On TS-n-groups

Janez Ušan

Abstract

In this article totally simmetric n-group is described as an n-groupoid (Q,B) in which the following laws hold: $B(x,y,a_1^{n-2})=B(y,x,a_1^{n-2}),$ $B(a,c_1^{n-2},B(B(B(z,c_1^{n-2},z),c_1^{n-2},b),c_1^{n-2},B(B(z,c_1^{n-2},z),c_1^{n-2},a)))=b,$ $B(x,a_1^{n-2},y)=B(x,a_1^{n-2},B(B(y,a_1^{n-2},y),a_1^{n-2},y))$ and $B(B(x,z,b_1^{n-2}),B(y,a_1^{n-2},z),a_1^{n-2})=B(x,y,b_1^{n-2}).$

1. Introduction

Definition 1.1. Let (Q, A) be an n-quasigroup and $n \ge 2$. Also let α be a permutation in the set $\{1, 2, ..., n + 1\}$. Moreover, let

$$A^{\alpha}(x_1^n) = a_{n+1} \iff A(x_{\alpha(1)}, ..., x_{\alpha(n)}) = x_{\alpha(n+1)}$$

for all $x_1^{n+1} \in Q$. We say that (Q, A) is a totally simmetric n-quasigroup (briefly: TS-n-quasigroup) iff for any permutation α on $\{1, 2, ..., n+1\}$ we have $A^{\alpha} = A$. In the case when $\alpha = (1, n+1)$ instead of A^{α} we write $^{-1}\!A$. Similarly in the case $\alpha = (n, n+1)$ instead of A^{α} we write A^{-1} .

Proposition 1.2. Let (Q, A) be an n-group, $^{-1}$ its inversing operation, \mathbf{e} its $\{1, n\}$ -neutral operation and $n \ge 2$. Also let

(a)
$${}^{-1}A(x, a_1^{n-2}, y) = z \iff A(z, a_1^{n-2}, y) = x,$$

(b)
$$A^{-1}(x, a_1^{n-2}, y) = z \iff A(x, a_1^{n-2}, z) = y$$

¹⁹⁹¹ Mathematics Subject Classification: 20N15

Keywords: n-groupoid, n-semigroup, n-quasigroup, n-group, $\{i, j\}$ -neutral operation on n-groupoid, inversing operation on n-group, TS-n-group

J. Ušan

for all $x, y, z \in Q$ and for every $a_1^{n-2} \in Q$. Then, for all $x, y \in Q$ and for every $a_1^{n-2} \in Q$ the following equalities hold

(1)
$${}^{-1}A(x, a_1^{n-2}, y) = A(x, a_1^{n-2}, (a_1^{n-2}, y)^{-1}),$$

(2)
$$A^{-1}(x, a_1^{n-2}, y) = A((a_1^{n-2}, x)^{-1}, a_1^{n-2}, y),$$

(3)
$$\mathbf{e}(a_1^{n-2}) = {}^{-1}A(x, a_1^{n-2}, x),$$

(4)
$$(a_1^{n-2}, x)^{-1} = {}^{-1}A({}^{-1}A(x, a_1^{n-2}, x), a_1^{n-2}, x),$$

$$(5) \quad A(x,a_1^{n-2},y) = \ ^{-1}\!\!A(x,a_1^{n-2},\ ^{-1}\!\!A(\ ^{-1}\!\!A(y,a_1^{n-2},y),a_1^{n-2},y)).$$

Proof. To prove (2) observe that

$$A^{-1}(x, a_1^{n-2}, y) = z \iff A(x, a_1^{n-2}, z) = y$$

$$\iff A((a_1^{n-2}, x)^{-1}, a_1^{n-2}, A(x, a_1^{n-2}, z)) = A((a_1^{n-2}, x)^{-1}, a_1^{n-2}, y)$$

$$\iff A(A((a_1^{n-2}, x)^{-1}, a_1^{n-2}, x), a_1^{n-2}, z) = A((a_1^{n-2}, x)^{-1}, a_1^{n-2}, y)$$

$$\iff A(\mathbf{e}(a_1^{n-2}), a_1^{n-2}, z) = A((a_1^{n-2}, x)^{-1}, a_1^{n-2}, y)$$

$$\iff z = A((a_1^{n-2}, x)^{-1}, a_1^{n-2}, y).$$

The rest is proved in [7].

As a simple consequence of [2], [3] and [4] (see also [6]) we obtain:

Proposition 1.3. Let $n \ge 2$. An n-group (Q, A) is a TS-n-group iff there exist a boolean group (Q, \cdot) and element $b \in Q$ such that

$$A(x_1^n) = x_1 \cdot \ldots \cdot x_n \cdot b$$

for all $x_1^n \in Q$.

2. Results

From the above we conclude that the following proposition holds.

Proposition 2.1. Let (Q, B) be a TS-n-group with $n \ge 2$. Then

(i)
$$B(B(x, z, b_1^{n-2}), B(y, a_1^{n-2}, z), a_1^{n-2}) = B(x, y, b_1^{n-2}),$$

(ii)
$$B(a, c_1^{n-2}, B(B(B(z, c_1^{n-2}, z), c_1^{n-2}, b), c_1^{n-2}, B(B(z, c_1^{n-2}, z), c_1^{n-2}, c_1^{n-2}, z)) = b,$$

(iii)
$$B(x, a_1^{n-2}, y) = B(x, a_1^{n-2}, B(B(y, a_1^{n-2}, y), a_1^{n-2}, y)),$$

(iv)
$$B(x, y, a_1^{n-2}) = B(y, x, a_1^{n-2}).$$

Theorem 2.2. If the following laws

(i)
$$B(B(x, z, b_1^{n-2}), B(y, a_1^{n-2}, z), a_1^{n-2}) = B(x, y, b_1^{n-2}),$$

(i)
$$B(B(x, z, b_1^{-}), B(y, a_1^{-}, z), a_1^{-}) = B(x, y, b_1^{-}),$$

(ii) $B(a, c_1^{n-2}, B(B(B(z, c_1^{n-2}, z), c_1^{n-2}, b), c_1^{n-2}, B(B(z, c_1^{n-2}, z), c_1^{n-2}, a))) = b,$

(iii)
$$B(x, a_1^{n-2}, y) = B(x, a_1^{n-2}, B(B(y, a_1^{n-2}, y), a_1^{n-2}, y)),$$

(iv)
$$B(x, y, a_1^{n-2}) = B(y, x, a_1^{n-2})$$

hold in an n-groupoid (Q, B), $n \ge 2$, then (Q, B) is a TS-n-group.

Proof. For $n \ge 2$ the following statements hold.

1° Let (Q, B) be an n-groupoid. If the following two laws

$$B(B(x, z, b_1^{n-2}), B(y, a_1^{n-2}, z), a_1^{n-2}) = B(x, y, b_1^{n-2}),$$

$$B(B(x, z, b_1^{n-2}), B(y, a_1^{n-2}, z), a_1^{n-2}) = B(x, y, b_1^{n-2}),$$

$$B(a, c_1^{n-2}, B(B(B(z, c_1^{n-2}, z), c_1^{n-2}, b), c_1^{n-2},$$

$$B(B(z, c_1^{n-2}, z), c_1^{n-2}, a))) = b$$

$$B(B(z, c_1^{n-2}, z), c_1^{n-2}, a))) = b$$

hold in (Q, B), then there is an *n*-group (Q, A) such that ${}^{-1}\!A = B$. (see Theorem 2.2 in [7]).

2° There exists the n-ary operation ^{-1}B in Q such that $(Q, ^{-1}B)$ is an *n*-group and $^{-1}B = B$.

Indeed, by 1° , we conclude that there is an n-group (Q, A) such that ${}^{-1}A = B$. Hence

$$^{-1}(^{-1}A)(x, a_1^{n-2}, y) = z \Leftrightarrow ^{-1}A(z, a_1^{n-2}, y) = x \Leftrightarrow A(x, a_1^{n-2}, y) = z.$$

Moreover for all $x, y \in Q$ and $a_1^{n-2} \in Q$ we have

$$B(x, a_1^{n-2}, y) = B(x, a_1^{n-2}, B(B(y, a_1^{n-2}, y), a_1^{n-2}, y)),$$

and

$$^{-1}B(x,a_{1}^{n-2},y)=B(x,a_{1}^{n-2},B(B(y,a_{1}^{n-2},y),a_{1}^{n-2},y)), \\$$

which proves that $^{-1}B = B$.

For all $x \in Q$ and for every sequence a_1^{n-2} over Q we have $(a_1^{n-2}, x)^{-1} = x$ (see Proposition 1.2 and Remark 1.3 in [7]). Thus $B^{-1} = B$, because by [7] we have

$$B^{-1}(x, a_1^{n-2}, y) = B((a_1^{n-2}, x)^{-1}, a_1^{n-2}, y).$$

4° For all $x, y \in Q$ and for every sequence a_1^{n-2} over Q the following equality holds $B(x, a_1^{n-2}, y) = B(y, a_1^{n-2}, x)$. Indeed,

J. Ušan

$$B(x, a_1^{n-2}, y) = z \iff^{-1}B(x, a_1^{n-2}, y) = z \iff B(z, a_1^{n-2}, y) = x$$
$$\iff B^{-1}(z, a_1^{n-2}, y) = x \iff B(z, a_1^{n-2}, x) = y$$
$$\iff^{-1}B(y, a_1^{n-2}, x) = z \iff B(y, a_1^{n-2}, x) = z.$$

5° Let $n \geq 3$ and **e** be a $\{1, n\}$ -neutral operation of the n-group (Q, B). Then for all $x, y \in Q$ and for every sequence a_1^{n-2} over Q the following equality holds

$$B(\mathbf{e}(a_1^{n-2}), x, a_1^{n-2}) = x.$$

To prove it we consider the new operation F defined by

$$F(x, a_1^{n-2}) \stackrel{def}{=} B(x, \mathbf{e}(a_1^{n-2}), a_1^{n-2}).$$

Then

$$B(F(x, a_1^{n-2}), \mathbf{e}(a_1^{n-2}), a_1^{n-2}) = B(B(x, \mathbf{e}(a_1^{n-2}), a_1^{n-2}), \mathbf{e}(a_1^{n-2}), a_1^{n-2})$$

and

$$B(F(x,a_1^{n-2}),\mathbf{e}(a_1^{n-2}),a_1^{n-2})=B(x,B(\mathbf{e}(a_1^{n-2}),a_1^{n-2},\mathbf{e}(a_1^{n-2})),a_1^{n-2}).$$

This implies

$$B(F(x, a_1^{n-2}), \mathbf{e}(a_1^{n-2}), a_1^{n-2}) = B(x, \mathbf{e}(a_1^{n-2}), a_1^{n-2}).$$

Thus

$$F(x, a_1^{n-2}) = x \iff B(x, \mathbf{e}(a_1^{n-2}), a_1^{n-2}) = x.$$

But by (iv) we have

$$B(\mathbf{e}(a_1^{n-2}), x, a_1^{n-2}) = B(x, \mathbf{e}(a_1^{n-2}), a_1^{n-2}) = x,$$

which completes the proof of 5°.

6° Let $(Q, \{., \varphi, b\})$ be an arbitrary nHG-algebra associated to the n-group (Q, B) (see [8]). Then, by Proposition 1.6 from [8], there is at least one sequence $a_1^{n-2} \in Q$ such that

$$x \cdot y = B(x, a_1^{n-2}, y)$$
 and $\varphi(x) = B(\mathbf{e}(a_1^{n-2}), x, a_1^{n-2})$

for all $x, y \in Q$. Whence, by 4° and 5° , we conclude that

$$x \cdot y = y \cdot x$$
 and $\varphi(x) = x$.

Thus

$$\mathbf{e}(a_1^{n-2}) \cdot x = x \cdot \mathbf{e}(a_1^{n-2}) = B(x, a_1^{n-2}, \mathbf{e}(a_1^{n-2})) = x$$

and

$$(a_1^{n-2}, x)^{-1} \cdot x = x \cdot (a_1^{n-2}, x)^{-1} = B(x, a_1^{n-2}, (a_1^{n-2}, x)^{-1}) = \mathbf{e}(a_1^{n-2})$$

by [7]. Hence $x^{-1} \stackrel{def}{=} (a_1^{n-2}, x)^{-1} = x$, which by our Proposition 1.3 completes the proof.

Remark 2.3. Let (K, \cdot) , where $K = \{1, 2, 3, 4\}$, be the Klein's group with the multiplication defined by the following table:

Then the permutation φ of K defined by

$$\varphi = \left(\begin{array}{rrr} 1 & 2 & 3 & 4 \\ 1 & 2 & 4 & 3 \end{array}\right)$$

is an automorphism of (K, \cdot) and $(K, \{\cdot, \varphi, 2\})$ is a 3HG-algebra associated to a 3-group (K, A), where

$$A(x, y, z) = x \cdot \varphi(y) \cdot z \cdot 2.$$

Moreover, $\mathbf{e}(x) = 2 \cdot \varphi(x)$, $(a, x)^{-1} = x$, and $^{-1}\!A = A = A^{-1}$. It is not difficult to see that the laws (i) - (iii) hold in this 3-group, but $A(2, 4, 2) = 4 \neq 3 = A(4, 2, 2)$.

References

- [1] **V. D. Belousov**: *n-Ary quasigroups*, (Russian), Ştiinţa, Chişinău 1972.
- [2] W. A. Dudek and J. Michalski: On a generalization of Hosszú theorem, Demonstratio Math. 15 (1982), 783 805.
- [3] W. A. Dudek and J. Michalski: On retracts of polyadic groups, Demonstratio Math. 17 (1984), 281 – 301.

J. Ušan

- [4] W. A. Dudek and J. Michalski: On a generalization of a theorem of Timm, Demonstratio Math. 18 (1985), 869 883.
- [5] M. Polonijo: Abelian totally symmetric n-quasigroups, Proc. Symp. n-ary Structures, Skopje 1982, 185 193.
- [6] **J. Ušan**: On Hosszú-Gluskin algebras corresponding to the same n-group, Rev. of Research, Fac. of Sci. Univ. of Novi Sad, Math. Ser. **25.1** (1995), 101 119.
- [7] **J. Ušan**: n-groups as n-groupoids with laws, Quasigroups and Related Systems **4** (1997), 67 76.
- [8] **J. Ušan and M. Žižović**: On ordered n-groups, Quasigroups and Related Systems **4** (1997), 77 87.

Institute of Mathematics University of Novi Sad Trg D. Obradovića 4 21000 Novi Sad Yugoslavia Received December 29, 1998