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Invertible elements in associates
and semigroups. 2

Fedir M. Sokhatsky and Olena Yurevych

Abstract

This work is a continuation of [12]. Some additional invertibility criteria for ele-
ments of associates and n-ary semigroups are found. The corresponding axiomatics
for polyagroups and n-ary groups are established.

The study of (i, j)-associative (n + 1)-ary groupoids is reduced in
[8] to the study of so-called associate of the type (s, n), where s|n.
A bracketting rule and a decomposition of the main operation was
described in [10]. Some criteria of invertibility of elements are found
in [12]. Here, we give some additional criteria of invertibility and �nd
axiomatics for polyagroups and n-groups.

The following theorem is proved in [10]

Theorem 1. Let (Q, f) be an associate of a type (r, s, n). If the
words w1 and w2 di�er from each other by the bracketting only and the
coordinate of every f 's occurrence in the words w1 and w2 is divisible
by r and also there exists a one-to-one correspondence between f 's
occurrences in the word w1 and those in the word w2 such that the
corresponding coordinates are congruent modulo s, then the formula
w1 = w2 is an identity in (Q, f).

By the coordinate of the i-th occurrence of the symbol f in a word w
is mean a number of all individual variables and constants, appearing
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in the word w from the beginning of w to the i-th occurrence of the
operation symbol f .

A transformation λi,a of the set Q, which is determined by the
equality

λi,a(x) = f(
i
a, x,

n−i
a ), (1)

is said to be an i-th shift of the groupoid (Q, f) induced by an element
a. Hence, the i-th shift is a partial case of the translation (see [1]). If
the i-th shift is a substitution of the set Q, then the element a is called
i-invertible. If an element a is i-invertible for all i = 0, 1, . . . , n, then it
is called invertible. Invertible elements in n-semigroups are described
by Gluskin in [6] and [7].

The following theorem is proved in [12]

Theorem 2. An element a ∈ Q is invertible in an associate (Q, f) of
the type (s, n) i� there exists an element ā ∈ Q such that

f(ā, a, . . . a, x) = x, f(x, a, . . . a, ā) = x (2)

for all x ∈ Q.

1. Criterion of invertibility
Corollary 1. An element a is invertible in an associate (Q, f) of the
type (s, n) i� there exist â and ă such that

f(â, a, . . . , a, x) = x, f(x, a, . . . , a, ă) = x (3)

hold for all x ∈ Q.

Proof. If an element a is r-multiple invertible, then (2) are true ac-
cording to Theorem 2. Therefore (3) with â = ă = ā hold.

Conversely, assume that (3) hold. Putting x = ă in the �rst equal-
ity, and x = â in the second, we obtain

f(â, a, . . . , a, ă) = ă and f(â, a, . . . , a, ă) = â.

Hence â = ă. Thus (2) hold.
The invertibility of a follows from Theorem 2.
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Lemma 1. If an element a is i-invertible in an associate (Q, f) of
the type (s, n), then every i-th skew element to a is also j-th skew for
all j ≡ i (mod s).
Proof. Since the i-th shift induced by a is a substitution of the set Q,
then

a = λ−1
i,aλi,a(a)

(1)
= λ−1

i,af(
n+1
a )

(1)
= λ−1

i,af(
j
a, λi,aλ

−1
i,a (a),

n−j
a )

(4)
= λ−1

i,af(
j
a, f(

i
a, āi,

n−i
a ),

n−j
a )

T1
= λ−1

i,af(
i
a, f(

j
a, āi,

n−j
a ),

n−i
a )

(1)
= λ−1

i,aλi,af(
j
a, āi,

n−j
a ) = f(

j
a, āi,

n−j
a ).

Thus f(
j
a, āi,

n−j
a ) = a. This means, that āi is the j-th skew to a.

If an element a of a multiary groupoid is i-invertible, then the
element λ−1

i,a (a) coincides with the i-th skew of the element a, which is
denoted by āi (ā := ā0) and is determined by the equality

f(
i
a, āi,

n−i
a ) = a. (4)

The following theorem is valid.
Theorem 3. In any associate (Q, f) of the type (s, n) for any element
a and for any i = 0, 1, . . . , n − 1; k = 1, . . . , n

s
− 1 the following

conditions are equivalent:
1) a is invertible;
2) a is i- and (n− i)-invertible;
3) there exist elements â and ă from Q such that

f(
i
a, â,

n−i−1
a , x) = x and f(x,

n−i−1
a , ă,

i
a) = x (5)

hold for all x ∈ Q.
4) a is ks-invertible.

Proof. 1) ⇒ 2) by the de�nition of invertibility.
2) ⇒ 3). Since the element a is i- and (n − i)-invertible, the i-th

and (n− i)-th shifts are substitutions of the set Q.
Let i 6 n− s. To prove the relation (5), we consider the following

equalities:
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x = λ−1
i,aλi,a(x)

(1)
= λ−1

i,af(
i
a, x,

n−i
a )

L1
= λ−1

i,af(
i
a, x,

s−1
a , f(

n−s−i
a , ā(n−i),

i+s
a ),

n−s−i
a )

T1
= λ−1

i,af(
i
a, f(x,

n−i−1
a , ā(n−i),

i
a),

n−i
a )

(1)
= λ−1

i,aλi,af(x,
n−i−1

a , ā(n−i),
i
a) = f(x,

n−i−1
a , ā(n−i),

i
a).

Hence, the second equality from (5) holds.
To prove the �rst, observe that

x = λ−1
n−i,aλn−i,a(x)

(1)
= λ−1

n−i,af(
n−i
a , x,

i
a)

L1
= λ−1

n−i,af(
n−s−i

a , f(
i+s
a , āi,

n−s−i
a ),

s−1
a , x,

i
a)

T1
= λ−1

n−i,af(
n−i
a , f(

i
a, āi,

n−i−1
a , x),

i
a)

(1)
= λ−1

n−i,aλn−i,af(
i
a, āi,

n−i−1
a , x) = f(

i
a, āi,

n−i−1
a , x).

This proves that for i 6 n− s the relation (5) holds.
Let i > s. At �rst, we prove the validity of the relations

f(
i−s
a , āi,

n−i+s−1
a , x) = x, (6)

f(x,
n−i+s−1

a , ā(n−i),
i−s
a ) = x. (7)

Make a chain of conclusions:
x = λ−1

i,aλi,a(x)
(1)
= f(

i
a, λ−1

i,a (x),
n−i
a )

(4)
= λ−1

i,af(
i−s
a , f(

i
a, āi,

n−i
a ),

s−1
a , x,

n−i
a )

T1
= λ−1

i,af(
i
a, f(

i−s
a , āi,

n−i+s−1
a , x),

n−i
a )

(1)
= λ−1

i,aλi,af(
i−s
a , āi,

n−i+s−1
a , x) = f(

i−s
a , āi,

n−i+s−1
a , x).

This proves (6). To prove (7) note that

x = λ−1
n−i,aλn−i,a(x)

(1)
= λ−1

n−i,af(
n−i
a , x,

i
a)

(4)
= λ−1

n−i,af(
n−i
a , x,

s−1
a , f(

n−i
a , ā(n−i),

i
a),

i−s
a )

T1
= λ−1

n−i,af(
n−i
a , f(x,

n−i+s−1
a , ā(n−i),

i−s
a ),

i
a)
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(1)
= λ−1

n−i,aλn−i,af(x,
n−i+s−1

a , ā(n−i),
i−s
a ) = f(x,

n−i+s−1
a , ā(n−i),

i−s
a ).

Using the obtained relation, we get correctness of the �rst of equal-
ities (5). Indeed,

x
(6)
= f(

i−s
a , āi,

n−i+s−1
a , x)

(4)
= f(f(

i
a, āi,

n−i
a ),

i−s−1
a , āi,

n−i+s−1
a , x)

T1
= f(

i
a, āi,

n−i−1
a , f(

i−s
a , āi,

n−i+s−1
a , x))

(6)
= f(

i
a, āi,

n−i−1
a , x).

In the same way:

x
(7)
= f(x,

n−i+s−1
a , ā(n−i),

i−s
a )

(4)
= f(x,

n−i+s−1
a , ā(n−i),

i−s−1
a , f(

n−i
a , ā(n−i),

i
a))

T1
= f(f(x,

n−i+s−1
a , ā(n−i),

i−s
a ),

n−i−1
a , ā(n−i),

i
a)

(6)
= f(x,

n−i−1
a , ā(n−i),

i
a),

which proves the second equality from (5). Thus 2) implies 3).

3) ⇒ 4). If i = 0, then (5) implies (3), which, by Corollary 1,
proves that a is an invertible element. In particular, it is j-invertible
for all j.

If i > 0, then for

â := f(
i
a, f(āi,

n−1
a , āi),

n−i−1
a , ā(n−i)), (8)

ă := f(āi,
n−i−1

a , f(ā(n−i),
n−1
a , ā(n−i)),

i
a) (9)

we have
f(â,

n−1
a , x)

(8)
= f(f(

i
a, f(āi,

n−1
a , āi),

n−i−1
a , ā(n−i)),

n−1
a , x)

T1
= f(

i
a, f(āi,

n−i−1
a , f(

i
a, āi,

n−i−1
a , ā(n−i)),

i
a),

n−i−1
a , x)

(5)
= f(

i
a, f(āi,

n−i−1
a , ā(n−i),

i
a),

n−i−1
a , x)

(5)
= f(

i
a, āi,

n−i−1
a , x)

(5)
= x.

The second equality from (3) may be proved in the same way. Indeed,

f(x,
n−1
a , ă)

(9)
= f(x,

n−1
a , f(āi,

n−i−1
a , f(ā(n−i),

n−1
a , ā(n−i)),

i
a))

T1
= f(x,

n−i−1
a , f(

i
a, f(āi,

n−i−1
a , ā(n−i),

i
a),

n−i−1
a , ā(n−i)),

i
a)
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(5)
= f(x,

n−i−1
a , f(

i
a, āi,

n−i−1
a , ā(n−i)),

i
a)

(5)
= f(x,

n−i−1
a , ā(n−i),

i
a)

(5)
= x.

Hence, the relations (3) are valid and therefore, by Corollary 1, the
element a is invertible.

4) ⇒ 1). Let j ≡ 0 (mod s), 0 < j < n, i.e. j = ks, where
k = 1, . . . , n/s− 1, and let an element a be j-invertible.

Since the element a is ks-invertible, the ks-th shift is a substitution
of the set Q. Observe that for

y := λ−1
ks,a(z), z := λks,a(y). (10)

the following two equalities hold

λ−1
ks,af(z,

ks−1
a , x,

n−ks
a ) = f(λ−1

ks,a(z),
n−1
a , x), (11)

λ−1
ks,af(

ks
a, x,

n−ks−1
a , z) = f(x,

n−1
a , λ−1

ks,a(z)). (12)

Indeed,

λ−1
ks,af(z,

ks−1
a , x,

n−ks
a )

(10)
= λ−1

ks,af(λks,a(y),
ks−1
a , x,

n−ks
a )

(1)
= λ−1

ks,af(f(
ks
a, y,

n−ks
a ),

ks−1
a , x,

n−ks
a )

T1
= λ−1

ks,af(
ks
a, f(y,

n−1
a , x),

n−ks
a )

(1)
= λ−1

ks,aλks,af(y,
n−1
a , x)

(1)
= f(y,

n−1
a , x)

(10)
= f(λ−1

ks,a(z),
n−1
a , x).

Similarly
λ−1

ks,af(
ks
a, x,

n−ks−1
a , z)

(1)
= λ−1

ks,af(
ks
a, x,

n−ks−1
a , f(

ks
a, y,

n−ks
a ))

T1
= λ−1

ks,af(
ks
a, f(x,

n−1
a , y),

n−ks
a )

(1)
= λ−1

ks,aλks,af(x,
n−1
a , y)

(1)
= f(x,

n−1
a , y)

(10)
= f(x,

n−1
a , λ−1

ks,a(z)).

Now, putting z := a in (11) we obtain
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λ−1
ks,af(

ks
a, x,

n−ks
a ) = f(λ−1

ks,a(a),
n−1
a , x),

λ−1
ks,aλks,a(x) = f(āks,

n−1
a , x),

which together with the de�nitions of a shift and the de�nition of a
skew element gives

x = f(āks,
n−1
a , x) (13)

for all x ∈ Q. This means, that the �rst equality from (3) holds. To
verify the second one we put z = a in (12). Then

λ−1
ks,af(

ks
a, x,

n−ks
a ) = f(x,

n−1
a , λ−1

ks,a(a)),
which, as in the previous case, implies

λ−1
ks,aλks,a(x) = f(x,

n−1
a , āks)

Thus

x = f(x,
n−1
a , āks) (14)

for all x ∈ Q. Corollary 1 and (13), (14) imply the invertibility of a.
This completes the proof of Theorem 3.

Note, that for binary semigroups the following assertion is valid.
Lemma 2. Let (Q, ·) be a binary semigroup and shift λ0,a ( λ1,a ) be
a substitution of Q, then the element er := λ−1

0,a(a) ( e` := λ−1
1,a(a)) is a

right ( respectively left ) unit, and a−1
r := λ−2

0,a(a) (a−1
` := λ−2

1,a(a)) is a
right ( respectively left ) inverse element of the element a in semigroup
(Q, ·).
Proof. Indeed,

λ0,a(x · er) = x · er · a = x · λ0,a(er) = x · λ0,aλ
−1
0,a(a) = x · a = λ0,a(x).

Since λ0,a is a substitution of the set Q, then the proved equality

λ0,a(x · er) = λ0,a(x)

gives x · er = x for all x ∈ Q, that is the element er is a right unit
element in the semigroup (Q, ·).
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In the same way one can prove that e` is a left unit element in
(Q, ·).

To establish that the element a−1
r is a right inverse of a, note that

λ0,a(a · a−1
r ) = a · a−1

r · a = a · λ0,aλ
−2
0,a(a) = a · λ−1

0,a(a) = a · er = a.

Applying λ−1
0,a to the equality λ0,a(a · a−1

r ) = a, we get

a · a−1
r = λ−1

o,a(a) = er.

Hence, the element a is right invertible.
Similarly we can prove that the element a−1

` is a left inverse of a,
when the shift λ1,a is a substitution of the set Q.

Corollary 2. An element a of a binary semigroup is invertible i� it
is 0-invertible and 1-invertible simultaneously.

An element a of an associate (Q, f) of the type (s, n) is said to
be: right ( left ) invertible, if the shift λ0,a (respectively λ1,a) is a
substitution of the set Q.

An element a of an (n+1)-ary groupoid (Q, f) will be called inner
invertible, if the shift λi,a is a substitution of the set Q for some
i = 1, . . . , n− 1.

Corollary 3. An element a is invertible in an associate (Q, f) of the
type (s, n) i� it is right and left invertible simultaneously.

The Proof follows from the point 2) of Theorem 3 when i = 0.

Corollary 4. In any (n + 1)-ary semigroup (Q, f) for any element a
and for any numbers i = 1, . . . , n − 1; k = 1, . . . , n

s
− 1 the following

assertions are equivalent:
1) a is invertible,
2) a is inner invertible,
3) a is right and left invertible,
4) there exist elements â and ă in Q such that for arbitrary x ∈ Q

the following equalities hold:

f(
i
a, â,

n−i−1
a , x) = x, f(x,

n−i−1
a , ă,

i
a) = x. (15)
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2. Axiomatics of polyagroups
De�nition 1. A groupoid (Q, f) is called a polyagroup of a type (s, n)
i� it is a quasigroup and an associate of the type (s, n).

It is easy to see that for s = 1 a polyagroup of a type (s, n) is an
(n + 1)-ary group.

Directly from Theorem 3 and the de�nition of a polyagroup we
obtain:
Theorem 4. In an associate (Q, f) of the type (s, n) for any i =
0, 1, . . . , n− 1 the following conditions are equivalent:

1) the associate is a polyagroup,
2) every element of the associate is invertible,
3) every element of the associate is i- and (n− i)-invertible,
4) for every element y there exist elements ŷ and y̆ in Q such

that for arbitrary x ∈ Q the following two equalities hold

f(
i
y, ŷ,

n−i−1
y , x) = x, f(x,

n−i−1
y , y̆,

i
y) = x,

5) every element is ks-invertible, for some k = 1, . . . , n
s
− 1.

Since for s = 1 a polyagroup of a type (s, n) is an (n + 1)-group
(an associate of the type (1, n) is an (n + 1)-semigroup), then as a
simple consequence of the above Theorem, we obtain the following
characterizations of (n + 1)-ary groups, which are proved in [3 � 5].

Corollary 5. In an (n+1)-semigroup (Q, f) for any i = 0, 1, . . . , n−1
the following assertions are equivalent:

1) a semigroup is an (n + 1)-group,
2) every element of the semigroup is invertible,
3) every element is a right and left invertible,
4) every element is inner invertible,
5) for every element y there exist elements ŷ and y̆ in Q such

that for arbitrary x ∈ Q the following two equalities hold

f(
i
y, ŷ,

n−i−1
y , x) = x, f(x,

n−i−1
y , y̆,

i
y) = x.
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