On congruences on *n*-ary *T*-quasigroups

Paraskovya N. Syrbu

Abstract

We consider the class of n-ary quasigroups which are uniquely determined by some abelian group and their automorphisms. Connections between different groups corresponding to the same n-ary quasigroup are described.

According to Toyoda's theorem, if $Q(\cdot)$ is a medial (entropic) quasigroup, i.e., if it satisfies the identity $xy \cdot uv = xu \cdot yv$, then there exists an abelian group Q(+), its authomorphisms φ, ψ and an element $g \in Q$ such that $\varphi\psi = \psi\varphi$ and $x \cdot y = \varphi x + \psi y + g$ for every $x, y \in Q$. Without the requirement $\varphi\psi = \psi\varphi$ such kind of abelian group isotopes are called *T*-quasigroups and was considered by Kepka and Nemec (cf. [2], [3]). Toyoda's theorem may be generalized to the case $n \ge 2$ (cf. [1]). So *T*-quasigroups of arity *n* can be defined analogously with the binary case. Most of the results proved for binary *T*-quasigroups can be generalized for *n*-*T*-quasigroups of any finite arity $n \ge 2$. At the same time the theory of *n*-quasigroups gives often new aspects of the proved for n = 2 facts. For example, for $n \ge 3$ there are *n*-groups Q(A) and their congruences θ such that $C_a(A)$ is not an *n*-group for any class of congruence $C_a(A) \in Q/\theta$ (cf. [5]).

To avoid repetitions assume that $n \ge 2$ and $\overline{1, n} = 1, 2, \ldots, n$.

Definition 1. An *n*-quasigroup is called an *n*-ary *T*-quasigroup (or, shortly, an *n*-*T*-quasigroup) if there are a binary abelian group Q(+), its automorphisms $\gamma_1, \gamma_2, \ldots, \gamma_n$ and an element $g \in Q$ such that

$$A(x_1^n) = \gamma_1 x_1 + \gamma_2 x_2 + \dots + \gamma_n x_n + g$$

1991 Mathematics Subject Classification: 20N15

Keywords: *n*-ary quasigroup, T-quasigroup, isotope, congruence

for every $(x_1^n) \in Q^n$. The (n+2)-tuple $(Q(+), \gamma_1, \gamma_2, \ldots, \gamma_n, g)$ is called a *T*-form of Q(A) and the group Q(+) is called a *T*-group of Q(A).

It follows from the definition of medial quasigroups that an *n*-*T*quasigroup Q(A) is medial iff $\gamma_i \gamma_j = \gamma_j \gamma_i$, for every $i, j \in \{1, n\}$, where $(Q(+), \gamma_1, \gamma_2, \ldots, \gamma_n, g)$ is a *T*-form of Q(A) (cf. [1]).

Proposition 1. Any two *T*-groups corresponding to the same *n*-*T*-guasigroup are isomorphic.

The proof follows from the Albert's theorem: isotopic groups are isomorphic.

An *n*-quasigroup Q(A) is called an *n*-ary isotope of a binary group $Q(\circ)$ if there exist n+1 permutations $\alpha_1, \alpha_2, \ldots, \alpha_{n+1} \in S_Q$ such that

$$A(x_1^n) = \alpha_{n+1}^{-1}(\alpha_1 x_1 \circ \alpha_2 x_2 \circ \dots \circ \alpha_n x_n)$$

for every $(x_1^n) \in Q^n$. If $\alpha_{n+1} = \varepsilon$ is the identical permutation, then Q(A) is called a *principal n-ary isotope* of $Q(\circ)$ (cf. [4]). If, in addition, $\alpha_1, \alpha_2, \ldots, \alpha_{n+1}$ are linear mappings of the group $Q(\circ)$, i.e. if there exist some automorphisms $\theta_1, \theta_2, \ldots, \theta_{n+1}$ of $Q(\circ)$ and elements $a_1, a_2, \ldots, a_{n+1} \in Q$ such that $\alpha_i(x) = \theta_i(x) \circ a_i$ for $i = 1, 2, \ldots, n+1$, then the *n*-ary isotope Q(A) is called *linear over* $Q(\circ)$.

Proposition 2. If an n-T-quasigroup Q(A) is an n-ary principal isotope of a binary group $Q(\circ)$ then Q(A) is linear over $Q(\circ)$.

Proof. Let $(Q(+), \gamma_1, \gamma_2, \ldots, \gamma_n, g)$ be a *T*-form of an *n*-*T*-quasigroup Q(A) and let Q(A) be an *n*-ary isotope of the binary group $Q(\circ)$. Then

$$\gamma_1 x_1 + \gamma_2 x_2 + \dots + \gamma_n x_n + g = \alpha_1 x_1 \circ \alpha_2 x_2 \circ \dots \circ \alpha_n x_n \tag{1}$$

for every $(x_1^n) \in Q^n$ and for some $\alpha_1, \alpha_2, \ldots, \alpha_n \in S_Q$. Making the permutation $x_i \to \gamma_i^{-1} x_i$ for $i = \overline{1, n-1}$; $x_n \to R_g^{-1} \gamma_n^{-1} x_n$ in (1), where $R_g(x) = x + g$ for every $x \in Q$, we get:

$$x_1 + x_2 \dots + x_n = \varphi_1 x_1 \circ \varphi_2 x_2 \circ \dots \circ \varphi_n x_n, \tag{2}$$

where $\varphi_i = \alpha_i \gamma_i^{-1}$, $i = \overline{1, n-1}$; $\varphi_n = \alpha_n R_g^{-1} \gamma_n^{-1}$. Now taking $x_1 = x$, $x_2 = y$, $x_3 = x_4 = \cdots = x_n = 0$ in (2) (0 is the neutral element of Q(+)), we obtain:

$$x + y = \varphi_1 x \circ \varphi_2 y \circ a, \tag{3}$$

where $a = \varphi_3 0 \cdots \circ \varphi_n 0$. Thus the groups Q(+) and $Q(\circ)$ are isotopic and then, by Albert's theorem, they are isomorphic: $Q(+) \cong Q(\circ)$. In particular, we get that $Q(\circ)$ is abelian too. Taking $x_1 = \cdots = x_{i-1} =$ $x_{i+1} = \cdots = x_n = 0$ in (2) we get $\varphi_i x_i \circ a_i = x_i$, or $\varphi_i x_i = x_i \circ a_i^{-1}$, where $a_i = \varphi_1 0 \circ \cdots \circ \varphi_{i-1} 0 \circ \varphi_{i+1} 0 \circ \cdots \circ \varphi_n 0$, $i = \overline{1, n}$. Therefore the equality (3) can be written in the form:

$$x + y = x \circ y \circ 0^{n-2} \circ b, \tag{4}$$

where $b = a_1^{-1} \circ \cdots \circ a_n^{-1}$. Putting $\beta(x) = x \circ 0^{n-2} \circ b$ we obtain

$$\begin{aligned} \beta(x+y) &= (x+y) \circ 0^{n-2} \circ b = (x \circ y \circ 0^{n-2} \circ b) \circ 0^{n-2} \circ b \\ &= (x \circ 0^{n-2} \circ b) \circ (y \circ 0^{n-2} \circ b) = \beta(x) \circ \beta(y), \end{aligned}$$

which proves that the mapping β is an isomorphism from Q(+) onto $Q(\circ)$. Moreover, $\beta \gamma_i \beta^{-1} \in Aut \ Q(\circ)$ for each $i \in \overline{1, n}$.

Denoting $\beta \gamma_i \beta^{-1}$ by θ_i , $i = \overline{1, n}$, using the equalities $\varphi_i = \alpha_i \gamma_i^{-1}$, $1 \leq i \leq n-1$, $\varphi_n = \alpha_n R_g^{-1} \gamma_n^{-1}$ and $\varphi_j(x_j) = x_j \circ a_j^{-1}$, $j = \overline{1, n}$, we have: $\alpha_i \gamma_i^{-1}(x) = x \circ a_i^{-1}$, or $\gamma_i(x) = \alpha_i(x) \circ a_i$, $1 \leq i \leq n-1$ and $\gamma_n(x) = \alpha_n(x) \circ d_n$, where $d_n = a_n \circ 0^{n-2} \circ (-g) \circ b$. Thus

$$\begin{aligned} \theta_i(x) &= \beta \gamma_i \beta^{-1}(x) = \beta \gamma_i (x \circ (0^{n-2} \circ b)^{-1}) \\ &= \beta [\alpha_i (x \circ (0^{n-2} \circ b)^{-1}) \circ d_i] \\ &= \alpha_i (x \circ (0^{n-2} \circ b)^{-1}) \circ d_i \circ 0^{n-2} \circ b \end{aligned}$$

involves

$$\alpha_i(x) = \theta_i(x \circ 0^{n-2} \circ b) \circ d_i^{-1} \circ (0^{n-2} \circ b)^{-1} = \theta_i(x) \circ c_i,$$

where

$$c_i = \theta_i (0^{n-2} \circ b) \circ d_i^{-1} \circ (0^{n-2} \circ b)^{-1}$$

i.e. the permutations α_i , $1 \leq i \leq n$ are linear over $Q(\circ)$. Moreover,

$$\begin{split} c_i &= \theta_i (0^{n-2} \circ b) \circ d_i^{-1} \circ (0^{n-2} \circ b)^{-1} \\ &= \alpha_i(e) \circ d_i \circ (0^{n-2} \circ b) \circ (0^{-1} \circ b)^{-1} \circ d_i^{-1} = \alpha_i(e), \end{split}$$

where e is the unit of $Q(\circ)$, i.e. $c_i = \alpha_i(e)$, $1 \leq i \leq n$. Hence $\alpha_i = \theta_i(x) \circ \alpha_i(e)$ for all $1 \leq i \leq n$.

Proposition 3. Let Q(+) be a T-group of an n-ary T-quasigroup Q(A) and let P(A) be an n-ary subquasigroup of Q(A). If the neutral element 0 of Q(+) belongs to P, then P(A) is an n-T-quasigroup and P(+) is a T-group of P(A).

Proof. Let $(Q(+), \gamma_1, \ldots, \gamma_n, g)$ be a T-form of Q(A). If $0 \in P$, then $A_{(0)}^{n} = g \in P. \text{ More, if } A_{(0,x,0)}^{i-1} = 0, \text{ where } 1 \leq i \leq n, \text{ then } x \in P, \text{ i.e. } \gamma_{i}(x) + g = 0, \text{ so } x = \gamma_{i}^{-1}(-g) \in P \text{ for every } 1 \leq i \leq n.$ If $x \in P$ then $\gamma_{i}(y) = A_{(0,y,0)}^{i-1}, \gamma_{n}^{-1}(-g) = x, \text{ implies } y \in P,$ i.e. $x \in P$ gives $\gamma_{i}^{-1}(x) \in P$ for every i = 1, n. Thus, for every $x, y \in P$

we have $\gamma_1^{-1}(x), \gamma_2^{-1}(y) \in P$. Therefore

$$A(\gamma_1^{-1}(x), \gamma_2^{-1}(y), \overset{n-3}{0}, \gamma_n^{-1}(-g)) = x + y \in P.$$

Further, for $x \in P$ there exists an element $y \in P$ such that

$$x + y = A(\gamma_1^{-1}(x), \gamma_2^{-1}(y), \overset{n-3}{0}, \gamma_n^{-1}(-g)) = 0,$$

i.e. $y = -x \in P$. Thus P(+) is a subgroup of Q(+) and P(A) is an *n*-*T*-quasigroup with *T*-form $(P(+), \gamma_1|_P, \ldots, \gamma_n|_P, g)$.

Proposition 4. Let Q(A) be an *n*-*T*-quasigroup and P(A) be an *n*-ary subquasigroup of Q(A). Then for every $a \in P$ there exists a binary group $Q(\circ)$ with the unit a such that $P(\circ)$ is a T-group of P(A).

Proof. Let $(Q(+), \gamma_1, \ldots, \gamma_n, g)$ be a T-form of Q(A) and P(A) be an *n*-ary subquasigroup of Q(A). If $a \in P$ then $Q(\circ) \simeq Q(+)$, where the binary operation (\circ) is defined by $x \circ y = R_a^{-1}x + y$, and a is the unit of the group $Q(\circ)$. According to Proposition 2, from the equalities

$$A(x_1^n) = \gamma_1 x_1 + \dots + \gamma_n x_n + g$$

= $R_a \gamma_1 x_1 \circ \dots \circ R_a \gamma_n x_n \circ g = \varphi_1 x_1 \circ \dots \circ \varphi_n x_n,$

where $\varphi_i = R_a \gamma_i$ for every $1 \leq i \leq n-1$ and $\varphi_n = R_g^{(\circ)} R_a \gamma_n$, follows that there exist $\theta_1, \theta_2, \ldots, \theta_n \in Aut \ Q(\circ)$ such that

$$\theta_1 x_1 \circ \cdots \circ \theta_n x_n \circ \varphi_1(a) \circ \cdots \circ \varphi_n(a) = A(x_1^n).$$

According to Proposition 3, P(A) is an *n*-*T*-quasigroup, $P(\circ)$ is one of its T-groups and $(P(\circ), \theta_1|_P, \ldots, \theta_n|_P, d)$, where $d = \varphi_1(a) \circ \cdots \circ \varphi_n(a)$, is a T-form of P(A). **Corollary 1.** If Q(A) is an n-T-quasigroup, then for every $a \in Q$ there exists a T-group of Q(A) with the neutral element a.

Corollary 2. Every n-ary subquasigroup of an n-T-quasigroup is an n-T-quasigroup.

Let Q(A) be an *n*-ary groupoid and let θ be an equivalence relation on Q. Then we say that θ is a *congruence relation on the n-groupoid* Q(A) iff the following statement holds

$$a_i \theta b_i, \ i = \overline{1, n} \implies A(a_1^n) \theta A(b_1^n)$$
 (4)

for every $(a_1^n), (b_1^n) \in Q^n$. The statement (4) is equivalent to

$$a\theta b \implies A(c_1^{i-1}, a, c_i^{n-1})\theta A(c_1^{i-1}, b, c_i^{n-1})$$

$$\tag{5}$$

for every $a, b \in Q$ and for every $(c_1^n) \in Q^n$.

Definition 2. The congruence θ defined on the *n*-groupoid Q(A) is called *normal* if for every $i = \overline{1, n}$ and for every $(c_1^n) \in Q^n$

$$A(c_1^{i-1}, a, c_{i+1}^n)\theta A(c_1^{i-1}, b, c_{i+1}^n) \Longrightarrow a\theta b.$$

Proposition 5. Let θ be a normal congruence of an *n*-*T*-quasigroup Q(A). Then θ is a congruence of any its *T*-group.

Proof. Let $(Q(+), \gamma_1, \ldots, \gamma_n, g)$ be a *T*-form of an *n*-*T*-quasigroup Q(A) and let θ be a normal congruence of Q(A). Then

$$\begin{array}{rcl} a\theta b & \Longleftrightarrow & A(\gamma_1^{-1}(a), \overset{n-2}{0}, \gamma_n^{-1}(-g)) \, \theta \, A(\gamma_1^{-1}(b), \overset{n-2}{0}, \gamma_n^{-1}(-g)) \\ & \longleftrightarrow & \gamma_1^{-1}(a) \theta \gamma_1^{-1}(b), \end{array}$$

therefore

$$A(\gamma_1^{-1}(a), \gamma_2^{-1}(c), \overset{n-3}{0}, \gamma_n^{-1}(-g))\theta A(\gamma_1^{-1}(b), \gamma_2^{-1}(c), \overset{n-3}{0}, \gamma_n^{-1}(-g))$$

or $(a+c)\theta(b+c)$, i.e. θ is a congruence on Q(+).

Proposition 6. Let $(Q(+), \gamma_1, \ldots, \gamma_n, g)$ be a *T*-form of an *n*-*T*-quasigroup Q(A) and let θ be a congruence of Q(+). Then

- 1. θ is a congruence on Q(A) if and only if $\gamma_i|_{Ker\theta}$ are endomorphisms of the group $Ker\theta$ for every $i = \overline{1, n}$.
- 2. θ is a normal congruence on Q(A) if and only if $\gamma_i|_{Ker\theta}$ are automorphisms of the group $Ker\theta$ for every $i = \overline{1, n}$.

Proof. 1) Let θ be a congruence on Q(A). If $a \in \text{Ker } \theta$ then $a\theta 0$, i.e.

$$A(\stackrel{i-1}{0},a,\stackrel{n-i-1}{0},\gamma_n^{-1}(-g))\,\theta\,A(\stackrel{n-1}{0},\gamma_n^{-1}(-g))$$

for every $1 \leq i \leq n-1$, therefore $\gamma_i(a)\theta 0$ for every $1 \leq i \leq n-1$. Analogously we get $\gamma_n(a) \in \operatorname{Ker} \theta$. Thus $\gamma_i(a) \in \operatorname{Ker} \theta$ for every $i = \overline{1, n}$ and $a \in \operatorname{Ker} \theta$. If $a, b \in \operatorname{Ker} \theta$, then $a\theta 0$ and $b\theta 0$, therefore $a\theta b$ and $(a+b)\theta 0$. Thus $a+b \in \operatorname{Ker} \theta$ and then $\gamma_i(a+b) \in \operatorname{Ker} \theta$ for every $i = \overline{1, n}$. But $\gamma_i(a), \gamma_i(b) \in \operatorname{Ker} \theta$ involves $\gamma_i(a) + \gamma_i(b) \in \operatorname{Ker} \theta$. Thus $\gamma_i|_{\operatorname{Ker} \theta}$ is an endomorphism on $\operatorname{Ker} \theta$ for every $i = \overline{1, n}$.

Conversely, let $\gamma_i|_{\text{Ker}\,\theta}$, $i = \overline{1, n}$ be endomorphisms of Ker θ and let $a\theta b$. Then $(a - b)\theta 0$, i.e. $\gamma_i(a - b) \in \text{Ker}\,\theta$, therefore $\gamma_i(a)\theta\gamma_i(b)$ for every $i = \overline{1, n}$. So

$$(\gamma_1(c_1) + \dots + \gamma_{i-1}(c_{i-1}) + \gamma_i(a) + \gamma_{i+1}(c_{i+1}) + \dots + \gamma_n(c_n))$$

and

$$\theta(\gamma_1(c_1) + \dots + \gamma_{i-1}(c_{i-1}) + \gamma_i(b) + \gamma_{i+1}(c_{i+1}) + \dots + \gamma_n(c_n))$$

are equivalent. Thus

$$A(c_1^{i-1}, a, c_{i+1}^n)\theta A(c_1^{i-1}, b, c_{i+1}^n)$$

for every $(c_1^n) \in Q^n$, $i = \overline{1, n}$. Hence θ is a congruence on Q(A).

2) Let θ be a normal congruence on Q(A). Then $\gamma_i|_{\operatorname{Ker}\theta}$ is an endomorphism of $\operatorname{Ker}\theta$. Moreover,

$$a\theta 0 \Longleftrightarrow A(\gamma_1^{-1}(a), \overset{n-2}{0}, \gamma_n^{-1}(-g))\theta A(\overset{n-1}{0}, \gamma_n^{-1}(-g)) \Longleftrightarrow \gamma_1^{-1}(a)\theta 0 \iff \gamma_1^{-1}(a) \in \operatorname{Ker} \theta.$$

Analogously can be proved that $a\theta 0 \iff \gamma_i^{-1}(a) \in \operatorname{Ker} \theta$ for every $i = \overline{2, n}$. Therefore γ_i is invertible on $\operatorname{Ker} \theta$. So $\gamma_i|_{\operatorname{Ker} \theta}$ is an automorphism of $\operatorname{Ker} \theta$ for every $i = \overline{1, n}$.

On the other hand, if $\gamma_i|_{\text{Ker }\theta} \in Aut \text{ Ker }\theta$, $i = \overline{1, n}$, then θ is a congruence on Q(A). Moreover,

$$A(c_1^{i-1}, a, c_{i+1}^n)\theta A(c_1^{i-1}, b, c_{i+1}^n) \Longleftrightarrow \gamma_i(a-b) \in \operatorname{Ker} \theta$$
$$\iff a-b \in \operatorname{Ker} \theta \iff a\theta b$$

for every $i = \overline{1, n}$ and $(c_1^n) \in Q^n$, i.e. θ is a normal congruence on Q(A).

Remark 1. Not every congruence of an *n*-*T*-quasigroup is normal as the following example shows. Let Q(+) be the additive group of rational numbers. Then Q(A), where $A(x_1^n) = 2x_1 + 2x_2 + \cdots + 2x_n$ for every $(x_1^n) \in Q^n$, is a medial *n*-quasigroup. The binary relation η defined by

$$x\eta y \iff x - y \in Z$$

is a congruence on Q(A). Moreover, if $x_i\eta y_i$ for every $1 \leq i \leq n$, then also $x_i - y_i \in Z$, and $(x_1 + \cdots + x_n) - (y_1 + \cdots + y_n) \in Z$, which implies $A(x_1^n)\eta A(y_1^n)$. This proves that η is a congruence on Q(A). But Ker $\eta = Z$ and $\gamma_i|_Z$, $i = \overline{1, n}$ are not automorphisms of Z(+), so η is not normal on Q(A). Examples for n = 2 are given in [2]. \Box

Proposition 7. Let $(Q(+), \gamma_1, \ldots, \gamma_n, g)$ be a *T*-form of an *n*-*T*-quasigroup Q(A). If at least one of the automorphisms γ_i has a finite order, then every congruence on Q(A) is a congruence on Q(+).

Proof. Let $\gamma_1^m = \varepsilon$ for some fixed *m* and let θ be a congruence on Q(A). Then $a\theta b$ implies $A(a, \overset{n-2}{0}, \gamma_n^{-1}(-g))\theta A(b, \overset{n-2}{0}, \gamma_n^{-1}(-g))$, i.e. $\gamma_1(a) \theta \gamma_1(b)$. Thus, by induction, we have $\gamma_1^{m-1}(a) \theta \gamma_1^{m-1}(b)$, which gives $\gamma_1^{-1}(a) \theta \gamma_1^{-1}(b)$. Hence

and

$$A(\gamma_1^{-1}(b), \gamma_2^{-1}(c), \overset{n-3}{0}, \gamma_n^{-1}(-g))(a+c)\theta(b+c)$$

 $A(\gamma_1^{-1}(a), \gamma_2^{-1}(c), \overset{n-3}{0}, \gamma_2^{-1}(-q))$

are equivalent, i.e. $(a+c)\theta(b+c)$ for every $c \in Q$. So θ is a congruence of Q(+).

Definition 3. An *n*-ary subquasigroup P(A) of an *n*-*T*-quasigroup Q(A) is called *normal in* Q(A) if there exists a normal congruence θ of Q(A) such that P is a class of equivalence of θ .

Proposition 8. Every n-ary subquasigroup of an n-T-quasigroup Q(A) is normal.

Proof. Let $(Q(+), \gamma_1, \ldots, \gamma_n, g)$ be a *T*-form of Q(A) and let P(A) be an *n*-ary subquasigroup of Q(A). If $0 \in P$ is the neutral element of Q(+) then P(A) is an *n*-*T*-quasigroup and $(P(+), \gamma_1|_P, \ldots, \gamma_n|_P, g)$ is a *T*-form of P(A). So as P(+) is an invariant subgroup of Q(+) the factor-group Q/P defines a congruence θ on Q(+) such that P is a class of equivalence of θ . Since Ker $\theta = P$ we get that $\gamma_i|_P = \gamma_i|_{\text{Ker}\,\theta}$ are automorphisms of Ker θ , i.e. θ is a normal congruence on Q(A) and P(A) is a normal subquasigroup of Q(A). According to Proposition 4, for every element $a \in Q$ there is a T-group of Q(A), having a as a neutral element.

Remark 2. As it is well known, if θ is a congruence of a binary group $Q(\cdot)$ then there is exactly one $C_a \in Q/\theta$ such that (C_a, \cdot) is a subgroup of $Q(\cdot)$. J.Ušan proved that for $n \ge 2$ there are n-groups Q(A) and their congruences θ such that for any $C_a \in Q/\theta$, $C_a(A)$ is not an *n*-group.

Proposition 9. Let $(Q_1(+), \gamma_1, \ldots, \gamma_n, g_1)$ and $(Q_2(\circ), \alpha_1, \ldots, \alpha_n, g_2)$ be two *T*-forms of *n*-*T*-quasigroups $Q_1(A)$ and $Q_2(B)$, respectively. If $\eta : Q_1(A) \to Q_2(B)$ is a morphism of *n*-quasigroups, then the mapping $\varphi : Q_1(+) \to Q_2(\circ)$ defined by $\varphi(x) = \eta(x) \circ (\eta(0))^{-1}$ is a group morphism and $\varphi \gamma_i = \alpha_i \varphi$ for every $i = \overline{1, n}$. Moreover, φ is an isomorphism if and only if η is an isomorphism (0 is the neutral element of Q(+)).

Proof. From $\eta A(x_1^n) = B(\eta x_1, \eta x_2, \dots, \eta x_n)$ follows

$$\eta(\gamma_1 x_1 + \dots + \gamma_n x_n + g_1) = \alpha_1 \eta(x_1) \circ \dots \circ \alpha_n \eta(x_n) \circ g_2.$$
 (7)

Putting in (7) $x_i = 0$ for $1 \le i \le n-1$ and $x_n = \gamma_n^{-1}(-g_1)$, we get:

$$\eta(0) = \alpha_1 \eta(0) \circ \cdots \circ \alpha_{n-1} \eta(0) \circ \alpha_n \eta(\gamma_n^{-1}(-g_1)) \circ g_2$$

Therefore

$$\alpha_1\eta(0)\circ\cdots\circ\alpha_{i-1}\eta(0)\circ\alpha_{i+1}\eta(0)\circ\cdots\circ\alpha_{n-1}\eta(0)\circ\alpha_n\eta\gamma_n^{-1}(-g_1)\circ g_2$$

= $\eta(0)\circ(\alpha_i\eta(0))^{-1}.$

Thus

$$\eta \gamma_i(x_i) = \alpha_i \eta(x_i) \circ \eta(0) \circ (\alpha_i \eta(0))^{-1}$$

and

$$\eta \gamma_i(x_i) \circ (\eta(0))^{-1} = \alpha_i \eta(x_i) \circ (\alpha_i \eta(0))^{-1} = \alpha_i \eta(x_i) \circ \alpha_i (\eta(0))^{-1} = \alpha_i (\eta(x_i) \circ (\eta(0))^{-1}).$$

From the last equalities we get $\varphi \gamma_i(x_i) = \alpha_i \varphi(x_i)$ for every $x_i \in Q$, i.e. $\varphi \gamma_i = \alpha_i \varphi$ for every $i = \overline{1, n}$.

Putting $x_i = 0$ for $1 \le i \le n-1$ and $x_n = \gamma_n^{-1}(-g_1)$ in (7), we see that

$$\eta(\gamma_1(x_1) + \gamma_2(x_2)) = \alpha_1 \eta(x_1) \circ \alpha_2 \eta(x_2) \circ \eta(0) \circ (\alpha_1 \eta(0) \circ \alpha_2 \eta(0))^{-1}$$

implies

$$\eta(\gamma_1(x_1) + \gamma_2(x_2)) \circ (\eta(0))^{-1} = \alpha_1(\eta(x_1) \circ \eta(0)^{-1}) \circ \alpha_2(\eta(x_2) \circ \eta(0)^{-1}),$$

which gives

$$\varphi(\gamma_1(x_1) + \gamma_2(x_2)) = \alpha_1\varphi(x_1) \circ \alpha_2\varphi(x_2) = \varphi\gamma_1(x_1) \circ \varphi\gamma_2(x_2)$$

for every $x_1, x_2 \in Q$. Thus φ is a group morphism from $Q_1(+)$ to $Q_2(\circ)$.

Corollary 3. Let $Q_1(A)$ and $Q_2(B)$ be two *n*-*T*-quasigroups and $Q_1(+)$, $Q_2(\circ)$ be their *T*-groups, respectively. Then a morphism η from $Q_1(A)$ to $Q_2(B)$ is a morphism from $Q_1(+)$ to $Q_2(\circ)$ if and only if $\eta(0) = e$, where 0 and e are the neutral elements of $Q_1(+)$ and $Q_2(\circ)$, respectively.

Proof. The mapping $\varphi: Q_1(+) \to Q_2(\circ)$ such that

$$\varphi(x) = \eta(x) \circ \eta(0)^{-1}$$

is a morphism of groups. So $\varphi(x+y) = \varphi(x) \circ \varphi(y)$ is equivalent to

$$\eta(x+y) \circ \eta(0)^{-1} = \eta(x) \circ \eta(0)^{-1} \circ \eta(y) \circ \eta(0)^{-1}.$$

Thus

$$\eta(x+y) \circ \eta(0)^{-1} = \eta(x) \circ \eta(y) \circ \eta(0)^{-1}.$$

Hence $\eta(0) = e$ if and only if $\eta(x+y) = \eta(x) \circ \eta(y)$.

Proposition 10. Let Q(A) be an n-T-quasigroup, K and H be two n-ary subquasigroups of Q(A). If there is a congruence θ on Q(A)such that $H, K \in Q/\theta$ then H and K are isomorphic.

Proof. So as K(A) and H(A) are normal subquasigroups in Q(A) there is a normal congruence ρ on Q(A) such that K(A) is one of its classes. If $(c_1^n) \in K^n$ and $a\rho b$ for some $a, b \in Q$ then there are $x, y \in Q$ such that $A(c_1^{i-1}, x, c_{i+1}^n) = a$ and $A(c_1^{i-1}, x, y, c_{i+2}^n) = b$. Hence from $a\rho b$ follows $c_{i+1}\rho y$, i.e. $y \in K$.

Let θ be a congruence on Q(A) such that $K, H \in Q/\theta$. Then $y, c_{i+1} \in K$ implies $y\theta c_{i+1}$, thus $a\rho b$ implies $a\theta b$.

P. N. Syrbu

Let $K \in Q/\rho \cap Q/\theta$ and $a\theta b$. Then for every $(c_1^n) \in K^n$ there exists $x \in Q$ such that $A(c_1^{i-1}, x, a, c_{i+2}^n) \in K$. But $a\theta b$ implies $A(c_1^{i-1}, x, a, c_{i+2}^n)\theta A(c_1^{i-1}, x, b, c_{i+2}^n)$, hence $A(c_1^{i-1}, x, b, c_{i+2}^n) \in K$. So as $K \in Q/\rho$ we get: $A(c_1^{i-1}, x, a, c_{i+2}^n)\rho A(c_1^{i-1}, x, b, c_{i+2}^n)$ thus $a\rho b$, i.e. $a\theta b$ implies $a\rho b$. So we get that $\theta = \rho$ thus θ must be a normal congruence too.

Let H(+) and $K(\circ)$ be *T*-groups of H(A) and K(A), respectively. Let 0 and *e* be the neutral elements of H(+) and $K(\circ)$, respectively. The mapping $\sigma: Q(+) \to Q(\circ)$ defined by $\sigma(x) = x \circ 0^{-1}$, is a group isomorphism (by Proposition 9, for $\eta = \varepsilon$).

From $\sigma(0) = e$ it follows that $\sigma \in \operatorname{Aut} Q(A)$. So as θ is a normal congruence on Q(A), θ is a congruence on $Q(\circ)$. Therefore $a\theta b \Leftrightarrow a \circ {}^{-1}\theta b \circ 0^{-1} \Leftrightarrow \sigma(a)\theta\sigma(b)$. Thus $\sigma(H) = K$.

References

- V. D. Belousov: n-Ary Quasigroups (Russian), Chishinau, Ştiinţa, 1972.
- [2] T. Kepka and P. Němec: *T*-quasigroups. Part II, Acta Univ. Carolinae Math. et Physica, 12 (1971), 31 – 49.
- [3] P. Němec and T. Kepka: T-Quasigroups. Part I, Acta Univ. Carolinae Math. et Physica, 12 (1971), 39 - 49.
- [4] F. Sokhatsky: On superassociative group isotopes, Quasigroups and Related Systems, 2 (1995), 101 – 119.
- [5] J. Ušan: On congruence classes of n-groups, Novi Sad J. Math., 28 (1998), 75 - 89.

Department of algebra Moldavian State University Mateevici str., 60 Chishinau, MD-2028 Moldova Received October 15, 1999

80