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A parastrophic equivalence in quasigroups

Ján Duplák

Abstract

In this paper there are found of "lowest" representants of classes of a parastrophic
equivalence in quasigroups satisfying identities of the type

w1¤1(w2¤2 . . . (wn¤nx))) l x, 1 < n,
where ¤i is a parastrophe of ¤1 for all i 6 n and w1, . . . , wn are terms in Q(·)
and its parastrophes that not contain variable x. These representants are listed
for 1 < n < 5 by a personal computer.

1. Introduction
With any given quasigroup (Q, ·) there are associated �ve operations
∗, /, \, 4, 5 (see the following part 1) that we shall call conjugates
of (·) (see [1], [4]) or parastrophes of (·) (see [3]). If a quasigroup (Q, ·)
satis�es a given identity, say I, then in general, for example (Q, /) will
satisfy a di�erent conjugate identity, say II. Therefore it is in some
sense true that the theory of quasigroups that satisfy the identity I is
equivalent to the theory of quasigroups which satisfy the identity II,
as has been remarked by Stein in [4].

In [3], Sade has given some general rules for determining the iden-
tities satis�ed by the parastrophes of a quasigroup (Q, ·) when (Q, ·)
satis�es a given identity involving some elements of the set

∑
(·) =

{·, ∗, /,5, \,4}. In [4], Stein has listed the conjugate identities for a
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number well-known identities. More extensive list is given in Belousov
[1]. With respect to a parastrophic equivalence, Belousov in [2] has
given a classi�cation of all quasigroups identities which are of the type
x¤1

(
x¤2(x¤3y)

)
l y, where ¤i ∈

∑
(·) for all i = 1, 2, 3.

In this paper we give a generalization and a simpli�cation of meth-
ods used in [2].

2. Preliminaries
Let (Q, ·) be a �xed quasigroup, T = {L,R, T, L−1, R−1, T−1}, and∑

(·) = {·, ∗, /,5,\,4}, where x · y = z ⇔ y ∗ x = z ⇔ z/y = x ⇔
y5 z = x ⇔ x \ z = y ⇔ z 4 x = y.

Further, let Lax = a · x, Rax = x · a, L
/
ax = a/x, R5

a x = x5 a,
Tax = x \ a, LaL

−1
a x = x, ... Then it holds the relations given by

Table 1. This table we read like this: L5 = R−1, (R−1)\ = T−1,
..., ϕ2(R

−1) = ϕ2R
−1 = (R−1)/ = R, ϕ5R = L−1, R−1

a = (Ra)
−1,

T−1
a = (Ta)

−1.

Table 1

· ∗ / 5 \ 4
L L R T−1 R−1 L−1 T

R R L R−1 T−1 T L−1

T T T−1 L−1 L R R−1

L−1 L−1 R−1 T R L T−1

R−1 R−1 L−1 R T T−1 L

T−1 T−1 T L L−1 R−1 R

ϕ0 ϕ1 ϕ2 ϕ3 ϕ4 ϕ5

From this table directly follows that (ϕix)−1 = ϕi(x
−1) for all

i ∈ {0, 1, ..., 5} and for all x ∈ T . If (Q, ¤) is a quasigroup, then
the mappings L�a , R�a , ..., (T−1

a )� are called translations of ¤. Every
operation in

∑
(·) is named a parastrophe of (·).
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If a quasigroup (Q, ·) satis�es a given identity, for example

y l (x \ yz)/zx , (1)

then in general each of its parastrophes will satisfy a di�erent conju-
gate identities. Thus, for example, (1) is equivalent to y · zx l x \ yz;
if denote zx = u, yz = v and yu = t (i.e. x = z \ u, z = y \ v,
u = y \ t), then

t l
(
(y \ v) \ (y \ t)

) \ v . (2)
Hence, (Q, ·) satis�es (1) i� (Q, \) satis�es (2). If (2) is written with
terms of (Q, ·), then obtain

c l (ab · ac)b . (3)

Thus (3) is a conjugate identity to (1). Further, from (3) we have
RbLabLa l 1, i.e. LaRbLab l 1. Whence c l a · (ab · c)b and if denote
a = y, ab = z, c = z \ x, then

y l
(
x · (y \ z)

)5 (z \ x) (4)

is a conjugate identity to (1). (4) we get from (1) if all operations in
(1) are substituted by Table 2, i.e. (·) is substituted by \ = ϕ4(·),
∗ by 4 = ϕ4(∗) , . . . , 4 by ∗ = ϕ4(4) (see Sade [3]).

Table 2 Table 3
· ∗ / 5 \ 4

· · ∗ / 5 \ 4
∗ ∗ · 5 / 4 \
/ / 4 · \ 5 ∗
5 5 \ ∗ 4 / ·
\ \ 5 4 ∗ · /

4 4 / \ · ∗ 5
ϕ0 ϕ1 ϕ2 ϕ3 ϕ4 ϕ5

ϕ0 ϕ1 ϕ2 ϕ3 ϕ4 ϕ5

ϕ0 ϕ0 ϕ1 ϕ2 ϕ3 ϕ4 ϕ5

ϕ1 ϕ1 ϕ0 ϕ5 ϕ4 ϕ3 ϕ2

ϕ2 ϕ2 ϕ3 ϕ0 ϕ1 ϕ5 ϕ4

ϕ3 ϕ3 ϕ2 ϕ4 ϕ5 ϕ1 ϕ0

ϕ4 ϕ4 ϕ5 ϕ3 ϕ2 ϕ0 ϕ1

ϕ5 ϕ5 ϕ4 ϕ1 ϕ0 ϕ2 ϕ3

The identities (1) and (4) may be written by the way as

R/
zxL

\
xRz l 1, R5

z\xLxR
\
z l 1
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and with respect to Table 1 and Table 2

R−1
zx L−1

x Rz l 1, T−1
z\xLxTz l 1 .

The ordered tripletes R−1L−1R , T−1LT may be assigned to the iden-
tities (2), (3). Therefore the triple R−1L−1R will be called conjugate
to the triple T−1LT .

In what follows we shall denote:

N = {0, 1, 2, 3, . . .},
T = {L,R, T, L−1, R−1, T−1},

[0, n) = {0, 1, 2, 3, . . . , n− 1}, n ∈ N, n > 0,

T n = {α : α is a map [0, n) → T } for all n ∈ N, n > 0,

if α ∈ T n then α = An−1 . . . A2A1A0 and α(i) = Ai for all i ∈ [0, n),

T ∞ = T ∪ (T × T ) ∪ (T × T × T ) ∪ . . . ,

l(α) = n ⇐⇒ α ∈ T n,

ω : T ∞ → T ∞, (ωα)(i) = α((i + 1)(modn)) for all i ∈ [0, n),
it holds α ∈ T n ⇒ ωα ∈ T n,

σ : T ∞ → T ∞, (σα)(j) = α(n− 1− j) for n = l(α) and
for all j ∈ [0, n),

ρ : T → T , L 7→ L−1 7→ L, R 7→ R−1 7→ R, T 7→ T−1 7→ T,
i.e. ρ(A) = A−1 for all A ∈ T ,

ρ : T ∞ → T ∞, (ρα)(i) = ρ
(
α(i)

)
for all j ∈ [0, n), n = l(α),

κ : T → [0, 6), L 7→ 0, R 7→ 1, T 7→ 2, L−1 7→ 3, R−1 7→ 4,
T−1 7→ 5,

κ : T ∞ → N, κα =
n−1∑
i=0

10iκ(α(i)), n = l(α),

α < β for α, β ∈ T ∞ ⇐⇒ κα < κβ,

ϕi : T ∞ → T ∞, (ϕiα)(j) = ϕi(α(j)) for all i ∈ [0, 6) and
j ∈ [0, n), n = l(α), where ϕi : T → T is given in Table 1,

P1 − be the group generated by {ϕi : T ∞ → T ∞, i ∈ [0, 6) },
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P − the group generated by the set P1 ∪ {ρσ, ω},
( these maps are de�ned upon T ∞),

ϕi+6 : T ∞ → T ∞, ϕi+6 = σρϕi for all i ∈ [0, 6), where
ϕi : T → T is given in Table 1,

C(i, j, k)(α) = κ
(
(ωkϕiα

)
(j)

)
for all i ∈ [0, 12), j, k ∈ [0, n), n = l(α).

Lemma 1.1. Let α ∈ T ∞, n = l(α) and let j, k ∈ [0, n). Then the
following relations hold

(i) σ2 = ρ2 = 1, ωσω = σ, ω−1(α) = ωn−1(α), ωk(α) = ωt(α)
if k ≡ t(modn),

(ii) every two elements of the set {ω, σ, ρ, ϕ2, ϕ4} commute,
besides ω, σ and ϕ2, ϕ4,

(iii) P1 = {ϕi : i ∈ [0, 12)}; P1 is generated by {ϕ2, ϕ4},
(iv) P = {ωkϕi : k ∈ N, i ∈ [0, 12)},
(v) C(i, j, 0)(α) = i + (−1)iκα(j)(mod 6) for i = 0, 1,

(vi) C(i, j, 0))(α) = 1− i + (−1)i+1κα(j)(mod 6) for i = 2, 3, 4, 5,
(vii) C(i + 6, j, 0)(α) = C(i, n− 1− j, 0) + 3(mod 6) for i ∈ [0, 6),

(viii) C(i, j, k)(α) = C(i, (j − k)(mod 6), 0)(κα) for i ∈ [0, 12).

Proof. (i) ωσωα(j) = ωσ
(
α(j+1)

)
= ωα(n−1−j−1) = α(n−1−j) =

σα(j). The rest of the proof is straightforward when we use Table 1
� Table 3 .

De�nition 1.2. α, β ∈ T ∞ are called parastrophic equivalent if there
exists ϕ ∈ P such that ϕ(α) = β.

Obviously the parastrophic equivalence is an equivalence relation;
by [α] it will be denoted the class of the relation that comprises α.
With respect to (iv) we have

[α] = {ωkϕi(α) : i ∈ [0, 12), k ∈ [0, n), n = l(α) } ,

and by (v) � (viii)

[α] = {C(i, n− 1, k)(α)C(i, n− 2, k)(α) . . . C(i, 0, k)(α) : i ∈ [0, 12) } ,
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where k ∈ [0, n), n = l(α).
In the following (by a personal computer) it will be found the

lowest element of a class [α] for all α ∈ T n and 1 < n < 5.

2. The parastrophic equivalence in T 2 − T 4

Theorem 2.1. Let n ∈ {2, 3, 4}. Then every α in T n is parastrophic
equivalent to exactly one of the following elements

LL LR LT LL−1 (PE2)

LLL LLR LLT LLL−1 (PE3)

LRT LRL−1 LRR−1 LRT−1

LTR−1 LR−1T

LLLL LLTR LRLR LTLT (PE4)

LLLR LLTT LRLT LTLL−1

LLLT LLTL−1 LRLL−1 LTLR−1

LLLL−1 LLTR−1 LRLR−1 LTT−1L−1

LLRR LLL−1R LRLT−1 LL−1LL−1

LLRT LLL−1T LRTL−1 LL−1T−1T

LLRL−1 LLL−1L−1 LRTR−1

LLRR−1 LLR−1R LRL−1T

LLRT−1 LLR−1T LRL−1R−1

LLT−1R LRL−1T−1

LRR−1T

LRR−1L−1

LRT−1T

LRT−1L−1

LRT−1R−1

In [1] V.D. Belousov de�nes: A primitive quasigroup (Q, ·, \, /) is
a Π−quasigroup of type (α, β, γ) if α, β, γ ∈ ∑

(·) and the quasigroup
satis�es the identity

Lα
xLβ

xLγ
x l 1.
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This identity is equivalent to the identity AxBxCx l 1 for some
A,B, C ∈ T , A−1 6= B, C 6= B−1, A 6= C−1. Therefore we can
say that Q is a quasigroup of type ABC.

By Belousov [2], two Π−quasigroups of types ABC, DEF , re-
spectively, are called parastrophic equivalent if ABC = ϕ(DEF ) for
some ϕ ∈ P ; it is in the view of the de�nition of the parastrophic
equivalence given in this paper. Thus if from 10 elements of the set
PE3 delete LLL−1, LRR−1, LRL−1 then obtain 7 elements that de-
termine 7 equivalence classes of the parastrophic equivalence relation
listed in [2, Table 1].

If we want to determine the equivalence class of the parastrophic
equivalency (for example) of the identity

(x/y) \ (y \ x) l x (5)

(see [2, p. 16]), then proceed like this: (5) is equivalent to

y \ x l (x/y)x,

i.e.
Rx l RxL

/
x

whence by Table 1
Tz l RzT

−1
z

and also

RzT
−1
z T−1

z l 1, ϕ3(RT−1T−1) = R−1LL.

Hence (5) is parastrophic equivalent to

LxLxR
−1
x l 1,

i.e. x · xy l yx in (Q, /).
The lowest element of the set [RT−1T−1] we can determine by a

computer. Similarly we can proceed for arbitrary ABC ∈ T 3; more
generally, for arbitrary x ∈ T n, n > 1.

By a computer we can get card(PE5) = 148, card(PE6) = 718,
card(PE7) = 3441.
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