A parastrophic equivalence in quasigroups

Ján Duplák

Abstract

In this paper there are found of "lowest" representants of classes of a parastrophic equivalence in quasigroups satisfying identities of the type

$$w_1 \Box_1 (w_2 \Box_2 \dots (w_n \Box_n x))) \simeq x, \quad 1 < n,$$

where \Box_i is a parastrophe of \Box_1 for all $i \leq n$ and w_1, \ldots, w_n are terms in $Q(\cdot)$ and its parastrophes that not contain variable x. These representants are listed for 1 < n < 5 by a personal computer.

1. Introduction

With any given quasigroup (Q, \cdot) there are associated five operations *, /, \, \triangle , \bigtriangledown (see the following part 1) that we shall call *conjugates* of (·) (see [1], [4]) or *parastrophes* of (·) (see [3]). If a quasigroup (Q, \cdot) satisfies a given identity, say I, then in general, for example (Q, /) will satisfy a different conjugate identity, say II. Therefore it is in some sense true that the theory of quasigroups that satisfy the identity I is equivalent to the theory of quasigroups which satisfy the identity II, as has been remarked by Stein in [4].

In [3], Sade has given some general rules for determining the identities satisfied by the parastrophes of a quasigroup (Q, \cdot) when (Q, \cdot) satisfies a given identity involving some elements of the set $\sum(\cdot) = \{\cdot, *, /, \nabla, \backslash, \Delta\}$. In [4], Stein has listed the conjugate identities for a

²⁰⁰⁰ Mathematics Subject Classification: 20N15

Keywords: quasigroup, parastrophic equivalence

J. Duplák

number well-known identities. More extensive list is given in Belousov [1]. With respect to a parastrophic equivalence, Belousov in [2] has given a classification of all quasigroups identities which are of the type $x\Box_1(x\Box_2(x\Box_3 y)) \simeq y$, where $\Box_i \in \sum(\cdot)$ for all i = 1, 2, 3.

In this paper we give a generalization and a simplification of methods used in [2].

2. Preliminaries

Let (Q, \cdot) be a fixed quasigroup, $\mathcal{T} = \{L, R, T, L^{-1}, R^{-1}, T^{-1}\}$, and $\sum(\cdot) = \{\cdot, *, /, \bigtriangledown, \backslash, \bigtriangleup\}$, where $x \cdot y = z \Leftrightarrow y * x = z \Leftrightarrow z/y = x \Leftrightarrow y \bigtriangledown \nabla z = x \Leftrightarrow x \setminus z = y \Leftrightarrow z \bigtriangleup x = y$.

Further, let $L_a x = a \cdot x$, $R_a x = x \cdot a$, $L_a' x = a/x$, $R_a^{\bigtriangledown} x = x \bigtriangledown a$, $T_a x = x \setminus a$, $L_a L_a^{-1} x = x$, ... Then it holds the relations given by Table 1. This table we read like this: $L^{\bigtriangledown} = R^{-1}$, $(R^{-1})^{\setminus} = T^{-1}$, ..., $\varphi_2(R^{-1}) = \varphi_2 R^{-1} = (R^{-1})^{/} = R$, $\varphi_5 R = L^{-1}$, $R_a^{-1} = (R_a)^{-1}$, $T_a^{-1} = (T_a)^{-1}$.

-		-					
		•	*	/	\bigtriangledown		\triangle
	L	L	R	T^{-1}	R^{-1}	L^{-1}	T
	R	R	L	R^{-1}	T^{-1}	T	L^{-1}
	Т	T	T^{-1}	L^{-1}	L	R	R^{-1}
	L^{-1}	L^{-1}	R^{-1}	T	R	L	T^{-1}
	R^{-1}	R^{-1}	L^{-1}	R	T	T^{-1}	L
	T^{-1}	T^{-1}	T	L	L^{-1}	R^{-1}	R
		$arphi_0$	φ_1	φ_2	$arphi_3$	φ_4	φ_5

Table 1

From this table directly follows that $(\varphi_i x)^{-1} = \varphi_i(x^{-1})$ for all $i \in \{0, 1, ..., 5\}$ and for all $x \in \mathcal{T}$. If (Q, \Box) is a quasigroup, then the mappings L_a^{\Box} , R_a^{\Box} , ..., $(T_a^{-1})^{\Box}$ are called *translations* of \Box . Every operation in $\Sigma(\cdot)$ is named a *parastrophe* of (\cdot) .

If a quasigroup (Q, \cdot) satisfies a given identity, for example

$$y \doteq (x \setminus yz)/zx \,, \tag{1}$$

then in general each of its parastrophes will satisfy a different conjugate identities. Thus, for example, (1) is equivalent to $y \cdot zx = x \setminus yz$; if denote zx = u, yz = v and yu = t (i.e. $x = z \setminus u$, $z = y \setminus v$, $u = y \setminus t$), then

$$t \simeq \left((y \setminus v) \setminus (y \setminus t) \right) \setminus v \,. \tag{2}$$

Hence, (Q, \cdot) satisfies (1) iff (Q, \setminus) satisfies (2). If (2) is written with terms of (Q, \cdot) , then obtain

$$c \simeq (ab \cdot ac)b. \tag{3}$$

Thus (3) is a conjugate identity to (1). Further, from (3) we have $R_b L_{ab} L_a \simeq 1$, i.e. $L_a R_b L_{ab} \simeq 1$. Whence $c \simeq a \cdot (ab \cdot c)b$ and if denote a = y, ab = z, $c = z \setminus x$, then

$$y \simeq \left(x \cdot (y \setminus z)\right) \bigtriangledown (z \setminus x) \tag{4}$$

is a conjugate identity to (1). (4) we get from (1) if all operations in (1) are substituted by Table 2, i.e. (·) is substituted by $\setminus = \varphi_4(\cdot)$, * by $\triangle = \varphi_4(*), \ldots, \triangle$ by $* = \varphi_4(\triangle)$ (see Sade [3]).

	•	*	/	\bigtriangledown		\triangle
•	•	*	/	\bigtriangledown		\triangle
*	*	•	\bigtriangledown	/	\triangle	
/	/	\triangle	•		\bigtriangledown	*
\bigtriangledown	\bigtriangledown		*	\triangle	/	•
		\bigtriangledown	\triangle	*	•	/
\triangle	\triangle	/		•	*	\bigtriangledown
	$ \varphi_0 $	φ_1	φ_2	φ_3	φ_4	φ_5

		1.1		0
1	'n.	h	$\boldsymbol{\Theta}$	•

```
Table 3
```

	φ_0	φ_1	φ_2	$arphi_3$	φ_4	φ_5
$arphi_0$	φ_0	φ_1	φ_2	$arphi_3$	φ_4	φ_5
φ_1	φ_1	φ_0	φ_5	φ_4	$arphi_3$	φ_2
φ_2	φ_2	φ_3	$arphi_0$	φ_1	φ_5	φ_4
φ_3	φ_3	φ_2	φ_4	φ_5	φ_1	$arphi_0$
φ_4	φ_4	φ_5	$arphi_3$	φ_2	$arphi_0$	φ_1
φ_5	φ_5	φ_4	φ_1	$arphi_0$	φ_2	$arphi_3$

The identities (1) and (4) may be written by the way as

$$R_{zx}^{/}L_{x}^{\backslash}R_{z} \simeq 1, \qquad R_{z\setminus x}^{\bigtriangledown}L_{x}R_{z}^{\setminus} \simeq 1$$

and with respect to Table 1 and Table 2 $\,$

$$R_{zx}^{-1}L_x^{-1}R_z \simeq 1, \qquad T_{z\backslash x}^{-1}L_xT_z \simeq 1.$$

The ordered tripletes $R^{-1}L^{-1}R$, $T^{-1}LT$ may be assigned to the identities (2), (3). Therefore the triple $R^{-1}L^{-1}R$ will be called *conjugate* to the triple $T^{-1}LT$.

In what follows we shall denote:

$$\begin{split} \mathbf{N} &= \{0, 1, 2, 3, \ldots\}, \\ \mathcal{T} &= \{L, R, T, L^{-1}, R^{-1}, T^{-1}\}, \\ [0, n) &= \{0, 1, 2, 3, \ldots, n-1\}, \ n \in \mathbf{N}, \ n > 0, \\ \mathcal{T}^n &= \{\alpha : \alpha \text{ is a map } [0, n) \to \mathcal{T}\} \text{ for all } n \in \mathbf{N}, \ n > 0, \\ \text{if } \alpha \in \mathcal{T}^n \text{ then } \alpha &= A_{n-1} \ldots A_2 A_1 A_0 \text{ and } \alpha(i) = A_i \text{ for all } i \in [0, n), \\ \mathcal{T}^\infty &= \mathcal{T} \cup (\mathcal{T} \times \mathcal{T}) \cup (\mathcal{T} \times \mathcal{T} \times \mathcal{T}) \cup \ldots, \\ l(\alpha) &= n \iff \alpha \in \mathcal{T}^n, \\ \omega : \mathcal{T}^\infty \to \mathcal{T}^\infty, \ (\omega \alpha)(i) = \alpha((i+1)(mod n)) \text{ for all } i \in [0, n), \\ \text{ it holds } \alpha \in \mathcal{T}^n \Rightarrow \omega \alpha \in \mathcal{T}^n, \\ \sigma : \mathcal{T}^\infty \to \mathcal{T}^\infty, \ (\sigma \alpha)(j) = \alpha(n-1-j) \text{ for } n = l(\alpha) \text{ and} \\ \text{ for all } j \in [0, n), \\ \rho : \mathcal{T} \to \mathcal{T}, \ L \mapsto L^{-1} \mapsto L, \ R \mapsto R^{-1} \mapsto R, \ T \mapsto T^{-1} \mapsto T, \\ \text{ i.e. } \rho(A) = A^{-1} \text{ for all } A \in \mathcal{T}, \\ \rho : \mathcal{T}^\infty \to \mathcal{T}^\infty, \ (\rho \alpha)(i) = \rho(\alpha(i)) \text{ for all } j \in [0, n), \ n = l(\alpha), \\ \kappa : \mathcal{T} \to [0, 6), \ L \mapsto 0, \ R \mapsto 1, \ T \mapsto 2, \ L^{-1} \mapsto 3, \ R^{-1} \mapsto 4, \\ T^{-1} \mapsto 5, \\ \kappa : \mathcal{T}^\infty \to \mathbf{N}, \ \kappa \alpha = \sum_{i=0}^{n-1} 10^i \kappa(\alpha(i)), \quad n = l(\alpha), \\ \alpha < \beta \text{ for } \alpha, \beta \in \mathcal{T}^\infty \iff \kappa \alpha < \kappa \beta, \\ \varphi_i : \mathcal{T}^\infty \to \mathcal{T}^\infty, \ (\varphi_i \alpha)(j) = \varphi_i(\alpha(j)) \text{ for all } i \in [0, 6) \text{ and} \\ j \in [0, n), \ n = l(\alpha), \text{ where } \varphi_i : \mathcal{T} \to \mathcal{T}^\infty, \ i \in [0, 6) \}, \end{split}$$

 \mathcal{P} - the group generated by the set $\mathcal{P}_1 \cup \{\rho\sigma, \omega\}$, (these maps are defined upon \mathcal{T}^{∞}),

$$\varphi_{i+6} : \mathcal{T}^{\infty} \to \mathcal{T}^{\infty}, \ \varphi_{i+6} = \sigma \rho \varphi_i \text{ for all } i \in [0,6), \text{ where}$$

 $\varphi_i : \mathcal{T} \to \mathcal{T} \text{ is given in Table 1,}$

$$C(i,j,k)(\alpha) = \kappa \left((\omega^k \varphi_i \alpha)(j) \right) \text{ for all } i \in [0,12), j,k \in [0,n), n = l(\alpha).$$

Lemma 1.1. Let $\alpha \in \mathcal{T}^{\infty}$, $n = l(\alpha)$ and let $j, k \in [0, n)$. Then the following relations hold

- (i) $\sigma^2 = \rho^2 = 1$, $\omega \sigma \omega = \sigma$, $\omega^{-1}(\alpha) = \omega^{n-1}(\alpha)$, $\omega^k(\alpha) = \omega^t(\alpha)$ if $k \equiv t \pmod{n}$,
- (ii) every two elements of the set $\{\omega, \sigma, \rho, \varphi_2, \varphi_4\}$ commute, besides ω , σ and φ_2 , φ_4 ,
- (*iii*) $\mathcal{P}_1 = \{\varphi_i : i \in [0, 12)\}; \mathcal{P}_1 \text{ is generated by } \{\varphi_2, \varphi_4\},\$
- $(iv) \quad \mathcal{P} = \{ \omega^k \varphi_i : k \in \mathbf{N}, \, i \in [0, 12) \},\$
- (v) $C(i, j, 0)(\alpha) = i + (-1)^i \kappa \alpha(j) \pmod{6}$ for i = 0, 1,
- (vi) $C(i, j, 0))(\alpha) = 1 i + (-1)^{i+1} \kappa \alpha(j) \pmod{6}$ for i = 2, 3, 4, 5, 5
- (vii) $C(i+6, j, 0)(\alpha) = C(i, n-1-j, 0) + 3 \pmod{6}$ for $i \in [0, 6)$,
- (viii) $C(i, j, k)(\alpha) = C(i, (j k) \pmod{6}, 0)(\kappa \alpha)$ for $i \in [0, 12)$.

Proof. (i) $\omega \sigma \omega \alpha(j) = \omega \sigma(\alpha(j+1)) = \omega \alpha(n-1-j-1) = \alpha(n-1-j) = \sigma \alpha(j)$. The rest of the proof is straightforward when we use Table 1 – Table 3.

Definition 1.2. $\alpha, \beta \in \mathcal{T}^{\infty}$ are called *parastrophic equivalent* if there exists $\varphi \in \mathcal{P}$ such that $\varphi(\alpha) = \beta$.

Obviously the parastrophic equivalence is an equivalence relation; by $[\alpha]$ it will be denoted the class of the relation that comprises α . With respect to (iv) we have

$$[\alpha] = \{ \omega^k \varphi_i(\alpha) : i \in [0, 12), \, k \in [0, n), \, n = l(\alpha) \},\$$

and by (v) - (viii)

$$[\alpha] = \{ C(i, n-1, k)(\alpha) C(i, n-2, k)(\alpha) \dots C(i, 0, k)(\alpha) : i \in [0, 12) \},\$$

where $k \in [0, n), n = l(\alpha)$.

In the following (by a personal computer) it will be found the lowest element of a class $[\alpha]$ for all $\alpha \in \mathcal{T}^n$ and 1 < n < 5.

2. The parastrophic equivalence in $T^2 - T^4$

Theorem 2.1. Let $n \in \{2, 3, 4\}$. Then every α in T^n is parastrophic equivalent to exactly one of the following elements

LL	LR	LT	LL^{-1}	(PE2)
LLL	LLR	LLT	LLL^{-1}	(PE3)
LRT	LRL^{-1}	LRR^{-1}	LRT^{-1}	
LTR^{-1}	$LR^{-1}T$			
LLLL	LLTR	LRLR	LTLT	(PE4)
LLLR	LLTT	LRLT	$LTLL^{-1}$	
LLLT	$LLTL^{-1}$	$LRLL^{-1}$	$LTLR^{-1}$	
$LLLL^{-1}$	$LLTR^{-1}$	$LRLR^{-1}$	$LTT^{-1}L^{-1}$	
LLRR	$LLL^{-1}R$	$LRLT^{-1}$	$LL^{-1}LL^{-1}$	
LLRT	$LLL^{-1}T$	$LRTL^{-1}$	$LL^{-1}T^{-1}T$	
$LLRL^{-1}$	$LLL^{-1}L^{-1}$	$LRTR^{-1}$		
$LLRR^{-1}$	$LLR^{-1}R$	$LRL^{-1}T$		
$LLRT^{-1}$	$LLR^{-1}T$	$LRL^{-1}R^{-1}$		
	$LLT^{-1}R$	$LRL^{-1}T^{-1}$		
		$LRR^{-1}T$		
		$LRR^{-1}L^{-1}$		
		$LRT^{-1}T$		
		$LRT^{-1}L^{-1}$		
		$LRT^{-1}R^{-1}$		

In [1] V.D. Belousov defines: A primitive quasigroup $(Q, \cdot, \backslash, /)$ is a Π -quasigroup of type (α, β, γ) if $\alpha, \beta, \gamma \in \sum(\cdot)$ and the quasigroup satisfies the identity

$$L_x^{\alpha} L_x^{\beta} L_x^{\gamma} \simeq 1.$$

This identity is equivalent to the identity $A_x B_x C_x \simeq 1$ for some $A, B, C \in \mathcal{T}, A^{-1} \neq B, C \neq B^{-1}, A \neq C^{-1}$. Therefore we can say that Q is a quasigroup of type ABC.

By Belousov [2], two Π -quasigroups of types ABC, DEF, respectively, are called *parastrophic equivalent* if $ABC = \varphi(DEF)$ for some $\varphi \in \mathcal{P}$; it is in the view of the definition of the parastrophic equivalence given in this paper. Thus if from 10 elements of the set PE3 delete LLL^{-1} , LRR^{-1} , LRL^{-1} then obtain 7 elements that determine 7 equivalence classes of the parastrophic equivalence relation listed in [2, Table 1].

If we want to determine the equivalence class of the parastrophic equivalency (for example) of the identity

$$(x/y) \setminus (y \setminus x) \simeq x \tag{5}$$

(see [2, p. 16]), then proceed like this: (5) is equivalent to

$$y \setminus x \doteq (x/y)x,$$

i.e.

$$R_x \simeq R_x L'_x$$

whence by Table 1

$$T_z \simeq R_z T_z^{-1}$$

and also

$$R_z T_z^{-1} T_z^{-1} \simeq 1, \qquad \varphi_3(RT^{-1}T^{-1}) = R^{-1}LL.$$

Hence (5) is parastrophic equivalent to

$$L_x L_x R_x^{-1} \simeq 1,$$

i.e. $x \cdot xy \simeq yx$ in (Q, /).

The lowest element of the set $[RT^{-1}T^{-1}]$ we can determine by a computer. Similarly we can proceed for arbitrary $ABC \in \mathcal{T}^3$; more generally, for arbitrary $x \in \mathcal{T}^n$, n > 1.

By a computer we can get card(PE5) = 148, card(PE6) = 718, card(PE7) = 3441.

References

- V.D. Belousov: Systems of quasigroups with generalized identities, (Russian), Usp. Mat. Nauk 20 (1965), 75 - 146.
- [2] V.D. Belousov: Parastrophic orthogonal quasigroups, (Russian), Kishinev 1983.
- [3] A. Sade: Quasigroupes parastrophiques. Expression et identités, Math. Nachr. 20 (1959), 73 - 106.
- [4] S.K. Stein: On the foundations of quasigroups, Trans. Amer. Math. Soc. 85 (1957), 228 - 256.

Katedra matematiky Pedagogická fakulta ul. 17. nov. 1 08 116 Prešov Slovak Republik e-mail: jduplak@unipo.sk Received June 28, 2000