not simple and it has a unique (up to isomorphism)
decomposition into a �nite 1-direct sum of indecomposable n-
submodules. This is precisely the case when every binary reduce
has in its decomposition (d1) only summands of the form Zpi

,
with pi prime numbers.

• N0M is not simple and it can be decomposed into �nite 0-direct
sums of indecomposables only. This is precisely the case when
every binary reduce has at least one summand of the form Zpr ,
p prime and r > 1, in the decomposition (d1).

The above discussion leads us to a weaker version of the Krull�
Remack�Schmidt theorem for n-modules, in the special case when
n−1 = p1 . . . pk (the prime factorization of n−1 is multiplicity-free).
Theorem 3.20. Let n > 2 be an integer such that n−1 = p1 . . . pk

and let M be an R-n-module which is both Artinian and Noetherian.
Then M has a �nite canonical decomposition into indecomposable n-
modules. Up to a permutation, the indecomposable components are
uniquely determined up to isomorphism.

The above theorem allows us to reduce the problem of decomposing
an R-n-module into a direct sum of indecomposable n-submodules to
the problem of decomposing an R-n-module with zero and an abelian
n-group. Both these decompositions can be done by using the binary
reduces of the two structures and then their n-ary extensions. To be
more precise, if B is an R-n-module with zero, then its binary reduce
with respect to an element b ∈ B is the module B with the operations:

x + y = [x,
(n−3)

b , b, y]+, r • x = [rx,
(n−3)

rb , rb, b]+ ,
for our purpose (decomposition), it is useful to consider the binary
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reduce with respect to the zero element. The n-ary extension with
respect to an element a of an R-module A is the R-n-module A, with
the following operations:

[xn
1 ]+ = x1 + · · ·+ xn − (n−1)a , r ? x = rx− ra + a ,

and a is the zero element in the n-ary extension. Furthermore, one
can easily check that for any a, b ∈ B we have extn

b (reda M) ' M ; in
particular, extn

0 (red0 M) = M . Note that we can talk about unique
decomposition only if it is canonical, as the following example shows.
Example 3.21. Let (Z30, +, ·) be the ring of integers modulo 30. We
de�ne on the set M = Z30 a structure of Z-7-module by:

[x7
1]+ = x1 + · · ·+ x7 and k • x = (6k+25) · x .

Then we have

NM = N0M = {0, 5, 10, 15, 20, 25}, M0 = {0, 6, 12, 18, 24}

and the following canonical decomposition of M :

M = {0, 6, 12, 18, 24} ⊕ {0, 15} ⊕ {0, 10, 20}

which is unique up to isomorphism.
However, we can give two di�erent (non�canonical) decompositions

of M into 1-direct sums of indecomposable n-submodules, namely:

M ={0, 3, 6, 9, 12, 15, 18, 21, 24, 27} ⊕ {0, 10, 20}
={0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28} ⊕ {0, 15} .
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