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On congruences on n-ary T-quasigroups

Paraskovya N. Syrbu

Abstract

We consider the class of n-ary quasigroups which are uniquely determined by some
abelian group and their automorphisms. Connections between different groups

corresponding to the same n-ary quasigroup are described.

According to Toyoda’s theorem, if Q(+) is a medial (entropic) quasi-
group, i.e., if it satisfies the identity zy-uv = zu-yv, then there exists
an abelian group Q(+), its authomorphisms ¢, 1 and an element g € Q)
such that ¢y =Yy and = -y = px + Yy + g for every z,y € (). With-
out the requirement 1) = 1 such kind of abelian group isotopes are
called T-quasigroups and was considered by Kepka and Nemec (cf.
[2], [3]). Toyoda’s theorem may be generalized to the case n > 2 (cf.
[1]). So T-quasigroups of arity n can be defined analogously with the
binary case. Most of the results proved for binary 7T-quasigroups can
be generalized for n-T-quasigroups of any finite arity n > 2. At the
same time the theory of n-quasigroups gives often new aspects of the
proved for n = 2 facts. For example, for n > 3 there are n-groups
Q(A) and their congruences 6 such that C,(A) is not an n-group for
any class of congruence C,(A) € Q/6 (cf. [5]).

To avoid repetitions assume that n > 2 and 1,n =1,2,...,n.

Definition 1. An n-quasigroup is called an n-ary T-quasigroup (or,
shortly, an n-T-quasigroup) if there are a binary abelian group Q(+),
its automorphisms 71,7, ...,7, and an element g € ) such that

A(x]) = a1 + Y2x2 4+ YnTp + g
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for every (z7) € Q™. The (n+2)-tuple (Q(+), 71,72, - - - Yn, g) s called
a T-form of Q(A) and the group Q(+) is called a T-group of Q(A).

It follows from the definition of medial quasigroups that an n-T-
quasigroup Q(A) is medial iff ~,v; = 7,7, for every 4,5 € {1,n},
where (Q(+), 71,72, - - -, Vn, 9) is a T-form of Q(A) (cf. [1]).

Proposition 1. Any two T-qroups corresponding to the same n-T-
quasigroup are isomorphic.

The proof follows from the Albert’s theorem: isotopic groups are
isomorphic.

An n-quasigroup Q(A) is called an n-ary isotope of a binary group
Q)(o) if there exist n+ 1 permutations ay, @, ..., an+1 € Sg such that

A(‘T?) - OZT_LJlrI(Oél'rl Ol 0--+0 anxn)

for every (27) € Q™. If a,11 = € is the identical permutation, then
Q(A) is called a principal n-ary isotope of Q(o) (cf. [4]). If, in ad-
dition, aq, o, ..., a, 1 are linear mappings of the group @(o), i.e. if
there exist some automorphisms 6y, 6,, ..., 60,1 of Q(o) and elements
ay,as,...,a,+1 € @ such that a;(x) = 60;(x)oa; fori=1,2,... ,n+1,
then the n-ary isotope Q(A) is called linear over Q(o).

Proposition 2. If an n-T-quasigroup Q(A) is an n-ary principal iso-
tope of a binary group Q(o) then Q(A) is linear over Q(o).

Proof. Let (Q(+),71,7%2,---,%,9) be a T-form of an n-T-quasigroup
Q(A) and let Q(A) be an n-ary isotope of the binary group Q(o).
Then

T+ YoZo + - F Yuln + g = 01T1 0 QTa 0 -0y, (1)

for every (z7) € Q" and for some ay,a,...,a, € Sg. Making the
permutation z; — 5; 'x; for i = T,n—1; 2, — R;'y,'a, in (1),
where R,(z) =z + g for every x € (), we get:

T1+To + Xy = P1T1 0 P2T2 0+ O PRIy, (2)

where ¢; = a;y; ', i =1,n—1; ¢, = an Ry, 1. Now taking o1 =
T, Ty =1y, T3 =2x4 =+ =x, = 01in (2) (0 is the neutral element of
Q(+)), we obtain:

T+y=1ropyoa, (3)
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where a = ¢300---0¢,0. Thus the groups Q(+) and Q(o) are isotopic
and then, by Albert’s theorem, they are isomorphic: Q(+) Q(0). In
particular, we get that Q(o) is abelian too. Taking z; = =xz; 1 =
Tipp = =x, =01n (2 ) we get p;x; 0 a; = x;, or Y;T; :xioai_l,
where a; = p100---0p;_100@;;100---0¢,0, i = 1,n. Therefore the
equality (3) can be written in the form:

r+y=xz0yo0"?ob, (4)

where b =a;'o---0a;l.

Putting 8(z) =z 00" 20b we obtain
Blety)=(r+y)o0"?ob=(royocl"?0b)o0"?0b
=(z00"20b)o(yo0"?ob) = B(x) o B(y),
which proves that the mapping [ is an isomorphism from Q(+) onto
Q(o). Moreover, 3,371 € Aut Q(o) for each i € 1,n.

Denoting 3v;6~! by 6;, i = 1,n, using the equalities ¢; = a;y; ',
I<is<n—1,p, = anRg_lﬂyrjl and @j(l‘j) =T Oaj_la J=1n, we
have: a;y; *(z) = roa; !, or yi(x) = ai(z)oa;, 1 <i<n—1 and
Yu(z) = ap() o d,, where d, = a,, 00" 2?0 (—g) o b. Thus

0;(x) = By (x) = Bryi(xr o (0" 20 b))
= Blag(z o (0" 20b)71) o dy
=a;(zo (0" 20b) Hod;o0"20b

involves
ai(z) =0;(x 00" 20b)od; o (0" 20b)"! = 6;(x)oc,

where

ci =0;(0"20b)od; o (0" 20b)7!
i.e. the permutations «a;, 1 <i < n are linear over ()(o). Moreover,
ci=0;(0"20b)od; o (0" 20b)7!
— ai(e) od;0 (0720 b) 0 (07 0 b) L o d! = ay(e),

where e is the unit of Q(o), i.e. ¢ = «a;(e), 1 < i < n. Hence
a; = 0;(x) oay(e) fot all 1 <i < n. O
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Proposition 3. Let Q(+) be a T-group of an n-ary T-quasigroup
Q(A) and let P(A) be an n-ary subquasigroup of Q(A). If the neutral
element 0 of Q(+)) belongs to P, then P(A) is an n-T-quasigroup and
P(+) is a T-group of P(A).

Proof. Let (Q(+),71,---Vn,g) be a T-form of Q(A). If 0 € P, then

n -1 n—i
A(0) = g € P. More, if A(0,z, 0) = 0, where 1 < i < n, then
r € P, ie. v(r)+g=0,s0x=7"(—g) € P forevery 1 <i<n.

-1 m—i-1

If z € Pthen v;(y) = A(0,y, 0 ,v.'(—g)) ==, impliesy € P,
i.e. z € Pgivesy; '(z) € P forevery i = 1,n. Thus, for every z,y € P
we have v, (), 75 ' (y) € P. Therefore

n—3
A (@)% W), 0,7, (—9)) =a +y e P.

Further, for x € P there exists an element y € P such that

v 4y =AM @), ), 0,77 (—g) =0,

i.e. y = —x € P. Thus P(+) is a subgroup of Q(+) and P(A) is an
n-T-quasigroup with T-form (P(+),v1|p,---,YlpP,9)- O

Proposition 4. Let Q(A) be an n-T-quasigroup and P(A) be an n-ary
subquasigroup of Q(A). Then for every a € P there exists a binary
group Q(o) with the unit a such that P(o) is a T-group of P(A).

Proof. Let (Q(+),71,--.,7n,g) be a T-form of Q(A) and P(A) be an
n-ary subquasigroup of Q(A). If a € P then Q(o) ~ Q(+), where the
binary operation (o) is defined by oy = R, 'z +y, and a is the unit
of the group (o). According to Proposition 2, from the equalities
Alzf) =z + - 4 ln + g
= Ra’71$1 ©---0 Ra’}/nxn 00 =P1X1 00 PnpTn,
where ¢; = Ryy; forevery 1 <1< n—1 and ¢, = Réo)Ra%, follows
that there exist 6,0, ...,0, € Aut Q(o) such that
brz1 0 00,x, 0 p1(a)o---0pn(a) = A(ay).

According to Proposition 3, P(A) is an n-T-quasigroup, P(o) is one of
its T-groups and (P(0),01|p, ..., 0u|p,d), where d = p1(a)o- - -op,(a),
is a T-form of P(A). O
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Corollary 1. If Q(A) is an n-T-quasigroup, then for every a € Q
there exists a T-group of Q(A) with the neutral element a. [

Corollary 2. Fvery n-ary subquasigroup of an n-T-quasigroup s an
n-T'-quastgroup. [

Let Q(A) be an n-ary groupoid and let 6 be an equivalence relation
on (. Then we say that 6 is a congruence relation on the n-groupoid
Q(A) iff the following statement holds

a;ifb;, i =1,n = A(a})0A(bY) (4)
for every (a?), (b}) € Q™. The statement (4) is equivalent to
abb = A(cY a,cHOA(ET b, Y (5)

for every a,b € @ and for every (c}') € Q™.

Definition 2. The congruence ¢ defined on the n-groupoid Q(A) is
called normal if for every i = 1,n and for every (c}) € Q"

A(Ci_la a, C?—FI)OA(Ci_l: bv C?—s—l) = abb.

Proposition 5. Let 0 be a normal congruence of an n-T-quasigroup
Q(A). Then 0 is a congruence of any its T-group.

Proof. Let (Q(4),71,---,V,9) be a T-form of an n-T-quasigroup
Q(A) and let 6 be a normal congruence of QQ(A). Then

n—2 n—2

abh <= A(y'(a), 0,7, (=9))0 Ay (D), 0,7, (—9))
= ;' (a)0 (D),

therefore
n—3 n—3
Ay (@), 17 (0), 0,7, (=9)0A( (), 757 (), 0,7, (—9))
or (a+c)f(b+c), i.e. 0 isa congruence on Q(+). O

Proposition 6. Let (Q(+),71,- .-, Vn, g) be a T-form of an n-T-quasi-
group Q(A) and let 0 be a congruence of Q(+). Then

1. 0 is a congruence on Q(A) if and only if ;| kero are endomorphisms
of the group Ker® for everyi = 1,n.

2. 0 is a normal congruence on Q(A) if and only if 7| kero are auto-
morphisms of the group Ker for every i = 1,n.
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Proof. 1) Let 6 be a congruence on Q(A). If a € Ker 6 then af0, i.e.

—1—1 n—1
A<07a7 0 771;1(_g))9‘4( 0 777:1(_9))
for every 1 < i < n — 1, therefore v;(a)f0 for every 1 <i < n— 1.
Analogously we get v,(a) € Kerf. Thus ~v;(a) € Kerf for every
i=1,n and a € Kerf. If a,b € Ker6, then af0 and b00, therefore
abb and (a + 0)00. Thus a + b € Ker 6 and then 7;(a + b) € Ker6 for
every i = 1,n. But v;(a),7:(b) € Ker 6 involves 7;(a) + 7i(b) € Ker 6.

Thus 7;|kerg is an endomorphism on Ker 6 for every i = 1, n.

Conversely, let 7;|kerg, ¢ = 1,n be endomorphisms of Ker 6 and
let afb. Then (a — )60, i.e. v;(a —b) € Ker6, therefore v;(a)0;(b)

for every i = 1,n. So

(ier) + -+ vica(ei1) +7i(a) + Yira(cirn) + - len))
and
O(vi(er) + -+ vici(cio1) +7i(b) + Yira(civr) + - mlen))
are equivalent. Thus
Al a, ey )0A(T b, cfyy)

for every (c}') € Q™, i = 1,n. Hence 0 is a congruence on Q(A).
2) Let 6 be a normal congruence on QQ(A). Then 7;|kerg is an
endomorphism of Ker 6. Moreover,
n—2 n—1
a0 <= A(7 ' (a), 0,7, (=9)0A( 0,7, (~9))
< 77 (a)00 <= ~;'(a) € Ker 6.

Analogously can be proved that af0 <= ~; '(a) € Ker 6 for every i =
2,n. Therefore ; is invertible on Ker 6. So v;|ker¢ is an automorphism
of Ker 6 for every i = 1, n.
On the other hand, if v;|kerg € Aut Ker6, i = 1,n, then 6 is a
congruence on Q(A). Moreover,
Al a, et OA(ST b, el ) <= vi(a —b) € Ker
< a—be Kerf < abb

for every ¢ = 1,n and (c}) € Q" i.e. 6 is a normal congruence on

Q(A). 0



Congruences on n-ary T-quasigroups 77

Remark 1. Not every congruence of an n-T-quasigroup is normal
as the following example shows. Let Q(4) be the additive group of
rational numbers. Then Q(A), where A(z7) = 221 + 220 + - - + 22,
for every (z7) € Q, is a medial n-quasigroup. The binary relation n
defined by

my <= r—yEe s

is a congruence on Q(A). Moreover, if z;ny; for every 1 < i < n,
then also z; —y; € Z, and (x1+ - +z,) — (1 + -+ yn) € Z, which
implies A(z7)nA(y}). This proves that 7 is a congruence on @Q(A).
But Kern = Z and v;|z, i = 1,n are not automorphisms of Z(+), so
n is not normal on Q(A). Examples for n = 2 are given in [2]. O

Proposition 7. Let (Q(+),71,- .-, Vn, g) be a T-form of an n-T'-quasi-
group Q(A). If at least one of the automorphisms ~; has a finite order,
then every congruence on Q(A) is a congruence on Q(+).

Proof. Let 4" = ¢ for some fixed m and let 6 be a congruence on

n—2 n—2
Q(A). Then afb implies A(a, 0,7, (—9))0AD, 0,7, (—g)), ie.
y1(a) 0~ (b). Thus, by induction, we have v '(a)#~" *(b), which
gives vy *(a) @ ~; ' (b). Hence

AT (@), 5 e), 0,77 (—g))

and
n—3

A (0),%2 1 (0), 0,7, (=g a+)f(b+c)
are equivalent, i.e. (a+c)0(b+c) for every ¢ € (). So 6 is a congruence

of Q(+). []

Definition 3. An n-ary subquasigroup P(A) of an n-T-quasigroup
Q(A) is called normal in Q(A) if there exists a normal congruence 0
of Q(A) such that P is a class of equivalence of 0.

Proposition 8. Fvery n-ary subquasigroup of an n-T -quasigroup Q(A)
18 normal.

Proof. Let (Q(+),71,.-.,7n,g) be a T-form of Q(A) and let P(A) be
an n-ary subquasigroup of Q(A). If 0 € P is the neutral element of
Q(+) then P(A) is an n-T-quasigroup and (P(+),v1|p, ..., Valp,g) is
a T-form of P(A). So as P(+) is an invariant subgroup of Q(+) the
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factor-group (/P defines a congruence 6 on (Q(+) such that P is a
class of equivalence of 0. Since Kerf = P we get that vi|p = Vilkero
are automorphisms of Ker 6, i.e. € is a normal congruence on Q(A) and
P(A) is a normal subquasigroup of QQ(A). According to Proposition
4, for every element a € ) there is a T-group of Q(A), having a as a
neutral element. O]

Remark 2. As it is well known, if # is a congruence of a binary
group Q(-) then there is exactly one C, € Q/6 such that (C,,-) is a
subgroup of Q(-). J.Usan proved that for n > 2 there are n -groups
(Q(A) and their congruences € such that for any C, € Q/60, C,(A) is

not an n-group.

Proposition 9. Let (Q1(+), 71, -+ Vs 91) and (Q2(0), a1, - .., n, g2)
be two T-forms of n-T-quasigroups Q1(A) and Qa(B), respectively.
If n:Qi(A) — Qa(B) is a morphism of n-quasigroups, then the
mapping ¢ : Q1(+) — Qa(0) defined by (x) = n(x) o (n(0))~" is a
group morphism and pvy; = a;  for every ¢ = 1,n. Moreover, ¢ is
an isomorphism if and only if n is an isomorphism (0 is the neutral

element of Q(+)).
Proof. From nA(z}) = B(nx1,nza, ..., n,) follows

e + -+ Yn + 1) = awn(zr) o -0 ann(zn) 0 g2 (7)
Putting in (7) z; =0 for 1 <i<n—1 and z, =7, (—g1), we get:

17(0) = a1n(0) o - -+ 0 a_11(0) © (7, ' (—g1)) © ga.
Therefore
CY177(0) o---oa;_1n(0)o Oéz‘+177(0) ©--+0 Oén—177(0) © anﬁVﬁl(_gl) © g2

= 1(0) o (a;n(0)) .
Thus

myi(xi) = ain(a;) o n(0) o (in(0))~,
myi(w:) o ((0)) ™ = aum(s) o (ain(0))~"
= ain(w;) 0 a;(n(0)) ! = ai(n(x) o (n(0))~1).

From the last equalities we get ©v;(z;) = a;p(x;) for every z; € Q,
i.e. ¢y = a;p for every i = 1,n.

and

n(
n(
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Putting x; =0 for 1 <i<n-—1 and z, = v, (—g1) in (7), we
see that

n(7i(x1) 4+ 72(22)) = aan() o aan(as) o n(0) o (ayn(0) o an(0))~

implies
n(y1(z1) +72(22)) 0 (1(0)) ™ = ar(n(z1) o n(0)™) 0 az(n(z2) 0 n(0) ™),
which gives

e(m(21) +12(22)) = arp(a1) 0 arp(x2) = pn1(x1) © p72(22)
for every z1,29 € Q. Thus ¢ is a group morphism from Q;(+) to
QQ(O). D

Corollary 3. Let Q1(A) and Q2(B) be two n-T-quasigroups and
Q1(+), Q2(0) be their T-groups, respectively. Then a morphism 1
from Q1(A) to Qa2(B) is a morphism from Q1(+) to Q2(0) if and only
if n(0) = e, where 0 and e are the neutral elements of Q1(+) and
Q2(0), respectively.

Proof. The mapping ¢ : Q1(4+) — @Q2(o) such that

p(x) = n(x) on(0)”

is a morphism of groups. So ¢(x +y) = ¢(x) o p(y) is equivalent to
n(z +y) on(0)~ =n(z) on(0)~ o n(y) on(0)~.

1

Thus
n(x +y) on(0)~" = n(x) o ny) o n(0)~.
Hence 7(0) = e if and only if n(z + y) = n(x) o n(y). O

Proposition 10. Let Q(A) be an n-T-quasigroup, K and H be two
n-ary subquasigroups of Q(A). If there is a congruence 0 on Q(A)
such that H, K € Q/0 then H and K are isomorphic.

Proof. So as K(A) and H(A) are normal subquasigroups in Q(A) there
is a normal congruence p on Q(A) such that K (A) is one of its classes.
If (¢}) € K™ and apb for some a,b € @) then there are x,y € @ such
that A(c{,z,c%y) = a and A(c{", 2,y,c,) = b. Hence from apb
follows c;11py, ie. y € K.

Let 6 be a congruence on Q(A) such that K, H € Q/f. Then
Y, cir1 € K implies yfc; .1, thus apb implies a6b.



80 P. N. Syrbu

Let K € Q/pNQ/O and abb. Then for every (c}) € K" there
exists € @ such that A(¢{',z,a,cl,) € K. But afb implies
ATz a, ¢ 5)0A(CT 2, b, ¢y y), hence A(ST, x,b,¢l,) € K. So
as K € Q/p we get: A(c{™", x,a,c,)pA(ci", 2,b, ¢ ,) thus apb, i.e.
afb implies apb. So we get that § = p thus € must be a normal
congruence too.

Let H(+) and K (o) be T-groups of H(A) and K(A), respectively.
Let 0 and e be the neutral elements of H(+) and K (o), respectively.
The mapping o : Q(+) — Q(o) defined by o(z) = z007!, is a group
isomorphism (by Proposition 9, for n = ¢).

From o(0) = e it follows that ¢ € Aut Q(A). So as € is a normal
congruence on QQ(A), 0 is a congruence on (o). Therefore afb <
ao'0bo 07! & o(a)fo(b). Thus o(H) = K. O
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