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On the classes of algebras reciprocally

closed under direct products

O. U. Kirnasovsky

Abstract

The class K of algebras with the property that two algebras belongs to K i�
their direct product belongs to K is studied.

The class K of algebras with the property that two algebras be-
longs to K i� their direct product belongs to K is called reciprocally
closed under direct products. The formula Φ is reciprocally preserved
under direct products if the class of algebras satisfying Φ is recipro-
cally closed under direct products (cf. [1]).

Three following assertions are evident.

Proposition 1. A class of algebras closed under direct products and
homomorphisms is reciprocally closed under direct products.

Proposition 2. A class of idempotent algebras closed under direct
products and subalgebras is reciprocally closed under direct products.

Proposition 3. The conjunction of formulas of a �xed signature,
which are reciprocally preserved under direct products, is reciprocally
preserved under direct products. Similarly, the intersection of classes
of algebras reciprocally closed under direct products is a class of alge-
bras reciprocally closed under direct products.

In this paper by a groupoid we mean an algebra (Q, f) with one
(binary or n-ary) operation f . A groupoid (Q, f) in which for all
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1 6 i 6 n and ai ∈ Q the equation

f(a1, . . . , ai−1, xi, ai+1, . . . , an) = ai

has a unique solution xi ∈ Q (denoted by f i(a1, . . . , an)) is called a
quasigroup. A loop is a quasigroup with a neutral element; a semigroup
- an associative groupoid; a group - an associative quasigroup.

A formula Φ of the signature Ω is called conjunctively-positive i�
its record has no predicate letter, except the symbols of equality, no
logical connective, except the symbols of conjunction, and no term,
except terms of the signature Ω.

A formula Φ is prenex almost conjunctively-positive formula of a
signature Ω, i� all quanti�ers and symbols �∃!� in its shortened record,
obtained only by reductions to the symbols �∃!�, precede the quanti�er-
free part, and the shortened record has no predicate letter, except the
symbols of equality, no logical connective, except the symbols of con-
junction, and no term, except terms of the signature Ω. Obviously,
prenex normal form of a conjunctively-positive formula of a signature
Ω is a prenex almost conjunctively-positive formula of the signature
Ω.

Lemma 4. Every prenex almost conjunctively-positive formula is re-
ciprocally preserved under direct products.

Proof. The given formula is equivalent to a closed formula of the form

(Q1x1) . . . (Qkxk)(w1 = w2 & . . . &w2m−1 = w2m), (1)

where Q1, ..., Qk are quanti�ers ∀, ∃ and symbols �∃!�, and w1, ..., w2m

are terms of the signature of the given formula. The formula (1) has
the signature of algebras of some type. Fix arbitrary algebras 〈G,Ω1〉
and 〈H,Ω2〉 of the type. Denote the direct product of the �rst of them
by the second of them by 〈M,Ω〉. Validity of the formula (1) in the
algebra 〈M,Ω〉 is equivalent to the formula

(Q1〈y1, z1〉 ∈M) . . . (Qk〈yk, zk〉 ∈M)P (〈y1, z1〉, . . . , 〈yk, zk〉), (2)

where P (x1, . . . , xk) is the quanti�er-free part of the formula (1). Next,
the formula (2) is equivalent to the formula

(Q1y1 ∈ G, z1 ∈ H) . . . (Qkyk ∈ G, zk ∈ H) (P ′(y1, . . . , yk) &
&P ′′(z1, . . . , zk)),

(3)
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where P ′ and P ′′ are formulas obtained from P by the way of the re-
placement of every propositional variable xi respectively with yi and zi

and of every functional variable f of the signature Ω with the respec-
tive functional variable (f1 of the signature Ω1 and f2 of the signature
Ω2 respectively). At last, formula (3) and, therefore, formula (2), are
equivalent to the formula

((Q1y1 ∈ G) . . . (Qkyk ∈ G)P ′(y1, . . . , yk)) &

& ((Q1z1 ∈ H) . . . (Qkzk ∈ H)P ′′(z1, . . . , zk)),

that is equivalent to simultaneous validity of the formula (1) in both
〈G,Ω1〉 and 〈H,Ω2〉 algebras.

Corollary 5. Every conjunctively-positive formula is reciprocally pre-
served under direct products.

Corollary 6. The class of all quasigroups (of all groups, of all semi-
groups, of all monoids, of all loops) is reciprocally closed under direct
products.

As it is well known, the direct product ρ× τ of binary relations ρ
and τ is de�ned as the relation

〈a, b〉(ρ× τ)〈c, d〉 ⇐⇒ (a ρ c) & (b τ d).

It is clear, that for mappings f and g the relation f × g is a mapping
with the domain equal to the Cartesian product of the domains of the
mappings f and g and (f × g)(〈x, y〉) = 〈f(x), g(y)〉.

A groupoid (G, g) is called an isotope of a binary semigroup (Q,+)
i� there exists a collection 〈α1, . . . , αn, α〉 of bijections from the set
G onto the set Q satisfying the identity

αg(x1, . . . , xn) = α1x1 + · · ·+ αnxn. (4)

An isotope of a group is called also a group isotope. It is easy to see
that an isotope of a group is a quasigroup. A transformation α of
a set Q is called a linear transformation of a group (Q,+) if there
exist an endomorphism θ and a right translation Rc of this group
such that α = Rcθ. An isotope of a group (Q,+) de�ned by (4) is
called i-linear if the bijections αi and α are linear transformations of
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(Q,+). An isotope is linear if it is i-linear for all i. Obviously, every
groupoid isomorphic to a linear or i-linear group isotope is a linear or,
respectively, i-linear group isotope.

Lemma 7. The direct product of an isotope (A, g) of a semigroup
(G,+) by an isotope (B, h) of a semigroup (H, ·) de�ned by (4) and

βh(x1, . . . , xn) = β1x1 · . . . · βnxn

is an isotope (C, f) of the semigroup (M, ◦) determined by

(M, ◦) = (G×H, ◦) = (G,+)× (H, ·)
and by

(α× β)f(x1, . . . , xn) = (α1 × β1)x1 ◦ . . . ◦ (αn × βn)xn,

where α1, . . . , αn and α are bijections from A onto G, and β1, . . . , βn

and β are bijections from B onto H.

Proof. Indeed, let f be the operation of the given direct product of
the isotopes of the semigroups. Then

(α× β)f(〈x1, y1〉, . . . , 〈xn, yn〉)
= (α× β)(〈g(x1, . . . , xn), h(y1, . . . , yn)〉)
= 〈αg(x1, . . . , xn), βh(y1, . . . , yn)〉
= 〈α1x1 + . . .+ αnxn, β1y1 · . . . · βnyn〉
= 〈α1x1, β1y1〉 ◦ . . . ◦ 〈αnxn, βnyn〉
= (α1 × β1)〈x1, y1〉 ◦ . . . ◦ (αn × βn)〈xn, yn〉,

which completes the proof.

If (Q, f) is a quasigroup of an arity n > 2 then (Q, f, f 1, . . . , fn) is
called the primitive quasigroup which corresponds to the quasigroup
(Q, f). Such quasigroup maybe de�ned as an algebra (Q, f, f 1, . . . , fn)
with n+ 1 n-ary operations satisfying 2n identities:

f(x1, . . . , xi−1, f
i(x1, . . . , xn), xi+1, . . . , xn) = xi,

f i(x1, . . . , xi−1, f(x1, . . . , xn), xi+1, . . . , xn) = xi.

A congruence on a quasigroup (Q, f) is called normal if it is a con-
gruence on the corresponding primitive quasigroup.
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Lemma 8. The homomorphic image of a group isotope, where the
congruence which corresponds to the respective homomorphism is nor-
mal, is a group isotope.

Proof. Let (Q, f) be the given group isotope, ϕ the given homo-
morphism of the group isotope (Q, f) onto a groupoid (G, g), and π
the respective normal congruence on (Q, f). Then π is a congruence
on the primitive quasigroup (Q, f, f 1, . . . , fn). Denote the respective
natural homomorphism by ψ. From [2] it follows that the class of all
n-ary group isotopes is a variety of quasigroups. Therefore, the class
of all primitive quasigroups which correspond to n-ary group isotopes
is closed under homomorphisms, whence ψ is a homomorphism of the
group isotope (Q, f) onto some group isotope (Q/π, h). Hence (G, g)
is a group isotope.

Lemma 9. A homomorphism of a quasigroup (Q, f) into a quasi-
group (G, g) is a homomorphism of a quasigroup (Q, f, f 1, . . . , fn) into
a quasigroup (G, g, g1, . . . , gn).

Proof. Denote the given homomorphism by ϕ. Let a1, . . ., an be ar-
bitrary elements from Q, and i be a natural number not greater than
n. If bi = f i(a1, . . . , an), then

ϕai = ϕf(a1, . . . , ai−1, bi, ai+1, . . . , an)

= g(ϕa1, . . . , ϕai−1, ϕbi, ϕai+1, . . . , ϕan),

whence, it follows that

ϕf i(a1, . . . , an) = ϕbi = gi(ϕa1, . . . , ϕan)

for all a1, . . ., an ∈ Q and all 1 6 i 6 n. Thus we have the identity

ϕf y(x1, . . . , xn) = gy(ϕx1, . . . , ϕxn).

This completes the proof.

Corollary 10. The congruence which corresponds to a homomor-
phism of a quasigroup into a quasigroup is normal.

Corollary 11. If there exists a homomorphism ϕ of a group isotope
into a quasigroup (Q, f), then the groupoid (Imϕ, f) is a group isotope.
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Proof. It is enough to add the statement of Lemma 8 to the statement
of Corollary 10.

Example 14. Let (Q,+) be an arbitrary in�nite group. Since the
sets Q and Q2 have the same cardinal number, then there exists
a bijection f of Q2 onto Q. Let (Q3, ∗) be the direct product
(Q,+)× (Q,+)× (Q,+) and let (Q3, g) be the isotope of the group
(Q3, ∗) de�ned by the identity

g(x1, . . . , xn) = αx1 ∗ . . . ∗ αxn,

where n > 2 is an arbitrary �xed number and α is a substitution of
Q3 de�ned by the identity

α(〈x, y, z〉) = 〈f−1(x), f(y, z)〉.

Let ϕ be a mapping ϕ : Q3 → Q2 such that

ϕ : 〈x, y, z〉 7→ 〈x, y〉,

and let h be the operation of the arity n > 2 de�ned on Q2 by the
formula

h(〈x1, y1〉, . . . , 〈xn, yn〉) = ϕg(〈x1, y1, z1〉, . . . , 〈xn, yn, zn〉),

where z1, . . . , zn ∈ Q are arbitrary.
The operation h is not dependent on that choice of z1, . . . , zn ∈ Q,

since for the direct product (Q2, ?) of the group (Q,+) we have

ϕg(〈x1, y1, z1〉, . . . , 〈xn, yn, zn〉)
= ϕ(α(〈x1, y1, z1〉) ∗ . . . ∗ α(〈xn, yn, zn〉))
= ϕ(〈f−1(x1), f(y1, z1)〉 ∗ . . . ∗ 〈f−1(xn), f(yn, zn)〉)
= ϕ(〈f−1(x1) ? . . . ? f

−1(xn), f(y1, z1) + . . .+ f(yn, zn)〉)
= f−1(x1) ? . . . ? f

−1(xn).

Moreover, from these equalities it follows that the operation h is not
a quasigroup one, since all divisions are multivalued. But the identity

h(ϕx1, . . . , ϕxn) = ϕg(x1, . . . , xn)
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holds. Thus, ϕ is a homomorphism of the group isotope (Q3, g) onto
the groupoid (Q2, h), which is not even a quasigroup. The congruence
corresponding to it by Lemma 8 is not normal.

Theorem 13. The class of all group isotopes is reciprocally closed
under direct products.

Proof. By Lemma 7 the direct product of two group isotopes of the
same arity is a group isotope. Let the direct product (M, f) of a
groupoid (G, g) by a groupoid (H, h) be a group isotope. By Corollary
6 the groupoids (G, g) and (H, h) are quasigroups. It is easy to see
that the mappings ϕ1 and ϕ2 from the group isotope (M, f) into the
quasigroups (G, g) and (H, h) respectively, for which

(∀x ∈ G)(∀y ∈ H)(ϕ1(〈x, y〉) = x & ϕ2(〈x, y〉) = y),

are homomorphisms of the group isotope (M, f) onto the quasigroups
(G, g) and (H, h), respectively. By Corollary 11 these two quasigroups
are group isotopes.

Theorem 14. The class of all i-linear n-ary group isotopes, where i
and n are �xed numbers, is reciprocally closed under direct products.

Proof. By Lemma 7 the direct product of two i-linear n-ary group
isotopes is an i-linear group isotope. Let the direct product (M, f) of
a groupoid (G, g) by a groupoid (H, h) be i-linear n-ary group isotope.
By Theorem 13 (G, g) and (H, h) are group isotopes. The repeated
application of Lemma 7 gives i-linearity of these group isotopes.

Corollary 15. The class of all linear group isotopes is reciprocally
closed under direct products.

In spite of the collection of the above results and the results of
Horn from [1] which describe the structure of the classes of algebras
reciprocally closed under direct products, the question about criterion
for a class of algebras to be reciprocally closed under direct products,
or, at least, for a formula to be reciprocally preserved under direct
products, remains open.



36 O. U. Kirnasovsky

References

[1] A. Horn: On sentences which are true of direct unions of algebras,
J. Symb. Logic 16 (1951), 14− 21.

[2] O. U. Kirnasovsky: A balanced identity described the n-ary
group isotopes in the class of all n-ary quasigroups, (Ukrainian),
Ukrainian Math. J. 6 (1998), 862− 864.

Received July 20, 1999 and in revised form December 25, 2000


