#### Fuzzy subquasigroups over a *t*-norm

Wiesław A. Dudek and Young Bae Jun

#### Abstract

In this paper, using a t-norm T, we introduce the notion of idempotent T-fuzzy subquasigroups of quasigroups, and investigate some of their properties. Also we describe fuzzy subquasigroups induced by t-norms in the direct product of quasigroups.

# 1. Introduction

Following the introduction of fuzzy sets by Zadeh [13], the fuzzy set theory developed by Zadeh himself and others have found many applications in the domain of mathematics and elsewhere. For example, in [7] Liu studied fuzzy subrings as well as fuzzy ideals in rings. Properties of some fuzzy ideals in semirings are investigated in [8]. Connections between fuzzy groups and so-called level subgroups are found in [3], [4] and [10]. The similar results for quasigroups are proved in [6].

In this paper, using a *t*-norm T, we introduce the notion of idempotent T-fuzzy subquasigroups of quasigroups, and investigate some of their properties. Next we use a *t*-norm to construct T-fuzzy subquasigroups in the finite direct product of quasigroups.

# 2. Preliminaries

As it is well known, a groupoid  $(G, \cdot)$  is called a *quasigroup* if for any  $a, b \in G$  each of the equations ax = b, xa = b has a unique solution

<sup>1991</sup> Mathematics Subject Classification: 20N15, 94D05 Keywords: quasigroup, fuzzy subquasigroup

in G. A quasigroup may be also defined as an algebra  $(G, \cdot, \backslash, /)$  with three binary operations  $\cdot, \backslash, /$  satisfying the identities

$$(xy)/y = x, \quad x \setminus (xy) = y, \quad (x/y)y = x, \quad x(x \setminus y) = y$$

(cf. [2] or [9]). We say that such defined quasigroup  $(G, \cdot, \backslash, /)$  is an equasigroup (i.e. equationally definable quasigroup) [9] or a primitive quasigroup [2]. Obviously, these two definitions are equivalent because

$$x \setminus y = z \iff xz = y, \quad x/y = z \iff zy = x.$$

A nonempty subset S of a quasigroup  $\mathcal{G} = (G, \cdot, \backslash, /)$  is called a *subquasigroup* if it is closed with respect to these three operations, i.e., if  $x * y \in S$  for all  $x, y \in S$  and  $* \in \{\cdot, \backslash, /\}$ .

The class of all equasigroups forms a variety. This means that a homomorphic image of an equasigroup is an equasigroup. Also every subset of an equasigroup closed with respect to these three operations is an equasigroup.

Note that in case when a quasigroup is defined as a set with only one operation, a homomorphic image is not in general a quasigroup. It is *only* a groupoid with division. Similarly a homomorphic preimage of a quasigroup  $(G, \cdot)$  is not a quasigroup. Also a subset closed with respect to this multiplication is not a quasigroup (cf. [2]).

For the general development of the theory of quasigroups the unipotent quasigroups, i.e., quasigroups with the identity xx = yy, play an important role. These quasigroups are connected with Latin squares which have one fixed element in the diagonal (cf. [5]). Such quasigroups may be defined as quasigroups G with the special element  $\theta$ satisfying the identity  $xx = \theta$ . Obviously,  $\theta$  is uniquely determined and it is an idempotent, but, in general, it is not the (left, right) neutral element.

To avoid repetitions we use the following conventions: "a quasigroup  $\mathcal{G}$ " always denotes an equasigroup  $(G, \cdot, \backslash, /)$ ; G always denotes a nonempty set.

A function  $\mu : G \to [0, 1]$  is called a *fuzzy set* in a quasigroup  $\mathcal{G}$ . The set  $\mu_{\alpha} = \{x \in G : \mu(x) \ge \alpha\}$ , where  $\alpha \in [0, 1]$  is fixed, is called a *level subset of*  $\mu$ .  $Im(\mu)$  denotes the image set of  $\mu$ .

Let  $\mu$  and  $\rho$  be two fuzzy sets defined on G. According to [13] we say that  $\mu$  is contained in  $\rho$ , and denote this fact by  $\mu \subseteq \rho$ , iff

 $\mu(x) \leq \rho(x)$  for all  $x \in G$ . Obviously  $\mu = \rho$  iff  $\mu(x) = \rho(x)$  for all  $x \in G$ .

According to [6], a fuzzy set  $\mu$  in a quasigroup  $\mathcal{G} = (G, \cdot, \backslash, /)$  is called a *fuzzy subquasigroup* of  $\mathcal{G}$  if

$$\min\{\mu(xy), \, \mu(x \setminus y), \, \mu(x/y)\} \ge \min\{\mu(x), \, \mu(y)\}$$

for all  $x, y \in G$ . It is clear, that this condition may be written as

$$\mu(x * y) \ge \min\{\mu(x), \, \mu(y)\}$$

for all  $* \in \{\cdot, \backslash, /\}$  and  $x, y \in G$ .

A fuzzy subquasigroup  $\mu$  of a quasigroup  $\mathcal{G}$  is called *normal* if  $\mu(xy) = \mu(yx)$  for all  $x, y \in G$ . It is not difficult to see that  $\mu$  is normal iff  $\mu(x \setminus y) = \mu(y/x)$  for all  $x, y \in G$ .

The following two results are proved in [6].

**Proposition 2.1.** A fuzzy set  $\mu$  of a quasigroup  $\mathcal{G} = (G, \cdot, \backslash, /)$  is a fuzzy subquasigroup iff for every  $\alpha \in [0, 1]$ ,  $\mu_{\alpha}$  is either empty or a subquasigroup of G.

**Proposition 2.2.** If  $\mu$  is a fuzzy subquasigroup of a unipotent quasigroup  $(G, \cdot, \backslash, /, \theta)$ , then  $\mu(\theta) \ge \mu(x)$  for any  $x \in G$ .

### 3. T-fuzzy subquasigroup

According to [1], by a *t*-norm, we mean a function  $T : [0, 1] \times [0, 1] \rightarrow [0, 1]$  satisfying the following conditions:

 $\begin{array}{ll} (T_1) & T(\alpha,1) = \alpha \,, \\ (T_2) & T(\alpha,\beta) \leqslant T(\alpha,\gamma) \quad \text{whenever} \quad \beta \leqslant \gamma \,, \\ (T_3) & T(\alpha,\beta) = T(\beta,\alpha) \,, \\ (T_4) & T(\alpha,T(\beta,\gamma)) = T(T(\alpha,\beta),\gamma) \end{array}$ 

for all  $\alpha, \beta, \gamma \in [0, 1]$ .

A simple example of a *t*-norm is a function  $T(\alpha, \beta) = \min\{\alpha, \beta\}$ . Generally,  $T(\alpha, \beta) \leq \min\{\alpha, \beta\}$  and  $T(\alpha, 0) = 0$  for all  $\alpha, \beta \in [0, 1]$ . Moreover, ([0, 1]; T) is a commutative semigroup with 0 as the neutral element. In particular it is *medial*, i.e.,

$$T(T(\alpha, \beta), T(\gamma, \delta)) = T(T(\alpha, \gamma), T(\beta, \delta))$$

holds for all  $\alpha, \beta, \gamma, \delta \in [0, 1]$ .

Let  $T_1$  and  $T_2$  be two *t*-norms. We say that  $T_1$  dominates  $T_2$  and write  $T_1 \gg T_2$  if

$$T_1(T_2(\alpha,\beta), T_2(\gamma,\delta)) \ge T_2(T_1(\alpha,\gamma), T_1(\beta,\delta))$$

for all  $\alpha, \beta, \gamma, \delta \in [0, 1]$  (cf. [1]). Obviously  $T \gg T$  for all t-norms.

The set of all idempotents with respect to T, i.e. the set

$$E_T = \{ \alpha \in [0,1] \mid T(\alpha, \alpha) = \alpha \}$$

is a subsemigroup of ([0,1],T). If  $Im(\mu) \subseteq E_T$  then a fuzzy set  $\mu$  is called an *idempotent with respect to a t-norm* T (briefly: T-*idempotent*).

**Definition 3.1.** A fuzzy set  $\mu$  in G is called a *fuzzy subquasigroup of*  $\mathcal{G}$  with respect to a t-norm T (briefly, a T-fuzzy subquasigroup) if

$$\mu(x * y) \ge T(\mu(x), \, \mu(y))$$

for all  $x, y, z \in G$  and  $* \in \{\cdot, \backslash, /\}$ .

Since  $\min\{\alpha, \beta\} \ge T(\alpha, \beta)$  for all  $\alpha, \beta \in [0, 1]$ , every fuzzy subquasigroup is also a *T*-fuzzy subquasigroup, but not conversely as seen in the following example.

**Example 3.2.** Let  $G = \{0, a, b, c\}$  be the Klein's group with the following Cayley table:

| • | 0 | a | b | c |
|---|---|---|---|---|
| 0 | 0 | a | b | c |
| a | a | 0 | c | b |
| b | b | c | 0 | a |
| c | c | b | a | 0 |

Define a fuzzy set  $\mu$  in G by  $\mu(0) = 0, 8, \ \mu(a) = 0, 7, \ \mu(b) = 0, 6, \ \mu(c) = 0, 5.$  It is not difficult to see that a function  $T_m$  defined by  $T_m(\alpha, \beta) = \max\{\alpha + \beta - 1, 0\}$  for all  $\alpha, \beta \in [0, 1]$  is a *t*-norm.

By routine calculations, we known that  $\mu(x * y) \ge T_m(\mu(x), \mu(y))$ for all  $x, y \in G$ , which shows that  $\mu$  is a  $T_m$ -fuzzy subquasigroup of  $\mathcal{G}$ , which is not  $T_m$ -idempotent. It is not a fuzzy subquasigroup since  $\mu(c) = \mu(ab) < \min\{\mu(a), \mu(b)\}.$ 

But a fuzzy set  $\nu$  defined by  $\nu(0) = \nu(a) = 1$  and  $\nu(b) = \nu(c) = 0$ is a  $T_m$ -idempotent fuzzy subquasigroup of G. It is also a fuzzy subquasigroup.

**Proposition 3.3.** If a fuzzy set  $\mu$  is idempotent with respect to a *t*-norm *T*, then  $T(\alpha, \beta) = \min\{\alpha, \beta\}$  for all  $\alpha, \beta \in Im(\mu)$ .

*Proof.* Indeed, if  $\alpha$  and  $\beta$  are in  $Im(\mu)$ , then

 $\min\{\alpha,\beta\} \ge T(\alpha,\beta) \ge T(\min\{\alpha,\beta\}, \min\{\alpha,\beta\}) = \min\{\alpha,\beta\},$ 

which completes the proof.

**Corollary 3.4.** Every T-idempotent fuzzy subquasigroup is also a fuzzy subquasigroup.

By application of Proposition 2.1 we obtain

**Corollary 3.5.** Every nonempty level set of a T-idempotent fuzzy subquasigroup defined on a quasigroup  $\mathcal{G}$  is a subquasigroup of  $\mathcal{G}$ .  $\Box$ 

**Corollary 3.6.** Let T be an idempotent t-norm. Then a fuzzy set defined on a quasigroup  $\mathcal{G}$  is a T-fuzzy subquasigroup iff it is a fuzzy subquasigroup.

Now we consider the converse of Corollary 3.4.

**Theorem 3.7.** Let a fuzzy set  $\mu$  on a quasigroup  $\mathcal{G}$  be idempotent with respect to a t-norm T. If each nonempty level set  $\mu_{\alpha}$  is a subquasigroup of  $\mathcal{G}$ , then  $\mu$  is a T-idempotent fuzzy subquasigroup.

*Proof.* Assume that each nonempty level set  $\mu_{\alpha}$  is a subquasigroup of  $\mathcal{G}$ . Then  $\mu$  is a fuzzy subquasigroup of  $\mathcal{G}$  (by Proposition 2.1), and so

$$\mu(x * y) \ge \min\{\mu(x), \, \mu(y)\} = T(\, \mu(x), \mu(y)\,)$$

by Proposition 3.3. Hence  $\mu$  is a *T*-idempotent fuzzy subquasigroup of a quasigroup  $\mathcal{G}$ .

**Theorem 3.8.** Let  $\mu$  be a *T*-fuzzy subquasigroup of  $\mathcal{G}$ , where *T* is a *t*-norm and  $\alpha \in [0, 1]$ . Then

- (i) if  $\alpha = 1$ , then  $\mu_{\alpha}$  is either empty or is a subquasigroup of  $\mathcal{G}$ ,
- (ii) if  $T = \min$ , then  $\mu_{\alpha}$  is either empty or is a subquasigroup of  $\mathcal{G}$ .

*Proof.* (i) Assume that  $\alpha = 1$  and  $\mu_{\alpha} \neq \emptyset$ . Then there exist  $x, y \in \mu_{\alpha}$  such that  $\mu(x) \ge 1$  and  $\mu(y) \ge 1$ . Thus

$$\mu(x \ast y) \geqslant T(\mu(x), \mu(y)) \geqslant T(1, 1) = 1$$

so that  $x * y \in \mu_1$ . Hence  $\mu_1$  is a subquasigroup of  $\mathcal{G}$ .

(ii) is a consequence of Proposition 2.1.  $\Box$ 

Note that a fuzzy set  $\mu$  defined in our Example 3.2 is a nonidempotent  $T_m$ -fuzzy subquasigroup in which  $\mu_1$  is empty and  $\mu_{0,6}$  is not a subquasigroup of  $\mathcal{G}$ . This proves that the analog of Proposition 2.1 for T-fuzzy subquasigroups is not true.

#### 4. Fuzzy sets induced by norms

Let T be a t-norm and let  $\mu$  and  $\nu$  be two fuzzy sets in G. Then the T-product of  $\mu$  and  $\nu$ , denoted by  $[\mu \cdot \nu]_T$ , is defined as

$$[\mu \cdot \nu]_T(x) = T(\mu(x), \nu(x))$$

for all  $x \in G$ .

Obviously  $[\mu \cdot \nu]_T$  is a fuzzy set in G such that  $[\mu \cdot \nu]_T = [\nu \cdot \mu]_T$ . Moreover, if  $\mu$  and  $\nu$  are normal, then so is  $[\mu \cdot \nu]_{T^*}$ .

**Theorem 4.1.** Let T be a t-norm and let  $\mu$  and  $\nu$  be T-fuzzy subquasigroups of  $\mathcal{G}$ . If a t-norm T<sup>\*</sup> dominates T, then T<sup>\*</sup>-product  $[\mu \cdot \nu]_{T^*}$  is a T-fuzzy subquasigroup of  $\mathcal{G}$ .

*Proof.* Indeed, for  $x, y \in G$  we have

$$\begin{split} \left[ \mu \cdot \nu \right]_{T^*}(x * y) &= T^*(\mu(x * y), \nu(x * y)) \\ &\geqslant T^*(T(\mu(x), \mu(y)), T(\nu(x), \nu(y))) \end{split}$$

$$\ge T(T^*(\mu(x),\nu(x)), T^*(\mu(y),\nu(y))) = T([\mu \cdot \nu]_{T^*}(x), [\mu \cdot \nu]_{T^*}(y)),$$

which proves that  $[\mu \cdot \nu]_{T^*}$  is a *T*-fuzzy subquasigroup of  $\mathcal{G}$ .

**Corollary 4.2** The T-product of T-fuzzy subquasigroups is a T-fuzzy subquasiqroup. 

Let G and H be nonempty sets and let  $f: G \to H$  be an arbitrary mapping. If  $\nu$  is a fuzzy set in f(G) then  $\mu = \nu \circ f$  is the fuzzy set in G, which is called the preimage of  $\nu$  under f.

It is not difficult to see that the following lemma is true.

**Lemma 4.3.** Let T be a t-norm and let  $\mathcal{G}$  and  $\mathcal{H}$  be two quasigroups. If  $h: \mathcal{G} \to \mathcal{H}$  is an onto homomorphisms of quasigroups,  $\nu$  is a fuzzy subquasigroup of  $\mathcal{H}$  and  $\mu$  the preimage of  $\nu$  under h, then  $\mu$  is a fuzzy subquasigroup of  $\mathcal{G}$ . Moreover,  $\mu$  is normal iff  $\nu$  is normal. If  $\nu$  is T-idempotent, then so is  $\mu$ .

**Proposition 4.4.** Let T and  $T^*$  be t-norms in which  $T^*$  dominates T and let  $\mathcal{G}$ ,  $\mathcal{H}$  be two quasigroups. If  $h : \mathcal{G} \to \mathcal{H}$  be an onto homomorphism of quasigroups, then for any T-fuzzy subquasigroups  $\mu$ and  $\nu$  of  $\mathcal{H}$ , we have

$$h^{-1}(\left[\mu\cdot\nu\right]_{T^*}) = \left[h^{-1}(\mu)\cdot h^{-1}(\nu)\right]_{T^*}.$$

*Proof.* By Lemma 4.3  $h^{-1}(\mu)$ ,  $h^{-1}(\nu)$  and  $h^{-1}([\mu \cdot \nu]_{\tau^*})$  are T-fuzzy subquasigroups of  $\mathcal{G}$ .

Moreover for  $x \in G$  we have

$$\begin{split} [h^{-1}([\mu \cdot \nu]_{T^*})](x) &= [\mu \cdot \nu]_{T^*}(h(x)) = T^*(\mu(h(x)), \nu(h(x))) \\ &= T^*([h^{-1}(\mu)](x), \ [h^{-1}(\nu)](x)) = [h^{-1}(\mu) \cdot h^{-1}(\nu)]_{T^*}(x), \end{split}$$
  
which completes the proof.

which completes the proof.

We say that a fuzzy set  $\mu$  in G has a sup property if, for all subset  $S \subseteq G$ , there exists  $s_0 \in S$  such that  $\mu(s_0) = \sup \mu(s)$ . In this case  $s \in S$ for any mapping f defined on G we can define in f(G) the fuzzy set  $\mu^f$  putting  $\mu^f(y) = \sup \mu(x)$  for all  $y \in f(G)$  (cf. [12]).  $x \in f^{-1}(y)$ 

Let  $f: \mathcal{G} \to \mathcal{H}$  be a homomorphisms of quasigroups and let T be a continuous *t*-norm (continuous with respect to the usual topology). Then sets  $A_1 = f^{-1}(y_1)$  and  $A_2 = f^{-1}(y_2)$ , where  $y_1, y_2 \in f(G)$ are nonempty subsets of f(G). Similarly,  $A_3 = f^{-1}(y_1 * y_2)$ , where  $* \in \{\cdot, \backslash, /\}$  is a fixed operation.

Consider the set

$$A_1 * A_2 = \{a_1 * a_2, \mid a_1 \in A_1, a_2 \in A_2\}.$$

If  $x \in A_1 * A_2$ , then  $x = x_1 * x_2$  for some  $x_1 \in A_1$  and  $x_2 \in A_2$ , and so

$$f(x) = f(x_1 * x_2) = f(x_1) * f(x_2) = y_1 * y_2,$$

which implies  $x \in f^{-1}(y_1 * y_2) = A_3$ . Thus  $A_1 * A_2 \subseteq A_3$  for any operation  $* \in \{\cdot, \backslash, /\}$ .

Therefore

$$\mu^{f}(y_{1} * y_{2}) = \sup_{\substack{x \in f^{-1}(y_{1} * y_{2})}} \mu(x) = \sup_{\substack{x \in A_{3}}} \mu(x)$$
  
$$\geqslant \sup_{\substack{x \in A_{1} * A_{2}}} \mu(x) \geqslant \sup_{\substack{x_{1} \in A_{1}, x_{2} \in A_{2}}} \mu(x_{1} * x_{2})$$
  
$$\geqslant \sup_{\substack{x_{1} \in A_{1}, x_{2} \in A_{2}}} T(\mu(x_{1}), \mu(x_{2})).$$

Since t-norm T is (by the assumption) continuous, for every  $\varepsilon > 0$  there exists  $\delta > 0$  such that

$$\sup_{x_1 \in A_1} \mu(x_1) - t_1 \leqslant \delta \quad \text{and} \quad \sup_{x_2 \in A_2} \mu(x_2) - t_2 \leqslant \delta$$

implies

$$T\left(\sup_{x_1\in A_1}\mu(x_1),\sup_{x_2\in A_2}\mu(x_2)\right)-T(t_1,t_2)\leqslant\varepsilon.$$

This for  $t_1 = \mu(a_1)$ ,  $t_2 = \mu(a_2)$ , where  $a_1 \in A_1$ ,  $a_2 \in A_2$ , gives

$$T\left(\sup_{x_1\in A_1}\mu(x_1),\sup_{x_2\in A_2}\mu(x_2)\right)\leqslant T(\mu(a_1),\,\mu(a_2))+\varepsilon$$

Consequently

$$\mu^{f}(y_{1} * y_{2}) \geq \sup_{\substack{x_{1} \in A_{1}, x_{2} \in A_{2}}} T(\mu(x_{1}), \mu(x_{2}))$$
  
$$\geq T\left(\sup_{x_{1} \in A_{1}} \mu(x_{1}), \sup_{x_{2} \in A_{2}} \mu(x_{2})\right) = T(\mu^{f}(y_{1}), \mu^{f}(y_{2})),$$

which shows that  $\mu^f$  is a T-fuzzy subquasigroup of  $f(\mathcal{G})$ . Thus we have the following

**Theorem 4.5.** Let T be a continuous t-norm and let f be a homomorphism on a quasigroup  $\mathcal{G}$ . If a T-fuzzy subquasigroup  $\mu$  of  $\mathcal{G}$  has the sup property, then  $\mu^f$  is a T-fuzzy subquasigroup of  $f(\mathcal{G})$ .  $\Box$ 

Since the function "min" is a continuous t-norm, then, as a simple consequence of the above theorem, we obtain

**Corollary 4.6.** If a fuzzy subquasigroup  $\mu$  of  $\mathcal{G}$  has the sup property, then  $\mu^f$  is a fuzzy subquasigroup of  $f(\mathcal{G})$  for every homomorphism f defined on  $\mathcal{G}$ .

#### 5. Direct products of fuzzy subquasigroups

Let T be a fixed t-norm. If  $\mu_1$  and  $\mu_2$  are two fuzzy sets on  $G_1$  and  $G_2$  (respectively), then  $\mu$  defined on  $G_1 \times G_2$  by the formula

$$\mu(x_1, x_2) = T(\mu_1(x_1), \mu_2(x_2)),$$

is a fuzzy set on  $G_1 \times G_2$ , which is denoted by  $\mu_1 \times \mu_2$ .

**Proposition 5.1.** If  $\mu_1$  and  $\mu_2$  are *T*-fuzzy subquasigroup of quasigroups  $\mathcal{G}_1$  and  $\mathcal{G}_2$  (respectively), then  $\mu_1 \times \mu_2$  is a *T*-fuzzy subquasigroup of the direct product  $\mathcal{G}_1 \times \mathcal{G}_2$ . Moreover, if  $\mu_1$  and  $\mu_2$  are *T*-idempotent, then so is  $\mu_1 \times \mu_2$ .

Proof. Let  $(x_1, x_2)$ ,  $(y_1, y_2)$  be in  $G_1 \times G_2$ . Then  $(\mu_1 \times \mu_2)((x_1, x_2) * (y_1, y_2)) = (\mu_1 \times \mu_2)(x_1 * y_1, x_2 * y_2)$   $= T(\mu_1(x_1 * y_1), \mu_2(x_2 * y_2))$   $\geq T(T(\mu_1(x_1), \mu_1(y_1)), T(\mu_2(x_2), \mu_2(y_2)))$   $= T(T(\mu_1(x_1), \mu_2(x_2)), T(\mu_1(y_1), \mu_2(y_2)))$  $= T((\mu_1 \times \mu_2)(x_1, x_2), (\mu_1 \times \mu_2)(y_1, y_2)).$ 

Hence  $\mu_1 \times \mu_2$  is a *T*-fuzzy subquasigroup of  $\mathcal{G}_1 \times \mathcal{G}_2$ . Obviously, if  $\mu_1$  and  $\mu_2$  are *T*-idempotent, then so is  $\mu_1 \times \mu_2$ .

The relationship between T-fuzzy subquasigroups  $\mu \times \nu$  and  $[\mu \cdot \nu]$  can be viewed via the following diagram



where I = [0, 1] and  $d: G \to G \times G$  is defined by d(x) = (x, x).

Applying Lemma 3.2 from [1] it is not difficult to see that  $[\mu \cdot \nu]_T$ is the preimage of  $\mu \times \nu$  under d.

Note by the way, that our T-product is different from the product of fuzzy sets studied by Liu [7] and Sessa [11].

Now we generalize this idea to the product of  $n \ge 2$  *T*-fuzzy subquasigroups. We first need to generalize the domain of *t*-norm *T* to  $\prod_{i=1}^{n} [0, 1]$  as follows:

*i*=1 **Definition 5.2.** The function  $T_n : \prod_{i=1}^n [0,1] \to [0,1]$  is defined by  $T_n(\alpha_1, \alpha_2, \dots, \alpha_n) = T(\alpha_i, T_{n-1}(\alpha_1, \dots, \alpha_{i-1}, \alpha_{i+1}, \dots, \alpha_n))$ 

for all  $1 \leq i \leq n$ , where  $n \geq 2$ ,  $T_2 = T$  and  $T_1 = id$  (identity).

Using the induction on n, we have the following two lemmas.

**Lemma 5.3.** For every t-norm T and every  $\alpha_i, \beta_i \in [0, 1]$ , where  $1 \leq i \leq n$  and  $n \geq 2$ , we have

$$T_n(T(\alpha_1,\beta_1),T(\alpha_2,\beta_2),\ldots,T(\alpha_n,\beta_n))$$
  
=  $T(T_n(\alpha_1,\alpha_2,\ldots,\alpha_n),T_n(\beta_1,\beta_2,\ldots,\beta_n)).$ 

**Lemma 5.4.** For a t-norm T and every  $\alpha_1, \ldots, \alpha_n \in [0, 1]$ , where  $n \ge 2$ , we have

$$T_n(\alpha_1, \dots, \alpha_n) = T(\dots T(T(T(\alpha_1, \alpha_2), \alpha_3), \alpha_4), \dots, \alpha_n)$$
  
=  $T(\alpha_1, T(\alpha_2, T(\alpha_3, \dots, T(\alpha_{n-1}, \alpha_n) \dots))).$ 

**Theorem 5.5.** Let T be a t-norm and let  $\mathcal{G} = \prod_{i=1}^{n} \mathcal{G}_i$  be the direct product of quasigroups  $\{\mathcal{G}_i\}_{i=1}^{n}$ . If  $\mu_i$  is a T-fuzzy subquasigroup of  $\mathcal{G}_i$ , where  $1 \leq i \leq n$ , then  $\mu = \prod_{i=1}^{n} \mu_i$  defined by

$$\mu(x) = (\prod_{i=1}^{n} \mu_i)(x_1, x_2, \dots, x_n) = T_n(\mu_1(x_1), \mu_2(x_2), \dots, \mu_n(x_n))$$

for all  $x = (x_1, x_2, ..., x_n) \in G$ , is a T-fuzzy subquasigroup of  $\mathcal{G}$ . Moreover, if all  $\mu_i$  are T-idempotent, then so is  $\mu$ .

Proof. Now let 
$$x = (x_1, x_2, ..., x_n), y = (y_1, y_2, ..., y_n)$$
 be any elements of  $G = \prod_{i=1}^n G_i$ . Then by Lemma 5.3 we have  

$$\mu(x * y) = (\prod_{i=1}^n \mu_i)((x_1, x_2, ..., x_n) * (y_1, y_2, ..., y_n)))$$

$$= (\prod_{i=1}^n \mu_i)((x_1 * y_1, x_2 * y_2, ..., x_n * y_n)))$$

$$= T_n(\mu_1(x_1 * y_1), \mu_2(x_2 * y_2), ..., \mu_n(x_n * y_n)))$$

$$\geq T_n(T(\mu_1(x_1), \mu_1(y_1)), T(\mu_2(x_2), \mu_2(y_2)), ..., T(\mu_n(x_n), \mu_n(y_n))))$$

$$= T(T_n(\mu_1(x_1), \mu_2(x_2), ..., \mu_n(x_n)), T_n(\mu_1(y_1), \mu_2(y_2), ..., \mu_n(y_n))))$$

$$= T(((\prod_{i=1}^n \mu_i)(x_1, x_2, ..., x_n), ((\prod_{i=1}^n \mu_i)(y_1, y_2, ..., y_n))))$$

$$= T(\mu(x), \mu(y)).$$

Therefore  $\mu = \prod_{i=1}^{n} \mu_i$  is a *T*-fuzzy subquasigroup of  $\mathcal{G}$ .

Applying Lemma 5.3 it is not difficult to see that  $\mu$  is *T*-idempotent if all  $\mu_i$  are *T*-idempotent.

## References

- M. T. Abu Osman: On some product of fuzzy subgroups, Fuzzy Sets and Systems 24 (1987), 79 - 86.
- [2] V. D. Belousov: Foundations of the theory of quasigroups and loops, Nauka, Moscow 1967.
- [3] P. Bhattacharya and N. P. Mukherjee: Fuzzy relations and fuzzy groups, Inform. Sci. 36 (1985), 267 – 282.

- [4] P. S. Das: Fuzzy groups and level subgroups, J. Math. Anal. Appl. 84 (1981), 264 - 269.
- [5] J. Dénes and A. D. Keedwell: Latin squares an their applications, New York 1974.
- [6] W. A. Dudek: Fuzzy subquasigroups, Quasigroups and Related Systems 5 (1998), 81 - 98.
- [7] W. J. Liu: Fuzzy invariant subgroups and fuzzy ideals, Fuzzy Sets and Systems 8 (1982), 133 - 139.
- [8] D. S. Malik and J. N. Mordeson: Extensions of fuzzy subring and Fuzzy ideals, Fuzzy Sets and Systems 45 (1992), 245 - 251.
- [9] H. O. Pflugfelder: Quasigroups and loops: introduction, Sigma Series in Pure Math., vol. 7, Heldermann Verlag, Berlin 1990.
- [10] A. Rosenfeld: Fuzzy groups, J. Math. Anal. Appl. 35 (1971), 512 - 517.
- [11] S. Sessa: On fuzzy subgroups and fuzzy ideals under triangular *norm*, Fuzzy Sets and Systems **13** (1984), 95 - 100.
- [12] Y. Yu, J. N. Mordeson and S. C. Chen: Elements of Lalgebras, Lecture Notes in Fuzzy Math., Creighton Univ. Nebraska 1994.
- [13] L. A. Zadeh: *Fuzzy sets*, Inform. Control 8 (1965), 338 353.

|                                      | Received December 28, 199           |  |  |
|--------------------------------------|-------------------------------------|--|--|
| W. A. Dudek                          | Y. B. Jun                           |  |  |
| Institute of Mathematics             | Department of Mathematics Education |  |  |
| Technical University of Wrocław      | Gyeongsang National University      |  |  |
| Wybrzeże Wyspiańskiego 27            | Chinju 660-701                      |  |  |
| 50-370 Wrocław                       | Korea                               |  |  |
| Poland                               |                                     |  |  |
| <i>e-mail</i> : dudek@im.pwr.wroc.pl | e- $mail$ : ybjun@nongae.gsnu.ac.kr |  |  |

9