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On n-modules with chain conditions

Lacrimioara lancu

Abstract

We show that the maximal n-submodules of an n-module are determined by the
maximal n-subgroups of the n-group of its zero-idempotents and by the maxi-
mal n-submodules of its maximal n-submodule with zero. We state some results
concerning R-n-modules with chain conditions analogous to the Jordan—-Hdolder
Theorem, to Fitting’s Lemma, to Krull-Remack—Schmidt Theorem.

1. Introduction

R-n-modules are defined as a natural generalization of the usual bi-
nary notion. In [5] and [6] we restart the study of nm-modules by
dropping the restriction imposed by N. Celakoski in [1|, namely that
the commutative n-group involved has a unique neutral element. In
this paper we continue our investigation on R-n-modules by studying
the maximal n-submodules of an n-module in terms of its canonical
presentation and by retrieving some of the results on modules with
chain conditions for the n-ary case.

In the sequel, we use the same conventional notations as in [5] and

[6]: the sequence ay, . .., a; of j—i+1 terms of an n-ary sum is denoted
by @] and if a; = a;41 = ... = a; = a then the sequence is denoted by
(j—i+1)

a ;if ¢ > j, then af denotes an empty sequence. Denote by at*)
the k-th power of a, which is defined by:

n—1
a‘ =a and ¥ = [a<k_1>,( a )]+, kelkZ
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In particular, a\=" = @, where @ denotes the querelement of a.

The purpose of this introductory section is to recall some of the
definitions and results in [5] and [6], which will be used in the sections
to follow.

Throughout this paper R denotes an associative ring with unity
1 # 0. For reasons similar to the ones employed in the binary case, we
deal only with left n-modules and so by R-n-module we will always
understand left R-n-module.

Definition 1.1. We call left R-n-module a commutative n-group
(M,[]+) together with an external operation p: R x M — M which
satisfies the axioms:

AL) p(r [2f]) = [ulr,z),. o p(r @)

A2) p((ri+-+r),2) = [p(r, o ,...,u(rn,x)]+,
A3) p(r-r',z) = p(r,n(r',z)),
Ad) p(l,z) ==z

for all z,x1,...,2, € M and all r,7",r,...,7, € R.

Denote the element p(r,z) by rx and as immediate consequences
of the axioms, note:
(n—2) (n—3)
(ri+re)z = [riz, oz, 0z |4, (—r)z = [0x,0x, T2, 7T,
TT =1T, T=(-n+2)z = ((-1)+---+(-1))z.

The empty n-group may be regarded as an R-n-module for any
ring R. If M is a non-empty R-n-module, then it necessarily has at
least one neutral element; indeed, for every z € M, the element Ox is
a neuter in (M, [];) (or an idempotent, since the two notions coincide
in commutative n-groups). Note that 0% = 0z, Vo € M, Yk € Z (in
particular 0z = 07 ).

n-Submodules, congruences and homomorphisms are defined in the
obvious way. If S is a non-empty n-submodule of an R-n-module M,
then the relation pg defined by zpsy < 3s§ € S : y = [z,s5]; is
a congruence on M. This correspondence is not a bijection, still it
allows us to define the factor module M/S = M/ps.

The set of all neuters of the n-group (M, []+) is denoted by Ny, (or
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simply by V) and the set of all neuters of the form 0z, for some 2 € M,
is denoted by Noas (or sometimes just ). Ny is a n-submodule of N
and they are both n-submodules of M. The elements of N are called
zero-idempotents and they are characterized by:

eeNy<=re=e, VreR,

which shows that the n-submodules of N coincide with the n-sub-
groups of Ny. If N consists of exactly one element, then this element
is called a zero of the n-module and it is denoted by 0.
If f: My — M5 is a homomorphism of R-n-modules, then:
1) f(N1) SNz and f(Nor) € Nog,
2) f(@) = f(z), Vo € My,
3) the set Ker f = {z € M, | f(x) € N2} is an n-submodule of M,
and Ny C Ker f.

The set Hompg (M, Ms) is a commutative n-group with respect to the
operation:

frs- - fal+ (@) = [fi(@), - ful@)] -

Any homomorphism a with a(M;) C Ny is called nullary homomor-
phism and it is a neutral element of this n-group. For each e € Nog,
denote by 6. the homomorphism given by 0.(x) = e, Vx € M;. The
set Endg M is an (n, 2)-ring with respect to the above addition and to
the usual multiplication of maps. An endomorphism f of M is called
nilpotent if there exists an integer k > 1 such that f* is a nullary
endomorphism.

We have introduced in [5] a class of n-submodules and a class of
automorphisms of an R-n-module which play an important role in the
study of n-modules. Let M be an R-n-module. For each ¢ € N, the
set M, = {x € M | Ox = e} is an n-submodule with zero (the element

e) of M. The n-submodules M, are all isomorphic and they form a
n—2
partition of M. The maps ¢, r: M — M, ¢, ((z) = [x,( e ),f]Jr are

all automorphisms, for each pair of zero-idempotents e, f € Ny, and
©e.r(M,) = M;. Note that M/Ny ~ M,. In fact, the whole structure
of an R-n-module is determined by: the structure of an R-n-module
with zero (M,) and the structure of an idempotent commutative n-
group (Np). This is called the canonical presentation of the R-n-
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module M (see [6]).
Injective and surjective homomorphisms are characterized in 6] in
terms of the data of the canonical presentation.

Proposition 1.2. Let f: My — Ms be a homomorphism of R-n-
modules. Then f 1is

(1) injective iff Ker f = No1 and the restriction f|n,, is injective,

(2) surjective iff for each ¢’ € Noy there exists e € Noi such that
MQe’ = f(Mle>-

2. Maximal submodules of an n-module

We study in this section the maximal submodules of an R-n-module,
in terms of the canonical presentation of the R-n-module considered.

Theorem 2.1. Let M be an R-n-module. Then:

(1) If N is a mazimal n-subgroup of No, then there exists a unique
mazimal n-submodule S of M such that Nog = N.

(2) If S is a mazimal n-submodule of M, which does not contain
Ny, then Nys is a mazimal n-subgroup of No.

Proof. (1) It is easy to check that the set S = U M, is an n-submodule
eeN

of M, with Nys = N.

Take now an n-submodule T of M with S € T C M and let
z€T\S. Then e =0z € T and e ¢ S (since e € S implies z € 5).
This shows that Myr D Nys = N, hence Nor = N,

For any y € M one of the following holds: (a) f = 0y € N (and
soyeScT)or (b) feN\N (and so y € S). We show that even
in the latter case, we still have y € T. Indeed, Vs € S3!'t € Nyg C S

such that: y = [f, (n§2),t]+. Since f € T, s,t € S C T it follows that
y € T. Hence T'= M and so S is maximal.

Let V be a maximal n-submodule of M, with Moy = N = Npgs.
Then V C S (indeed, if z € V then 0z € Noy = Nog = N, so z € S)
which, together with maximality of V', implies V = §S.

(2) Let S be a maximal n-submodule of M with Ny \ S # 0, i.e.
Nos € Np. Consider an n-submodule A of Ny such that Nyg C A C
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No and let e € A\ Nys. Then (SU{e}) = M and Va € NyIk € N

k
and si,; € S such that a = [(e), Sii1)+- By multiplying with zero, we

k
obtain: a = 0a = [(e),eZH]Jr, with e;, = 0s;, i =1,...,nand e € M,
e; € Nos C A, i =k+1,...,n. Now, since A is an n-submodule, we
deduce that a € A and so A = N, O

The above theorem shows that there exists a bijective correspon-
dence between the set of maximal n-submodules of Ay and the set
of maximal n-submodules of M which do not contain Ny. A natural
question arises: what can one say about the maximal n-submodules
of M which do contain Ny ?

Theorem 2.2. Let M be an R-n-module with the canonical presen-
tation: B ~ M,, A~ Ny. Then:
(1) If B has a mazimal n-submodule, then M has a mazimal n-
submodule which contains N.

(2) If M has a mazimal n-submodule which contains Ny, then B
has a mazimal n-submodule.

Proof. (1) Let V' be a maximal n-submodule of B and take an arbitrary
zero-idempotent e € Ny. Since B ~ M., it follows that M, has a
maximal n-submodule S, which is isomorphic to V. Then for every
[ € N, the set S§ = @, £(S.) is a maximal n-submodule of M;. Define

the subset S of M by: S = U S¢. We will show that S is a maximal

JeNo
n-submodule of M which contains Ny. Clearly Ny C S (since f € Sy,

Vf € Np); equality holds when V' = {0}.
Let x € S; then 3f € Nj such that € Sy. Since Sy is an
n-submodule it follows that rz € Sy, Vr € R and so ro € S, Vr € R.

Let q,...,x, € S; then 3f; € N such that x; € Sy, and, conse-
n—2
quently, Jy; € S, such that x; = [yz-,( e ), fil+- Now we have

n (n—2) (n—2)
[‘rl]-i-:[yh € 7f17"'7yn7 € 7fn]+
(-2 .
e UTs € wepyi (Se) = Sppyy €

and so S is an n-submodule of A.

=[]+
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Let T be an n-submodule of M, S C T C M and take x € T'\ S.
Define u = 0z and we have z € M, \ S,. Then & = p, () € M.\ S
(if 7 € S, then Yeu(Z) = (Peu © Pue)(r) = x € S, contradiction)
and Ty = @ () € Mg\ Sy, Vf € Ny (if £y € Sy then 3z € S, such
that 5 = @e f(2), or e () = @e r(2) which implies & = 2z € S,
contradiction). Hence T contains at least one such element Z; for
each set My \ Sy, f € Ny and so My = (Sy U {Zs}), Vf € Ny. Now
Vy € M 3f € Ny such that y € My; then there exists £ € N and

k
Skt1,-.-,5n, € Sy such that: y = [(j;,SZH]JF. Since £y € T and
Ski1,---,5, € Sy €5 C T, it follows that y € T and this shows that
T =M.

(2) Let S C M be a maximal n-submodule of M which contains Nj.
For each e € N define the subset S, of S by: S, = {x € S| Ox = e}.
Clearly, S. = SN M, and so S, is an n-submodule of M, (and of S).
Moreover, S = U Se.

eeNo
We show that, for any e € Ny, the n-submodule S, is maximal

in M,. For this, let T" be an n-submodul of M., S. C T  C M, and
take x € T\ Se. Then = ¢ S and so (S U {z}) = M. It follows that
Vy € M, 3k € N and sj41,...,8, € S such that

" ]) (n—k—1) (K)
y:[xvsk—l—l]-l—:[xa € 7[eask+1]+]+'

k
By multiplying with 0 we obtain that the element [(e), Spi1l+ € S be-

k
longs to M., which means that [(6),SZ+1]+ € S,.. Since x € T and

k
e, [(e), spi1l+ € Se CT, then y € T. Hence T' = M,. O

The above theorem shows that an n-module M has maximal n-sub-
modules which contain Ny if and only if the n-submodules M, have
maximal n-submodules.

Definition 2.3. An R-n-module M is simple if its only congruences
are the equality and the universal relation.

Remark 2.4. 1) M is simple iff its only non—void n-submodules are:
{e}, with e € Ny and M itself.
2) M is simple iff it has one of this canonical presentations:
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(a) a simple R-n-module with zero and Ny = {0},
(b) the R-n-module with zero is B = {0} and N is a simple idempo-
tent commutative n-group.

Theorem 2.5. Let M be an R-n-module and S C M be a non-void
n-submodule. S is mazimal iff M /S is simple.

Proof. Suppose M/S is simple and let T" be an n-submodule of M,
with S € T C M. Then T/S is an n-submodule of M/S and
so T/S either consists of exactly one coset (which is obviously S,
since T' 2 S), or T/S = M/S. Now T/S = M/S implies that
Vo € M, 3t €T, s" ' €S CTsuchthat x = [t, s} '], ie. 2 €T.
This shows that either "= S or T'= M.

Suppose S is maximal and consider two cases: Ny C S or Ny \ S #
0. If Ny € S then M/S is an n-module with zero. Let now T be an
n-submodule of M/S. Then p~'(T) is an n-submodule of M which
contains S, so we have either p~!(T') = S or p~*(T') = M. This shows
that 7" is either the zero n-submodule or 7' = M/S.

If Vo \ S # 0, then M/S does not have a zero element; we prove
first that each coset & € M/S contains at least one idempotent e € N
or, equivalently, that each coset is an n-submodule of M. Take now
a coset y € M/S, § # S and a zero-idempotent e € Ny \ S. Then

S C (SU{e}) and so (S U{e} = M, hence y can be expressed as
k
Y= [(e),s’,;”H]Jr, with & > 1,5, € S, and further
(k) (n=k)  (k—1) N (k—1) .
Yy = [[67 f ]+7 f 7Sk+1]+ = [6,7 f 7Sk+1]+7

for any f € Ny NS. This shows that €' € 7.

Thus we have proved that each coset & € M/S is an n-submodule
of M. If é € M/S and f € Ny NS, then ¢;.(S) is a maximal n-
submodule of M, which is contained in é, hence ¢ (S) = é. Take
now an n-submodule 7" of M/S. If T consists of more than one el-
ement, say é, f € T, then we have ¢ C p~'(T) C M. This implies,
since é — as n-submodule of M — is maximal, that p~*(T) = M, and
soT = M/S. O

Proposition 2.6. If M is a simple R-n-module, then every endomor-
phism of M is either of type 6. or an automorphism.

Proof. If M is simple, then by Remark 2.4 it follows that either M
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has a zero element and exactly two n-submodules: {0} and M, or
M = Ny and its submodules are: {z}, Vo € M and M. In the first
case, if f € Endg(M) then either Ker f = {0} or Ker f = M, ie. f
is either injective or the zero endomorphism. If f is injective, then
Imf =M.

In the second case, either Imf = M or Imf = {e}, e € M, i.e.
either f is surjective or f = .. If f is surjective, let e € M. Then
f!(e) is a non-void n-submodule of M, so it is either a one-element
set or the whole of M. Since f is surjective, it follows that Ve € M,
the set f~!(e) consists of one element only. O

3. Artinian and Noetherian n-modules

Definition 3.1. An R-n-module M is called Artinian if the set of its
n-submodules satisfies the DCC (Descending Chain Condition), and
it is called Noetherian if the set of its n-submodules satisfies the ACC
(Ascending Chain Condition).

Note that every n-submodule of an Artinian (Noetherian) n-modu-
le is Artinian (Noetherian) too.

As in the binary case, the following characterization of a Noethe-
rian n-module holds:

Proposition 3.2. An R-n-module is Noetherian iff any n-submodule
of M 1is finitely generated.

Proof. Similar to the one for the binary case (see [8]). If M is Noethe-
rian and S is an n-submodule of M, it follows that the set of all
finitely generated n-submodules of S contains a maximal element A.
Since A is finitely generated, it follows that Va € S, the n-submodule

(n—1)
[ A ,Rx] N of S is finitely generated which, together with the maxi-

(n—1)
mality of A, implies [ A ,Rxh = A, and so x € A. This proves that
S = A. For the converse, see the proof for the binary case. O

Proposition 3.3. If A LB4Lo o 0, is an exact sequence of
R-n-modules and the homomorphism f is injective, then:

1) B is Artinian iff A and C are Artinian,
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2) B is Noetherian iff A and C' are Noetherian.

Proof. 1) Suppose B is Artinian. Since f is injective, it follows that A
is isomorphic to the n-submodule f(A) of B, and hence it is Artinian.
Let C7 2 C; O C3 O ... be a descending chain of n-submodules of
C. Then ¢g71(C1) D g7 H(Cs) D g7 1(C3) D ... is a descending chain of
n-submodules of B (with ¢=(Cy) # 0, if Cy, # 0). Since B is Artinian,
it follows that there exists k > 0 such that ¢~*(C,,) = g~'(C), for
m > k. But this implies — since g is surjective — that C,, = C}, for
m > k.
Conversely, assume A and C are Artinian and let

B12B22B32 (dC)

be a descending chain of n-submodules of B. By intersecting the
terms of the chain (dc) with f(A), we obtain a descending chain of
n-submodules of f(A):

BiNf(A) 2 ByNf(A) D B3N f(A)D....

Since f(A) is Artinian, it follows that there exists & > 0 such that
BN f(A) = ByN f(A), for m > k. By applying g to the terms of the
chain (dc) we obtain the descending chain of n-submodules of C:

g(B1) 2 g(B2) 2 9(B3) 2 ...,

so there exists [ > 0 such that ¢g(B,,) = ¢(B;), for m > [. Define
t = max{k,(}; we show that B,, = By, for m > t. Note that if
g(B;) = 0, then B, = 0, hence B,, = B; = (), for m > [; similarly, if
Br N f(A) = 0, then By N Nog = 0 (because f(A) = Kerg 2 Nyp),
hence By, = (), i.e. B,, = B, = (), for m > k. We may therefore assume
that BN f(A) # 0 and g(B;) # 0. Let b € B;; g(B;) = g(B,,) implies
that 3V € B, such that g(b) = g(b'). For e € B,, N Nyp (such an
element exists, since B, # () we have:

(-3 _
[9(b), 9(b'), g('), g(e)] , = g(e) € Noc

(n=3) _
and hence [b, O |V, e]; € Kerg. Since m > t, we have B,,, C B, and

(n=3)
b, V' ,b,el, € BBNKerg= B;,N f(A) = B,,N f(A).
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(n=3) _
Now [b, V' |V, e]y € B, V,e € B, implies b € B,,. This shows that
B, C By,.

2) The fact that if B is Noetherian then A and C' are Noetherian
is proved by a similar argument as above.

For the converse, we make the same constructions and use the
same notations (of course by using an ascendant chain this time). We
will show that B,, = By, for m > t. Let b € B,; g(B;) = g(Bn)
implies that 30" € B; such that g(b) = g(V'). For e € B, N Ny we

(n—=3)  _ (n=3) _
have [g(b), g(t'),g(¥'), g(e)], = g(e) € Noc and hence [b, V' ¥, e]; €
Ker g. Since m > t, we have B, C B,, and
(n=3) _
b, b V,e]ly € BoNKerg=B,,Nf(A)=DB,nNf(A).
(n=3) _
Now [b, V' ,U,e|y,b,e € B, implies b € B, and this shows that
B, C B;. g

Corollary 3.4.

1) If S is an n-submodule of the R-n-module A, then A is Artinian
(Noetherian) iff S and A/S are Artinian (Noetherian).

2) Let Ay,..., Ay be R-n-modules with zero. The R-n-module
Ay X - x Ay, is Artinian (Noetherian) iff As, ..., A, are all
Artinian (Noetherian).

Proof. 1) The sequence S LAl A/S — 0, where ¢ is the inclusion
and p is the natural homomorphism, satisfies the hypotheses of the
preceding proposition.

2) The sequence Aj X --- x A, LAl X - x A, B8 A, — 0is
exact and the homomorphism f defined by
f((ala s 7an—1)) = (ah ceey Gp_1, O)
is injective. O
Lemma 3.5. Let By, B,C1,C be n-submodules of the R-n-module M,
wzthBlngM, ClgCQM,BlﬂCl#Q). Then
(B1U(BNQ))/(BiU(BNCY)) ~(C1U(BNC))/{CrU (B NC)).

Proof. Identical to the one for the binary case (see [4]); we can apply
the isomorphism theorems because B; N C; # (). O
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Lemma 3.6. (Schreier) Let M = Sp 2 S 2 ... 2 S, = e and
M =Ty 2Ty O... 2T, = e be two chains of n-submodules of the
R-n-module M, where e € Ny. Define Si; = (S; U (S;-1 NT})) and
Ty, = (T;U(T;21NS;)), forall 0<i<r 0<j<s, and we obtain
1somorphic refinements of the two chains:

1 <r

Sii1=802812...28:=25;, 0<
0<Jy<s

T'_lzngQleQ...QTrj:T‘

J 7

Sz‘,j—l/Sz‘j = Tz‘—Lj/Tij :

Proof. Identical to the one for the binary case (see [4]); the preceding
lemma is applicable because the zero-idempotent e belongs to each
term of the two chains. |

The definition of a composition series of an R-n-module is naturally
transferred from R-modules, namely: a composition series of an R-n-
module M is a finite, strictly decreasing series of n-submodules of M,

M=5>5D>...0S8,={e}, ecNy (c)

which does not admit strictly decreasing refinements. The series (c)
is a composition series of M iff each S;, i = {1,...,m} is a maximal
n-submodule of S;_1, i.e. iff the factor n-modules S;_;/S; are simple.
One can easily check the validity of the Jordan-Ho6lder Theorem, with
just one additional comment: if

M:SODle...DSm:{e} (Cl)
M=T,0T1D>...0T, ={f} (c2)
are two composition series of M, then in order to use Schreier’s Lemma
one needs that the series (¢;) and (co) have the same last term. For this

purpose, we apply to each term of the series (c2) the automorphism
¢ and we obtain the series:

Pre(M) =M D ¢e(Th) O ... DO ¢re(T) = {e} (cs)

which is still a composition series. Schreier’s Lemma may now be
applied. So, if an R-n-module M has a composition series, then all
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its composition series have the same length, and this will be called the
length of M (and we say that M has finite length). If M does not
have composition series, then we say it has infinite length.

As in the binary case, the following hold:

1) If S is an n-submodule of M, then (M) =1(S)+1(M/S).
2) If S, Sy are n-submodules of M, then
1(Sy) +1(Ss) = l(<51 U Sg>) +1(S1NSy).

3) If the sequence A L. B4 ¢ = 0 is ezact and the homomor-
phism f is injective, then (B) =1(A) +1(C).

By using a similar argument to the one employed for usual R-
modules (see [8]), one proves the following

Theorem 3.7. An R-n-module M has composition series (i.e. M
has finite length) iff M is Artinian and Noetherian.

Proposition 3.8. Let f: M — M be an endomorphism of the R-n-
module M.

1) If M is Artinian, then f is an automorphism iff f is injective.
2) If M is Noetherian, then f is an automorphism iff f is surjective.

Proof. 1) Assume f is injective; then M 2 f(M) D f*(M) 2 ...,
hence there exists m such that f™(M) = f™* (M) = .... This implies
that Yy € M3x € M such that f™(y) = f™(x), so y = f(x).

2) Assume f is surjective; then Ny C f~H(Np) C f2(Np) C ...,
hence there exists m such that f~™(Np) = f~™*D(A) = .... Now
take x € Ker f, that is, f(z) € Np. Since f™ is surjective, 32’ €
M such that x = f™(2'), whence f™*(2/) = f(z) € No, or o' €
fMDNG) = f7™NG). So f™(2') € Ny and © € Np. This proves
that Ker f = N and, since f is surjective, that f(Ny) = No. We may
then define the surjective endomorphism

fi: No = Ny, filz) = f(x), Vo e Ng.

Being Noetherian, M is finitely generated, which in turn implies that
Ny is finite (see [6], Theorem 3.3) and so f; is injective too. This
shows (by 1.2) that f is also injective. O
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Corollary 3.9. If f: M — M is an endomorphism of an R-n-module
of finite length, then the following are equivalent:

1) f is an automorphism,

2) f is injective,

3) f is surjective.

Definition 3.10. Let M be an R-n-module and let {M,;};,c; be a
family of n-submodules of M. We say that M is the (internal) direct
sum of the family {M,;};e; if

(1) M= (M)
iel
(2) there exists an n-submodule N of Ny such that for every j € T
we have M; N <UMZ> = N.
i#]
In this case, we say that M is the N-direct sum of the family {M;};cr;

in particular, for N = () or N = {e} we call it 0-direct sum or 1-direct
sum, respectively.

Remark 3.11. 1) Every n-submodule § # N C N, determines an

N-decomposition of M, namely: M = U M, & Ny. In particular, for

eeEN
each zero-idempotent e € Ny we have a decomposition of M into a

1-direct sum:
M =M, Ny (D)

2) For each zero-idempotent e € Ny we have a class of decompositions
of M into O-direct sums:

M=DM.,® (@f;éeTf) (D)

where each T} is equal either to My or to {f}.

Definition 3.12. An n-module B with zero is called decomposable if
B can be expressed as a direct sum B = By @ By, with By # {0} and
By # {0}. Otherwise, B is called indecomposable.

An n-module M is called indecomposable if M, is indecomposable
and N is simple.

Remark 3.13. 1) Simple n-modules are indecomposable.



36 L. Tancu

2) An n-submodule N of Nj is indecomposable iff it is simple.

3) If the n-module M is indecomposable, then its only decompositions
in which M itself does not appear as a summand, are those of the
forms (D) and (D’).

Definition 3.14. A decomposition of an n-module into a direct sum
of n-submodules is called a canonical decomposition if

(1) it is obtained from (D) by further decomposition of the two sum-
mands,

(2) the direct sum employed is a 1-direct sum,

(3) it does not contain summands which are one-element sets or the
empty set.

In a canonical decomposition the summands are either n-modules
with zero or n-submodules (n-subgroups) of Nj.

Theorem 3.15. (Fitting’s lemma) If M is an R-n-module of finite
length and f: M — M 1is an endomorphism, then there exists an
integer m > 1 such that M = f™(M) & Ker f™.

Proof. Similar to the one for the binary case (see [7| or [8]). Since
M is Artinian, it follows — as in the proof of the preceding theorem —
that there exists m > 1 such that f™(M) = f™" (M) = ..., whence
(M) = (M), Define the map g: f"(M) — fm(M), g(x) =
f™(z) and note that ¢ is a surjective endomorphism. Now [ (M) is
Noetherian, being an n-submodule of M, so ¢ is an automorphism.
Therefore, we have

f™(M) NKer f™ = Ker g = Nogmry C No.

In addition to that, for any x € M there exists y € M such that
f™(@) = g(f™(y)) and so
(n—3)
L™ (@), £ (™), (@), f ()], = fm(e),
(n—3)
Ve € Nj. It follows that the element u = [z, f™(y), f™(¥), €] . belongs

to Ker f™ and: = = [f™(y), u, (ngz)]Jr.

This shows that M = (f™(M) UKer f™). O

Corollary 3.16. Assume that M is an indecomposable R-n-module
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of finite length.

1) If f is an endomorphism of M, then:
a) [ is an automorphism or
b) Ker f =Ny, Je € Ny: f(M) = M, and the map
g: M, — M., g(z)= f(x) is an automorphism or
c¢) f is nilpotent in the (n,2)-ring Endg M.
2) If M is with zero, then any endomorphism of M is either
nilpotent or an automorphism.
3) If M is with zero, and f; € Endg M, i€ {1,2,...,m},

(n—r)
m = r(modn—1), while f={[f1,..., fm, 0 ]+ 1is an auto-

morphism, then there exists iy € {1,...,m} such that f;
18 an automorphism.

Proof. 1) It follows from the preceding theorem that there exists m > 1
such that M = f™(M) @ Ker f™. Since M is indecomposable, we
have either f™(M) = Ny or Ker f™ = Njy. In the first case, f™ is
a nullary endomorphism and so f is nilpotent; in the second case we
have either f™(M) = M or f™(M) = M., for a certain e € Ny. If
f™(M) = M, then f(M) = M, so f is a surjective homomorphism and
from Corollary 3.9 it follows that f is an automorphism. If f™(M) =
M., then (as in the proof of the preceding theorem) M, = f™(M) =
S M) = f(M,.) and therefore the endomorphism g: M, — M, is
surjective, so (by Corollary 3.9 ) it is an automorphism.

Now Ker f™ = Nj implies that Ker f = A, while the fact that N
is simple implies that f(Np) is either a one-element set or the whole
of No. If f(Ny) = N, then the map h: Ny — Ny is a surjective
endomorphism, so an automorphism. But this fact, together with
Ker f = N, implies that f is injective, hence f is an automorphism,
which contradicts f™(M) = M,. Therefore there exists u € Ny such
that f(Ny) = {u}; now f(M.) = M, implies that u = e. Take now
ye€ f(M)and z € M cuy = f(z). If z € M,, then y = f(z) € M,; if

x € M,, v # e, then let 2’ be the uniquely determined element of M,
(n—2)

such that = = [2/, e ", v];. Now we have

(n—2) (n—1)

y=fla) =[f(=), fle), fW)ls = [f(@), e ]y = f(a') € M.
which proves that f(M) C M..
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2) Direct consequence of 1).

3) The proof is by induction on m.

(n—1)
If m =1, then f =[f1, 6 |+ = f1, so f1 is an automorphism. Let

now m > 2 and assume that the statement is true for m—1. The

(n—)
equation f = [f1,..., fm, 0 ]+ implies, by right multiplication with
=1, the following:
. (n—r)
1dM:[gl7"'7gma 0 ]-l—a
where g; = f; o f~1. If g is an automorphism, then f; is an automor-
phism and iy = 1; otherwise, it follows from 2) that g; is nilpotent,
i.e. 3k > 1 such that g¥ = 0. Tt follows now
. (n=3) __ i ., (n—t)
[ldM7 g1 79179]4- © [ldMaglu S 795C 17 6 ]+
: . _y (D) L (n=3)
= 1d]W = [ldMaglu R 7.95g 17 0 ]-‘r o [lde g1 79170]—1-
and so the map
. (n=3) (n—r+1)
[ldm7 9 79170]4- - [927"'7ng 6 ]—l—
is an automorphism for which we can apply the induction hypothesis.
This completes the proof. U

Using arguments identical to those employed in the binary case
(|7], [8]), one can prove the following

Theorem 3.17. If A is an R-n-module with zero, Artinian or Noethe-
rian, then M can be decomposed as a finite direct sum of indecompos-
able n-submodules.

Also the Krull-Remack—Schmidt Theorem can be immediately trans-
ferred to the case of R-n-modules with zero: Let B # {0} be an
R-n-module with zero which is both Artinian and Noetherian. Then
B is a finite direct sum of indecomposable n-submodules. Up to a
permutation, the indecomposable components in such a direct sum
are uniquely determined up to isomorphism.

Remark 3.18. Let us return now to the general case of R-n-modules
(not necessarily with zero): it follows that the problem of decom-
posing an R-n-module M of finite length into a finite direct sum of
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indecomposables can be reduced to the decomposition of Nyys (since
M = M, ® Noy and M, is an n-module with zero). Recall that if
M is Noetherian, then the idempotent abelian n-group Ny is finite
and [Ny | divides (n—1)*=1, where k is the cardinal of the generat-
ing set. Also recall that, by Remark 3.13, an n-submodule of Nj is
indecomposable if and only if it is simple. Take ¢ € Ny and let

G = red, Nyys be the binary reduce of Nyys with respect to the ele-

n—2
ment e (ie. x +y = [x,( e ),y]+); G is a (bi)group of exponent n—1.

Note that z1+ - - - +x,, = [2}]+, which shows that Ny, = ext™ G. Take
the decomposition (unique up to isomorphism) of G into a direct sum
of indecomposable subgroups of the form Z,-, with p prime:

G=G D - DGy (dv)
and immediately obtain the following decomposition for Ny;:
Noyy =ext"G =ext"G,L @ --- P ext” G, (ds)

We still did not solve the problem, since not all these summands are
simple: in fact, ext™ G; is simple iff G, is of the form Z,, p prime. So,
it remains to describe the possible decompositions of ext” Z,-, r > 1,
where p” | n—1. Unfortunately, for this case one cannot prove the
uniqueness of decomposition, as the following example shows.

Example 3.19. Take n = 9 and A = ext?Zg. The 9-group A has
four 9-subgroups of order 2, namely: A; = {1,5}, Ay = {2,6}, A3 =
{3,7}, Ay = {0,4} and the following decompositions into direct sums:

A=A QA=A 0A =A3 0 A =A30 A4
=Ai @A DA =A1®A D A3D Ay

where 1, j, k are distinct numbers in {1,2,3,4}. Note that the four
9-subgroups of order 2 are mutually disjoint, which means that any
decomposition of A into direct sum of indecomposables is necessarily
a O-direct sum; it is easy to check that in fact this statement is true
for any n-group of the form ext™ Z,, with » > 1 and p" | n—1. Also
note that A, ® Az = {1,3,5,7} ~ ext? Z,, which shows that 0-direct
sums with respectively isomorphic summands can give non-isomorphic
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results.

Summarizing, if M is a Noetherian R-n-module, then one of the
following situations occurs:

e Ny is simple. This is precisely the case when its order is a
prime number p (with p | n—1);

e Noy is not simple and it has a unique (up to isomorphism)
decomposition into a finite 1-direct sum of indecomposable n-
submodules. This is precisely the case when every binary reduce
has in its decomposition (d;) only summands of the form Z,,,
with p; prime numbers.

e Ny is not simple and it can be decomposed into finite O-direct
sums of indecomposables only. This is precisely the case when
every binary reduce has at least one summand of the form Z,-,
p prime and r > 1, in the decomposition (d;).

The above discussion leads us to a weaker version of the Krull-
Remack—Schmidt theorem for n-modules, in the special case when
n—1=p;...px (the prime factorization of n—1 is multiplicity-free).

Theorem 3.20. Let n > 2 be an integer such that n—1 = py...pg
and let M be an R-n-module which is both Artinian and Noetherian.
Then M has a finite canonical decomposition into indecomposable n-
modules. Up to a permutation, the indecomposable components are
uniquely determined up to isomorphism.

The above theorem allows us to reduce the problem of decomposing
an R-n-module into a direct sum of indecomposable n-submodules to
the problem of decomposing an R-n-module with zero and an abelian
n-group. Both these decompositions can be done by using the binary
reduces of the two structures and then their n-ary extensions. To be
more precise, if B is an R-n-module with zero, then its binary reduce
with respect to an element b € B is the module B with the operations:

(n=3) _ (n=3) _
r+y=[z, b ,byl, rex =[rz, rb ,rbb]; ,

for our purpose (decomposition), it is useful to consider the binary
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reduce with respect to the zero element. The n-ary exrtension with
respect to an element a of an R-module A is the R-n-module A, with
the following operations:

[0y =214+ -+ 25 — (n—1)a, rxxr=rr—ra+a,

and a is the zero element in the n-ary extension. Furthermore, one
can easily check that for any a,b € B we have ext}(red, M) ~ M; in
particular, extg(redg M) = M. Note that we can talk about unique
decomposition only if it is canonical, as the following example shows.

Example 3.21. Let (Zsg, +, ) be the ring of integers modulo 30. We
define on the set M = Zj3y a structure of Z-7-module by:

2]y =21+ ---+2; and kex=(6k+25) .
Then we have
Nur = Noar = {0,5,10,15,20,25}, My = {0,6,12,18,24}
and the following canonical decomposition of M:
M ={0,6,12,18,24} & {0, 15} & {0, 10,20}

which is unique up to isomorphism.
However, we can give two different (non—canonical) decompositions
of M into 1-direct sums of indecomposable n-submodules, namely:

M ={0,3,6,9,12,15,18,21, 24,27} & {0, 10, 20}
—={0,2,4,6,8,10,12, 14, 16, 18,20, 22, 24, 26,28} & {0, 15} .
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