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On congruences on n-ary T -quasigroups

Paraskovya N. Syrbu

Abstract

We consider the class of n-ary quasigroups which are uniquely determined by some
abelian group and their automorphisms. Connections between di�erent groups
corresponding to the same n-ary quasigroup are described.

According to Toyoda's theorem, if Q(·) is a medial (entropic) quasi-
group, i.e., if it satis�es the identity xy ·uv = xu ·yv, then there exists
an abelian group Q(+), its authomorphisms ϕ, ψ and an element g ∈ Q
such that ϕψ = ψϕ and x · y = ϕx + ψy + g for every x, y ∈ Q. With-
out the requirement ϕψ = ψϕ such kind of abelian group isotopes are
called T -quasigroups and was considered by Kepka and Nemec (cf.
[2], [3]). Toyoda's theorem may be generalized to the case n > 2 (cf.
[1]). So T -quasigroups of arity n can be de�ned analogously with the
binary case. Most of the results proved for binary T -quasigroups can
be generalized for n-T -quasigroups of any �nite arity n > 2. At the
same time the theory of n-quasigroups gives often new aspects of the
proved for n = 2 facts. For example, for n > 3 there are n-groups
Q(A) and their congruences θ such that Ca(A) is not an n-group for
any class of congruence Ca(A) ∈ Q/θ (cf. [5]).

To avoid repetitions assume that n > 2 and 1, n = 1, 2, . . . , n.

De�nition 1. An n-quasigroup is called an n-ary T -quasigroup (or,
shortly, an n-T -quasigroup) if there are a binary abelian group Q(+),
its automorphisms γ1, γ2, . . . , γn and an element g ∈ Q such that

A(xn
1 ) = γ1x1 + γ2x2 + · · ·+ γnxn + g
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for every (xn
1 ) ∈ Qn. The (n+2)-tuple (Q(+), γ1, γ2, . . . , γn, g) is called

a T -form of Q(A) and the group Q(+) is called a T -group of Q(A).
It follows from the de�nition of medial quasigroups that an n-T -

quasigroup Q(A) is medial i� γiγj = γjγi, for every i, j ∈ {1, n},
where (Q(+), γ1, γ2, . . . , γn, g) is a T -form of Q(A) (cf. [1]).
Proposition 1. Any two T -qroups corresponding to the same n-T -
quasigroup are isomorphic.

The proof follows from the Albert's theorem: isotopic groups are
isomorphic.

An n-quasigroup Q(A) is called an n-ary isotope of a binary group
Q(◦) if there exist n+1 permutations α1, α2, . . . , αn+1 ∈ SQ such that

A(xn
1 ) = α−1

n+1(α1x1 ◦ α2x2 ◦ · · · ◦ αnxn)

for every (xn
1 ) ∈ Qn. If αn+1 = ε is the identical permutation, then

Q(A) is called a principal n-ary isotope of Q(◦) (cf. [4]). If, in ad-
dition, α1, α2, . . . , αn+1 are linear mappings of the group Q(◦), i.e. if
there exist some automorphisms θ1, θ2, . . . , θn+1 of Q(◦) and elements
a1, a2, . . . , an+1 ∈ Q such that αi(x) = θi(x)◦ai for i = 1, 2, . . . , n+1,
then the n-ary isotope Q(A) is called linear over Q(◦).
Proposition 2. If an n-T -quasigroup Q(A) is an n-ary principal iso-
tope of a binary group Q(◦) then Q(A) is linear over Q(◦).
Proof. Let (Q(+), γ1, γ2, . . . , γn, g) be a T -form of an n-T -quasigroup
Q(A) and let Q(A) be an n-ary isotope of the binary group Q(◦).
Then

γ1x1 + γ2x2 + · · ·+ γnxn + g = α1x1 ◦ α2x2 ◦ · · · ◦ αnxn (1)

for every (xn
1 ) ∈ Qn and for some α1, α2, . . . , αn ∈ SQ. Making the

permutation xi → γ−1
i xi for i = 1, n− 1; xn → R−1

g γ−1
n xn in (1),

where Rg(x) = x + g for every x ∈ Q, we get:

x1 + x2 · · ·+ xn = ϕ1x1 ◦ ϕ2x2 ◦ · · · ◦ ϕnxn, (2)

where ϕi = αiγ
−1
i , i = 1, n− 1; ϕn = αnR

−1
g γ−1

n . Now taking x1 =
x, x2 = y, x3 = x4 = · · · = xn = 0 in (2) (0 is the neutral element of
Q(+)), we obtain:

x + y = ϕ1x ◦ ϕ2y ◦ a, (3)
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where a = ϕ30◦· · ·◦ϕn0. Thus the groups Q(+) and Q(◦) are isotopic
and then, by Albert's theorem, they are isomorphic: Q(+) ∼= Q(◦). In
particular, we get that Q(◦) is abelian too. Taking x1 = · · · = xi−1 =
xi+1 = · · · = xn = 0 in (2 ) we get ϕixi ◦ ai = xi, or ϕixi = xi ◦ a−1

i ,
where ai = ϕ10 ◦ · · · ◦ϕi−10 ◦ϕi+10 ◦ · · · ◦ϕn0, i = 1, n. Therefore the
equality (3) can be written in the form:

x + y = x ◦ y ◦ 0n−2 ◦ b, (4)

where b = a−1
1 ◦ · · · ◦ a−1

n .
Putting β(x) = x ◦ 0n−2 ◦ b we obtain

β(x + y) = (x + y) ◦ 0n−2 ◦ b = (x ◦ y ◦ 0n−2 ◦ b) ◦ 0n−2 ◦ b

= (x ◦ 0n−2 ◦ b) ◦ (y ◦ 0n−2 ◦ b) = β(x) ◦ β(y),

which proves that the mapping β is an isomorphism from Q(+) onto
Q(◦). Moreover, βγiβ

−1 ∈ Aut Q(◦) for each i ∈ 1, n.
Denoting βγiβ

−1 by θi, i = 1, n, using the equalities ϕi = αiγ
−1
i ,

1 6 i 6 n − 1, ϕn = αnR
−1
g γ−1

n and ϕj(xj) = xj ◦ a−1
j , j = 1, n, we

have: αiγ
−1
i (x) = x ◦ a−1

i , or γi(x) = αi(x) ◦ ai, 1 6 i 6 n − 1 and
γn(x) = αn(x) ◦ dn, where dn = an ◦ 0n−2 ◦ (−g) ◦ b. Thus

θi(x) = βγiβ
−1(x) = βγi(x ◦ (0n−2 ◦ b)−1)

= β[αi(x ◦ (0n−2 ◦ b)−1) ◦ di]

= αi(x ◦ (0n−2 ◦ b)−1) ◦ di ◦ 0n−2 ◦ b

involves
αi(x) = θi(x ◦ 0n−2 ◦ b) ◦ d−1

i ◦ (0n−2 ◦ b)−1 = θi(x) ◦ ci,
where

ci = θi(0
n−2 ◦ b) ◦ d−1

i ◦ (0n−2 ◦ b)−1,
i.e. the permutations αi, 1 6 i 6 n are linear over Q(◦). Moreover,

ci = θi(0
n−2 ◦ b) ◦ d−1

i ◦ (0n−2 ◦ b)−1

= αi(e) ◦ di ◦ (0n−2 ◦ b) ◦ (0−1 ◦ b)−1 ◦ d−1
i = αi(e),

where e is the unit of Q(◦), i.e. ci = αi(e), 1 6 i 6 n. Hence
αi = θi(x) ◦ αi(e) fot all 1 6 i 6 n.
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Proposition 3. Let Q(+) be a T -group of an n-ary T -quasigroup
Q(A) and let P (A) be an n-ary subquasigroup of Q(A). If the neutral
element 0 of Q(+)) belongs to P , then P (A) is an n-T -quasigroup and
P (+) is a T -group of P (A).

Proof. Let (Q(+), γ1, . . . γn, g) be a T -form of Q(A). If 0 ∈ P , then
A(

n

0) = g ∈ P . More, if A(
i−1

0 , x,
n−i

0 ) = 0, where 1 6 i 6 n, then
x ∈ P , i.e. γi(x) + g = 0, so x = γ−1

i (−g) ∈ P for every 1 6 i 6 n.
If x ∈ P then γi(y) = A(

i−1

0 , y,
n−i−1

0 , γ−1
n (−g)) = x, implies y ∈ P ,

i.e. x ∈ P gives γ−1
i (x) ∈ P for every i = 1, n. Thus, for every x, y ∈ P

we have γ−1
1 (x), γ−1

2 (y) ∈ P . Therefore

A(γ−1
1 (x), γ−1

2 (y),
n−3

0 , γ−1
n (−g)) = x + y ∈ P .

Further, for x ∈ P there exists an element y ∈ P such that

x + y = A(γ−1
1 (x), γ−1

2 (y),
n−3

0 , γ−1
n (−g)) = 0,

i.e. y = −x ∈ P . Thus P (+) is a subgroup of Q(+) and P (A) is an
n-T -quasigroup with T -form (P (+), γ1|P , . . . , γn|P , g).

Proposition 4. Let Q(A) be an n-T -quasigroup and P (A) be an n-ary
subquasigroup of Q(A). Then for every a ∈ P there exists a binary
group Q(◦) with the unit a such that P (◦) is a T -group of P (A).

Proof. Let (Q(+), γ1, . . . , γn, g) be a T -form of Q(A) and P (A) be an
n-ary subquasigroup of Q(A). If a ∈ P then Q(◦) ' Q(+), where the
binary operation (◦) is de�ned by x ◦ y = R−1

a x+ y, and a is the unit
of the group Q(◦). According to Proposition 2, from the equalities

A(xn
1 ) = γ1x1 + · · ·+ γnxn + g

= Raγ1x1 ◦ · · · ◦Raγnxn ◦ g = ϕ1x1 ◦ · · · ◦ ϕnxn,

where ϕi = Raγi for every 1 6 i 6 n−1 and ϕn = R
(◦)
g Raγn , follows

that there exist θ1, θ2, . . . , θn ∈ Aut Q(◦) such that
θ1x1 ◦ · · · ◦ θnxn ◦ ϕ1(a) ◦ · · · ◦ ϕn(a) = A(xn

1 ).
According to Proposition 3, P (A) is an n-T -quasigroup, P (◦) is one of
its T -groups and (P (◦), θ1|P , . . . , θn|P , d), where d = ϕ1(a)◦· · ·◦ϕn(a),
is a T -form of P (A).
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Corollary 1. If Q(A) is an n-T -quasigroup, then for every a ∈ Q
there exists a T -group of Q(A) with the neutral element a.
Corollary 2. Every n-ary subquasigroup of an n-T -quasigroup is an
n-T -quasigroup.

Let Q(A) be an n-ary groupoid and let θ be an equivalence relation
on Q. Then we say that θ is a congruence relation on the n-groupoid
Q(A) i� the following statement holds

aiθbi, i = 1, n =⇒ A(an
1 )θA(bn

1 ) (4)

for every (an
1 ), (bn

1 ) ∈ Qn. The statement (4) is equivalent to

aθb =⇒ A(ci−1
1 , a, cn−1

i )θA(ci−1
1 , b, cn−1

i ) (5)

for every a, b ∈ Q and for every (cn
1 ) ∈ Qn.

De�nition 2. The congruence θ de�ned on the n-groupoid Q(A) is
called normal if for every i = 1, n and for every (cn

1 ) ∈ Qn

A(ci−1
1 , a, cn

i+1)θA(ci−1
1 , b, cn

i+1) =⇒ aθb.
Proposition 5. Let θ be a normal congruence of an n-T -quasigroup
Q(A). Then θ is a congruence of any its T -group.
Proof. Let (Q(+), γ1, . . . , γn, g) be a T -form of an n-T -quasigroup
Q(A) and let θ be a normal congruence of Q(A). Then

aθb ⇐⇒ A(γ−1

1 (a),
n−2

0 , γ−1
n (−g)) θ A(γ−1

1 (b),
n−2

0 , γ−1
n (−g))

⇐⇒ γ−1
1 (a)θγ−1

1 (b),

therefore
A(γ−1

1 (a), γ−1
2 (c),

n−3

0 , γ−1
n (−g))θA(γ−1

1 (b), γ−1
2 (c),

n−3

0 , γ−1
n (−g))

or (a + c)θ(b + c), i.e. θ is a congruence on Q(+).
Proposition 6. Let (Q(+), γ1, . . . , γn, g) be a T -form of an n-T -quasi-
group Q(A) and let θ be a congruence of Q(+). Then
1. θ is a congruence on Q(A) if and only if γi|Ker θ are endomorphisms

of the group Ker θ for every i = 1, n.
2. θ is a normal congruence on Q(A) if and only if γi|Ker θ are auto-

morphisms of the group Ker θ for every i = 1, n.
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Proof. 1) Let θ be a congruence on Q(A). If a ∈ Ker θ then aθ0, i.e.

A(
i−1

0 , a,
n−i−1

0 , γ−1
n (−g)) θ A(

n−1

0 , γ−1
n (−g))

for every 1 6 i 6 n − 1, therefore γi(a)θ0 for every 1 6 i 6 n − 1.
Analogously we get γn(a) ∈ Ker θ. Thus γi(a) ∈ Ker θ for every
i = 1, n and a ∈ Ker θ. If a, b ∈ Ker θ, then aθ0 and bθ0, therefore
aθb and (a + b)θ0. Thus a + b ∈ Ker θ and then γi(a + b) ∈ Ker θ for
every i = 1, n. But γi(a), γi(b) ∈ Ker θ involves γi(a) + γi(b) ∈ Ker θ.
Thus γi|Ker θ is an endomorphism on Ker θ for every i = 1, n.

Conversely, let γi|Ker θ, i = 1, n be endomorphisms of Ker θ and
let aθb. Then (a − b)θ0, i.e. γi(a − b) ∈ Ker θ, therefore γi(a)θγi(b)
for every i = 1, n. So

(γ1(c1) + · · ·+ γi−1(ci−1) + γi(a) + γi+1(ci+1) + . . . γn(cn))

and
θ(γ1(c1) + · · ·+ γi−1(ci−1) + γi(b) + γi+1(ci+1) + . . . γn(cn))

are equivalent. Thus
A(ci−1

1 , a, cn
i+1)θA(ci−1

1 , b, cn
i+1)

for every (cn
1 ) ∈ Qn, i = 1, n. Hence θ is a congruence on Q(A).

2) Let θ be a normal congruence on Q(A). Then γi|Ker θ is an
endomorphism of Ker θ. Moreover,

aθ0⇐⇒ A(γ−1
1 (a),

n−2

0 , γ−1
n (−g))θA(

n−1

0 , γ−1
n (−g))

⇐⇒ γ−1
1 (a)θ0 ⇐⇒ γ−1

1 (a) ∈ Ker θ.

Analogously can be proved that aθ0 ⇐⇒ γ−1
i (a) ∈ Ker θ for every i =

2, n. Therefore γi is invertible on Ker θ. So γi|Ker θ is an automorphism
of Ker θ for every i = 1, n.

On the other hand, if γi|Ker θ ∈ Aut Ker θ, i = 1, n, then θ is a
congruence on Q(A). Moreover,

A(ci−1
1 , a, cn

i+1)θA(ci−1
1 , b, cn

i+1)⇐⇒ γi(a− b) ∈ Ker θ

⇐⇒ a− b ∈ Ker θ ⇐⇒ aθb

for every i = 1, n and (cn
1 ) ∈ Qn, i.e. θ is a normal congruence on

Q(A).
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Remark 1. Not every congruence of an n-T -quasigroup is normal
as the following example shows. Let Q(+) be the additive group of
rational numbers. Then Q(A), where A(xn

1 ) = 2x1 + 2x2 + · · · + 2xn

for every (xn
1 ) ∈ Qn, is a medial n-quasigroup. The binary relation η

de�ned by
xηy ⇐⇒ x− y ∈ Z

is a congruence on Q(A). Moreover, if xiηyi for every 1 6 i 6 n,
then also xi− yi ∈ Z , and (x1 + · · ·+ xn)− (y1 + · · ·+ yn) ∈ Z, which
implies A(xn

1 )ηA(yn
1 ). This proves that η is a congruence on Q(A).

But Ker η = Z and γi|Z , i = 1, n are not automorphisms of Z(+), so
η is not normal on Q(A). Examples for n = 2 are given in [2].

Proposition 7. Let (Q(+), γ1, . . . , γn, g) be a T -form of an n-T -quasi-
group Q(A). If at least one of the automorphisms γi has a �nite order,
then every congruence on Q(A) is a congruence on Q(+).

Proof. Let γm
1 = ε for some �xed m and let θ be a congruence on

Q(A). Then aθb implies A(a,
n−2

0 , γ−1
n (−g))θA(b,

n−2

0 , γ−1
n (−g)), i.e.

γ1(a) θ γ1(b). Thus, by induction, we have γm−1
1 (a) θ γm−1

1 (b), which
gives γ−1

1 (a) θ γ−1
1 (b). Hence

A(γ−1
1 (a), γ−1

2 (c),
n−3

0 , γ−1
n (−g))

and
A(γ−1

1 (b), γ−1
2 (c),

n−3

0 , γ−1
n (−g))(a + c)θ(b + c)

are equivalent, i.e. (a+c)θ(b+c) for every c ∈ Q. So θ is a congruence
of Q(+).

De�nition 3. An n-ary subquasigroup P (A) of an n-T -quasigroup
Q(A) is called normal in Q(A) if there exists a normal congruence θ
of Q(A) such that P is a class of equivalence of θ.

Proposition 8. Every n-ary subquasigroup of an n-T -quasigroup Q(A)
is normal.

Proof. Let (Q(+), γ1, . . . , γn, g) be a T -form of Q(A) and let P (A) be
an n-ary subquasigroup of Q(A). If 0 ∈ P is the neutral element of
Q(+) then P (A) is an n-T -quasigroup and (P (+), γ1|P , . . . , γn|P , g) is
a T -form of P (A). So as P (+) is an invariant subgroup of Q(+) the
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factor-group Q/P de�nes a congruence θ on Q(+) such that P is a
class of equivalence of θ. Since Ker θ = P we get that γi|P = γi|Ker θ

are automorphisms of Ker θ, i.e. θ is a normal congruence on Q(A) and
P (A) is a normal subquasigroup of Q(A). According to Proposition
4, for every element a ∈ Q there is a T -group of Q(A), having a as a
neutral element.

Remark 2. As it is well known, if θ is a congruence of a binary
group Q(·) then there is exactly one Ca ∈ Q/θ such that (Ca, ·) is a
subgroup of Q(·). J.U²an proved that for n > 2 there are n -groups
Q(A) and their congruences θ such that for any Ca ∈ Q/θ, Ca(A) is
not an n-group.

Proposition 9. Let (Q1(+), γ1, . . . , γn, g1) and (Q2(◦), α1, . . . , αn, g2)
be two T -forms of n-T -quasigroups Q1(A) and Q2(B), respectively.
If η : Q1(A) → Q2(B) is a morphism of n-quasigroups, then the
mapping ϕ : Q1(+) → Q2(◦) de�ned by ϕ(x) = η(x) ◦ (η(0))−1 is a
group morphism and ϕγi = αiϕ for every i = 1, n. Moreover, ϕ is
an isomorphism if and only if η is an isomorphism ( 0 is the neutral
element of Q(+)).

Proof. From ηA(xn
1 ) = B(ηx1, ηx2, . . . , ηxn) follows

η(γ1x1 + · · ·+ γnxn + g1) = α1η(x1) ◦ · · · ◦ αnη(xn) ◦ g2. (7)

Putting in (7) xi = 0 for 1 6 i 6 n− 1 and xn = γ−1
n (−g1), we get:

η(0) = α1η(0) ◦ · · · ◦ αn−1η(0) ◦ αnη(γ−1
n (−g1)) ◦ g2.

Therefore
α1η(0) ◦ · · · ◦ αi−1η(0) ◦ αi+1η(0) ◦ · · · ◦ αn−1η(0) ◦ αnηγ−1

n (−g1) ◦ g2

= η(0) ◦ (αiη(0))−1.
Thus

ηγi(xi) = αiη(xi) ◦ η(0) ◦ (αiη(0))−1,
and

ηγi(xi) ◦ (η(0))−1 = αiη(xi) ◦ (αiη(0))−1

= αiη(xi) ◦ αi(η(0))−1 = αi(η(xi) ◦ (η(0))−1).

From the last equalities we get ϕγi(xi) = αiϕ(xi) for every xi ∈ Q,
i.e. ϕγi = αiϕ for every i = 1, n.
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Putting xi = 0 for 1 6 i 6 n − 1 and xn = γ−1
n (−g1) in (7), we

see that
η(γ1(x1) + γ2(x2)) = α1η(x1) ◦ α2η(x2) ◦ η(0) ◦ (α1η(0) ◦ α2η(0))−1

implies
η(γ1(x1) + γ2(x2)) ◦ (η(0))−1 = α1(η(x1) ◦ η(0)−1) ◦ α2(η(x2) ◦ η(0)−1),
which gives

ϕ(γ1(x1) + γ2(x2)) = α1ϕ(x1) ◦ α2ϕ(x2) = ϕγ1(x1) ◦ ϕγ2(x2)

for every x1, x2 ∈ Q. Thus ϕ is a group morphism from Q1(+) to
Q2(◦).
Corollary 3. Let Q1(A) and Q2(B) be two n-T -quasigroups and
Q1(+), Q2(◦) be their T -groups, respectively. Then a morphism η
from Q1(A) to Q2(B) is a morphism from Q1(+) to Q2(◦) if and only
if η(0) = e, where 0 and e are the neutral elements of Q1(+) and
Q2(◦), respectively.
Proof. The mapping ϕ : Q1(+) → Q2(◦) such that

ϕ(x) = η(x) ◦ η(0)−1

is a morphism of groups. So ϕ(x + y) = ϕ(x) ◦ ϕ(y) is equivalent to
η(x + y) ◦ η(0)−1 = η(x) ◦ η(0)−1 ◦ η(y) ◦ η(0)−1.

Thus
η(x + y) ◦ η(0)−1 = η(x) ◦ η(y) ◦ η(0)−1.

Hence η(0) = e if and only if η(x + y) = η(x) ◦ η(y).

Proposition 10. Let Q(A) be an n-T -quasigroup, K and H be two
n-ary subquasigroups of Q(A). If there is a congruence θ on Q(A)
such that H, K ∈ Q/θ then H and K are isomorphic.

Proof. So as K(A) and H(A) are normal subquasigroups in Q(A) there
is a normal congruence ρ on Q(A) such that K(A) is one of its classes.
If (cn

1 ) ∈ Kn and aρb for some a, b ∈ Q then there are x, y ∈ Q such
that A(ci−1

1 , x, cn
i+1) = a and A(ci−1

1 , x, y, cn
i+2) = b. Hence from aρb

follows ci+1ρy, i.e. y ∈ K.
Let θ be a congruence on Q(A) such that K, H ∈ Q/θ. Then

y, ci+1 ∈ K implies yθci+1, thus aρb implies aθb.
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Let K ∈ Q/ρ ∩ Q/θ and aθb. Then for every (cn
1 ) ∈ Kn there

exists x ∈ Q such that A(ci−1
1 , x, a, cn

i+2) ∈ K. But aθb implies
A(ci−1

1 , x, a, cn
i+2)θA(ci−1

1 , x, b, cn
i+2), hence A(ci−1

1 , x, b, cn
i+2) ∈ K. So

as K ∈ Q/ρ we get: A(ci−1
1 , x, a, cn

i+2)ρA(ci−1
1 , x, b, cn

i+2) thus aρb, i.e.
aθb implies aρb. So we get that θ = ρ thus θ must be a normal
congruence too.

Let H(+) and K(◦) be T -groups of H(A) and K(A), respectively.
Let 0 and e be the neutral elements of H(+) and K(◦), respectively.
The mapping σ : Q(+) → Q(◦) de�ned by σ(x) = x ◦ 0−1, is a group
isomorphism (by Proposition 9, for η = ε).

From σ(0) = e it follows that σ ∈ AutQ(A). So as θ is a normal
congruence on Q(A), θ is a congruence on Q(◦). Therefore aθb ⇔
a ◦ −1θb ◦ 0−1 ⇔ σ(a)θσ(b). Thus σ(H) = K.
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