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Fuzzi�cation of n-ary groupoids

Wiesªaw A. Dudek

Abstract

Our work in this paper is concerned with the fuzzi�cation of subgroupoid
and ideals in n-ary groupoids.

1. Introduction
After the introduction of the concept of fuzzy sets by Zadeh [13],
several researches were conducted on the generalizations of the notion
of fuzzy set and application to many algebraic structures such as:
groups [11], quasigroups [7], semirings [9], BCC-algebras [8] et cetera.
All these applications are connected with binary operations.

Now we extend this concept to the set with one n-ary operation,
i.e., to the set G with one operation f : Gn → G, where n > 2. Such
de�ned groupoid will be denoted by G.

According to the tradition (cf. [2] and [6]) the sequence of elements
xi, . . . , xj will be denoted by xj

i (for j < i it is empty symbol). This
means that f(x1, x2, . . . , xn) will be written as f(xn

1 ).
An n-ary groupoid G is called unipotent (cf. [5]) if it contains an

element θ such that f(x, x, . . . , x) = θ for all x ∈ G. Such groupoid
is obviously an n-ary semigroup, i.e., it satis�es

f(xi−1
1 , f(xn+i−1

i ), x2n−1
n+i ) = f(xj−1

1 , f(xn+j−1
j ), x2n−1

n+j )

for all x1, . . . , x2n−1 ∈ G and i, j ∈ {1, 2, . . . , n}.
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A non-empty subset S of G is an n-ary subgroupoid (brie�y: sub-
groupoid) if it is closed with respect to the operation f . A subset S is
called a k-ideal of G if f(xk−1

1 , a, xn
k+1) ∈ S for all x1, . . . , xn ∈ G and

all a ∈ S (cf. [12]). If S is a k-ideal for every k = 1, 2, . . . , n, then it
is called an ideal.

2. Fuzzy subgroupoids
By a fuzzy set µ in a set G we mean a function µ : G → [0, 1]. The
set

L(µ, t) = {x ∈ G : µ(x) > t},
where t ∈ [0, 1] is �xed, is called a level subset of µ. Im(µ) denotes
the image set of µ .

De�nition 2.1. A fuzzy set µ de�ned on G is called a fuzzy sub-
groupoid of an n-ary groupoid G = (G, f) if

µ(f(xn
1 )) > min{µ(x1), . . . , µ(xn)}

for all x1, . . . , xn ∈ G.

Lemma 2.2. If µ is a fuzzy subgroupoid of a unipotent groupoid
(G, f, θ), then µ(θ) > µ(x) for all x ∈ G.

Proof. Indeed, f(x, x, . . . , x) = θ for all x ∈ G implies

µ(θ) = µ(f(x, . . . , x)) > min{µ(x), . . . , µ(x)} = µ(x),

which completes the proof.

Theorem 2.3. A fuzzy set µ of an n-ary groupoid G is a fuzzy sub-
groupoid i� for every t ∈ [0, 1], L(µ, t) is either empty or a sub-
groupoid of G.

Proof. Straightforward.
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Theorem 2.4. Any subgroupoid of G can be realized as a level sub-
groupoid of some fuzzy subgroupoid of G.

Proof. Let (T, f) be a subgroupoid of a given n-ary groupoid G and
let µ be a fuzzy set in G de�ned by

µ(x) =

{
t if x ∈ T,
s if x /∈ T,

where 0 6 s < t 6 1 is �xed.
It is not di�cult to see that µ is a fuzzy subgroupoid of G such

that L(µ, t) = T .

Proposition 2.5. Two level subgroupoids L(µ, s), L(µ, t) (s < t)
of a fuzzy subgroupoid µ are equal i� there is no x ∈ G such that
s 6 µ(x) < t.

Proof. See the proof of Proposition 3.7 in [7].

Corollary 2.6. Let µ be a fuzzy subgroupoid of G. If Im(µ) =
{t1, t2, ..., tm}, where t1 < t2 < ... < tm, then the family of levels
L(µ, ti), 1 6 i 6 m, constitutes all the level subgroupoids of µ.

Corollary 2.7. Let µ be a fuzzy subgroupoid with �nite Im(µ). If
µs = µt for some s, t ∈ Im(µ), then s = t.

Corollary 2.8. Let µ and ρ be two fuzzy subgroupoids of G with
the same family of levels. If Im(µ) = {t1, . . . , tm} and Im(ρ) =
{s1, . . . , sp}, where t1 > t2 > . . . > tm and s1 > s2 > . . . > sp, then

a) m = p,
b) L(µ, ti) = L(ρ, si) for i = 1, . . . , m,
c) if µ(x) = ti, then ρ(x) = si for x ∈ G and i = 1, . . . , m.

Proof. (a) and (b) are obvious. To prove (c) let x ∈ G be such that
µ(x) = ti and ρ(x) = sj. From (b) and µ(x) = ti follows x ∈ L(ρ, si).
Thus ρ(x) > si and sj > si, i.e. ρsj

⊆ ρsi
. Since x ∈ L(ρ, sj) =

L(µ, tj), we obtain ti = µ(x) > tj. This gives L(µ, ti) ⊆ L(µ, tj), and,
in the consequence (by (b)) L(ρ, si) = L(µ, ti) ⊆ L(µ, tj) = L(ρ, sj).
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Thus L(ρ, si) = L(ρ, sj). But, by Corollary 2.7, si = sj. Therefore
ρ(x) = si.

Corollary 2.9. If fuzzy subgroupoids µ and ρ de�ned on G have
the same �nite family of levels, then µ = ρ i� Im(µ) = Im(ρ).

Theorem 2.10. Let {Sλ : λ ∈ Λ}, where ∅ 6= Λ ⊆ [0, 1], be a
collection of subgroupoids of G such that

(i) G =
⋃

λ∈Λ

Sλ,

(ii) α > β ⇐⇒ Sα ⊂ Sβ for all α, β ∈ Λ.
Then µ de�ned by

µ(x) = sup{λ ∈ Λ : x ∈ Sλ}
is a fuzzy subgroupoid of G.

Proof. By Theorem 2.3, it is su�cient to show that every non-empty
level L(µ, α) is a subgroupoid of G.

Let L(µ, α) 6= ∅ for some �xed α ∈ [0, 1]. Then
α = sup{λ ∈ Λ : λ < α} = sup{λ ∈ Λ : Sα ⊂ Sλ}

or
α 6= sup{λ ∈ Λ : λ < α} = sup{λ ∈ Λ : Sα ⊂ Sλ}.

In the �rst case we have L(µ, α) =
⋂

λ<α

Sλ, because

x ∈ L(µ, α) ⇐⇒ x ∈ Sλ for all λ < α ⇐⇒ x ∈ ⋂
λ<α

Sλ .

In the second, there exists ε > 0 such that (α − ε, λ) ∩ Λ = ∅. In
this case L(µ, α) =

⋃
λ>α

Sλ. Indeed, if x ∈ ⋃
λ>α

Sλ, then x ∈ Sλ for

some λ > α, which gives µ(x) > λ > α. Thus x ∈ L(µ, α), i.e.,⋃
λ>α

Sλ ⊆ L(µ, α).

Conversely, if x 6∈ ⋃
λ>α

Sλ, then x 6∈ Sλ for all λ > α, which im-

plies x 6∈ Sλ for all λ > α − ε, i.e., if x ∈ Sλ then λ 6 α − ε. Thus
µ(x) 6 α− ε. Therefore x 6∈ L(µ, α). Hence L(µ, α) ⊆ ⋃

λ>α

Sλ, and in

the consequence L(µ, α) =
⋃

λ>α

Sλ. This completes our proof because



Fuzzi�cation of n-ary groupoids 49

(as it is not di�cult to see)
⋃

λ>α

Sλ and
⋂

λ<α

Sλ are subgroupoids.

Theorem 2.11. Let µ be a fuzzy set de�ned in an n-ary groupoid
G and let Im(µ) = {t0, t1, . . . , tm}, where t0 > t1 > . . . > tm.
If S0 ⊂ S1 ⊂ . . . ⊂ Sm = G are subgroupoids of G such that
µ(Sk \ Sk−1) = tk for k = 0, 1, . . . , m, where S−1 = ∅, then µ is a
fuzzy subgroupoid.

Proof. For arbitrary elements x1, . . . , xn ∈ G there exists only one k
such that f(xn

1 ) ∈ Sk\Sk−1 and only one ki such that xi ∈ Ski
\Ski−1.

Thus µ(f(xn
1 )) = tk, µ(xi) = tki

.
Suppose tki

> tk for all i = 1, 2, . . . , n. Then, by the assumption,
ki < k and Ski

⊆ Ss ⊆ Sk−1 ⊂ Sk, where s = max{k1, . . . , kn}. Hence
x1, . . . , xn ∈ Sk−1 and, in the consequence, f(xn

1 ) ∈ Sk−1 because Sk−1

is a subgroupoid. This is a contradiction. Therefore there is at least
one tki

< tk.
In this case obviously µ(f(xn

1 )) = tk > min{µ(x1), . . . , µ(xn)},
which completes the proof.

Corollary 2.12. Let µ be a fuzzy set de�ned in an n-ary groupoid
G and let Im(µ) = {t0, t1, . . . , tm}, where t0 > t1 > . . . > tm. If
S0 ⊂ S1 ⊂ . . . ⊂ Sm = G are subgroupoids of G such that µ(Sk) = tk
for k = 0, 1, . . . , m, then µ is a fuzzy subgroupoid.

Corollary 2.13. If Im(µ) = {t0, t1, ..., tn}, where t0 > t1 > ... > tn,
is the image of a fuzzy subgroupoid µ in G, then all levels L(µ, tk) are
subgroupoid of G , µ(L(µ, t0)) = t0 and µ(L(µ, tk) \ L(µ, tk−1)) = tk
for k = 1, 2, ..., n.

Proof. All levels L(µ, tk) are subgroupoids by Theorem 2.3. Obviously
µ(L(µ, t0)) = t0. Moreover µ(L(µ, t1)) > t1 implies µ(x) = t0 for
x ∈ L(µ, t0) and µ(x) = t1 for x ∈ L(µ, t0) \ L(µ, t1).

Repeating this procedure, we conclude that µ(L(µ, tk)\L(µ, tk−1))
= tk for all k = 1, 2, ..., n.

Proposition 2.14. Let G be a unipotent n-ary groupoid. If µ is
a fuzzy subgroupoid in G with the image Im(µ) = {ti : i ∈ I} and
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Ω = {L(µ, ti) : ti ∈ Im(µ)} , then
(a) there exists a unique t0 ∈ Im(µ) such that t0 > ti for all

ti ∈ Im(µ),
(b) G is the set-theoretic union of all L(µ, ti) ∈ Ω,
(c) the members of Ω form a chain,
(d) Ω contains all level subgroupoids of µ i� µ attains its

in�mum on all subgroupoids of G.

Proof. (a) Follows from the fact that in a unipotent n-ary groupoid
t0 = µ(θ) > µ(x) for all x ∈ G (see Lemma 2.2).

(b) If x ∈ G, then µ(x) = tx ∈ Im(µ). Thus x ∈ L(µ, tx) ⊆⋃
L(µ, ti) ⊆ G, where ti ∈ Im(µ), which proves (b).
(c) Since L(µ, ti) ⊆ L(µ, tj) ⇐⇒ ti > tj for i, j ∈ I, then the set

Ω is totally ordered by inclusion.
(d) Suppose that Ω contains all level subgroupoids of µ. Let S be

a subgroupoid of G. If µ is constant on S, then we are done. Assume
that µ is not constant on S. We consider two cases: (1) S = G and
(2) S ⊂ G. For S = G let β = inf Im(µ). Then β 6 t ∈ Im(µ), i.e.
L(µ, β) ⊇ L(µ, t) for all t ∈ Im(µ). But L(µ, 0) = G ∈ Ω because Ω
contains all level subgroupoids of µ. Hence there exists t′ ∈ Im(µ)
such that L(µ, t′) = G. It follows that L(µ, β) ⊃ L(µ, t′) = G so
that L(µ, β) = L(µ, t′) = G because every level subgroupoid of µ is
a subgroupoid of G.

Now it su�cient to show that β = t′. If β < t′, then there exists
t′′ ∈ Im(µ) such that β 6 t′′ < t′. This implies L(µ, t′′) ⊃ L(µ, t′) =
G, which is a contradiction. Therefore β = t′ ∈ Im(µ).

In the case S ⊂ G we consider the fuzzy set µS de�ned by

µS(x) =

{
α for x ∈ S,
0 for x ∈ G \ S.

From the proof of our Theorem 2.4 it follows that µS is a fuzzy sub-
groupoid of G.

Let
J = {i ∈ I : µ(x) = ti for some x ∈ S} .

Then ΩS = {L(µ, ti) : i ∈ J} contains (by the assumption) all level
subgroupoids of µS. This means that there exists x0 ∈ S such that
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µ(x0) = inf{µS(x) : x ∈ S}, i.e., µ(x0) = µS(x) for some x ∈ S.
Hence µ attains its in�mum on all subgroupoids of G.

To prove the converse let L(µ, α) be a level subgroupoid of µ.
If α = t for some t ∈ Im(µ), then L(µ, α) ∈ Ω. If α 6= t for all
t ∈ Im(µ), then there does not exist x ∈ G such that µ(x) = α.

Let S = {x ∈ G : µ(x) > α}. Obviously θ ∈ S and µ(xi) > α for
all x1, x2, . . . , xn ∈ S. From the fact that µ is a fuzzy subgroupoid
we obtain

µ(f(xn
1 )) > min{µ(x1), µ(x2), . . . , µ(xn)} > α ,

which proves f(xn
1 ) ∈ S. Hence (S, f) is a subgroupoid. By hy-

pothesis, there exists y ∈ S such that µ(y) = inf{µ(x) : x ∈ S}.
But µ(y) ∈ Im(µ) implies µ(y) = t′ for some t′ ∈ Im(µ). Hence
inf{µ(x) : x ∈ S} = t′ > α.

Note that there does not exist z ∈ G such that α 6 µ(z) < t′.
This gives L(µ, α) = L(µ, t′) . Hence L(µ, α) ∈ Ω. Thus Ω contains
all level subgroupoids of µ.

Proposition 2.15. Let G be a groupoid such that every descending
chain S1 ⊃ S2 ⊃ ... of subgroupoids of G terminates at �nite step.
If µ is a fuzzy subgroupoid in G such that a sequence of elements of
Im(µ) is strictly increasing, then µ has �nite number of values.

Proof. Analogously as the proof of Proposition 3.17 in [7].

Theorem 2.16. If every fuzzy subgroupoid µ de�ned on G has the
�nite image, then every descending chain of subgroupoids of G termi-
nates at �nite step.

Proof. Suppose there exists a strictly descending chain

S0 ⊃ S1 ⊃ S2 ⊃ ...

of subgroupoids of G which does not terminate at �nite step. We
prove that µ de�ned by

µ(x) =

{
k

k+1
for x ∈ Sk \ Sk+1,

1 for x ∈ ⋂
Sk,
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where k = 0, 1, 2, ... and S0 = G, is a fuzzy subgroupoid with an
in�nite number of values.

If f(xn
1 ) ∈ ⋂

Sk, then obviously

µ(f(xn
1 )) = 1 > min{µ(x1), µ(x2), . . . , µ(xn)} .

If f(xn
1 ) 6∈ ⋂

Sk, then f(xn
1 ) ∈ Sp \ Sp+1 for some p > 0 and

there exists at least one i = 1, 2, . . . , n such that xi 6∈
⋂

Sk, because
x1, x2, . . . , xn ∈

⋂
Sk implies f(xn

1 ) ∈ ⋂
Sk .

Let Sm be a maximal subgroupoid of G such that at least one
of x1, x2, . . . , xn belongs to Sm \ Sm+1. Obviously m 6 p . Indeed,
for m > p we have x1, x2, . . . , xn ∈ Sm ⊆ Sp+1 ⊂ Sp and, in the
consequence, f(xn

1 ) ∈ Sp+1 , which is impossible. Thus m 6 p and

µ(f(xn
1 )) =

p

p + 1
> min{µ(x1), . . . , µ(xn)} =

m

m + 1
.

This proves that µ is a fuzzy subgroupoid and has an in�nite number
of di�erent values. Obtained contradiction completes our proof.

Theorem 2.17. Every ascending chain of subgroupoids of a groupoids
G terminates at �nite step i� the set of values of any fuzzy groupoid
in G is a well-ordered subset of [0, 1].

Proof. If the set of values of a fuzzy subgroupoid µ is not well-
ordered, then there exists a strictly decreasing sequence {ti} such
that ti = µ(xi) for some xi ∈ G. But in this case subgroupoids
Bi = {x ∈ G : µ(x) > ti} form a strictly ascending chain, which is a
contradiction.

To prove the converse suppose that there exist a strictly ascending
chain S1 ⊂ S2 ⊂ S3 ⊂ ... of subgroupoids. Then M =

⋃
Si is a

subgroupoid of G and µ de�ned by

µ(x) =

{
0 for x 6∈ M ,
1
k

where k = min{i : x ∈ Ai}
is a fuzzy subgroupoid on G.

Indeed, if all x1, x2, . . . , xn are in M , then for every xi there exists
a minimal number ki such that xi ∈ Ski

, and a minimal number p
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such that f(xn
1 ) ∈ Sp . Obviously all x1, x2, . . . , xn, f(xn

1 ) are in Sk ,
where k = max{k1, k2, . . . , kn}. Thus k > p and

µ(f(xn
1 ) =

1

p
> 1

k
= min{µ(x1), µ(x2), . . . , µ(xn)} .

The case when at least one of x1, x2, . . . , xn is not in M is obvious.
This proves that µ is a fuzzy subgroupoid. Since the chain of

subgroupoids S1 ⊂ S2 ⊂ S3 ⊂ ... is not terminating, µ has a strictly
descending sequence of values. This contradicts that the set of values
of any fuzzy subgroupoid is well-ordered. The proof is complete.

3. Normal fuzzy subgroupoids
De�nition 3.1. A fuzzy set µ of G is said to be normal if there exists
x ∈ G such that µ(x) = 1.

A simple example of a normal fuzzy set is a characteristic function
χ

S
, where S is a �xed subset of G.
Note that if µ is a normal fuzzy subgroupoid of a unipotent

groupoid G, then µ(θ) = 1, and hence µ is normal in a unipotent
groupoid i� µ(θ) = 1.

According to [13] we say that a fuzzy set µ is contained in a fuzzy
set ρ (and denote this fact by µ ⊆ ρ ) i� µ(x) 6 ρ(x) for all x ∈ G.
Obviously µ = ρ i� µ(x) = ρ(x) for all x ∈ G.

Proposition 3.2. Let µ be a fuzzy subgroupoid of a unipotent groupoid
G . Then a fuzzy set µ+ de�ned on G by µ+(x) = µ(x) + 1 − µ(θ) ,
is a normal fuzzy subgroupoid of G such that µ ⊆ µ+.

Proof. If x1, x2, . . . , xn ∈ G, then
µ+(f(xn

1 )) = µ(f(xn
1 )) + 1− µ(θ)

> min{µ(x1), µ(x2), . . . , µ(xn)}+ 1− µ(θ)
= min{µ(x1) + 1− µ(θ), . . . , µ(xn) + 1− µ(θ)}
= min{µ+(x1), µ

+(x2), . . . , µ
+(xn)} ,

which proves that µ+ is a fuzzy subgroupoid of G. Moreover µ+(θ) =
µ(θ) + 1− µ(θ) = 1 > µ+(x) > µ(x) for all x ∈ G.



54 W. A. Dudek

Corollary 3.3. Let µ and µ+ be as in the above Proposition. Then
µ+(x0) = 0 (for some x0 ∈ G) implies µ(x0) = 0. Moreover µ is
normal i� µ+ is normal.

Corollary 3.4. For every fuzzy subgroupoid µ de�ned on a unipotent
groupoid G we have (µ+)+ = µ+. Moreover, if µ is normal, then
(µ+)+ = µ.

Proposition 3.5. If µ and ν are two fuzzy subgroupoids of a unipo-
tent groupoid G such that µ ⊆ ν and µ(θ) = ν(θ), then Gµ ⊆ Gν.

Proof. Straightforward.

Corollary 3.6. If µ and ν are normal fuzzy subgroupoids of a unipo-
tent groupoid G such that µ ⊆ ν, then Gµ ⊆ Gν .

Proposition 3.7. If for a fuzzy subgroupoid µ de�ned on a unipotent
groupoid G there exists a fuzzy subgroupoid ν de�ned on G such that
ν+ is contained in µ, then µ is normal.

Proof. Straightforward.

Denote by N (G) the set of all normal fuzzy subgroupoids of G.
Note that N (G) is partially ordered by inclusion.

Proposition 3.8. Let µ be a non-constant fuzzy subgroupoid of a
unipotent groupoid G. If µ is a maximal element of (N (G),⊆), then
µ takes only two values: 0 and 1.

Proof. Observe that µ(θ) = 1 since µ is normal. Let x ∈ G be such
that µ(x) 6= 1. We claim that µ(x) = 0. If not, then there exists
a ∈ G such that 0 < µ(a) < 1. Let ν be a fuzzy set in G de�ned by
ν(x) := 1

2
[µ(x) + µ(a)] for all x ∈ G. Then clearly ν is well-de�ned,

and we have that for all x ∈ G,

ν(θ) =
1

2
[µ(θ) + µ(a)] =

1

2
[1 + µ(a)] > 1

2
[µ(x) + µ(a)] = ν(x).
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Moreover, for any x1, x2, . . . , xn ∈ G we obtain

ν(f(xn
1 )) = 1

2
[µ(f(xn

1 )) + µ(a)] > 1
2
[min{µ(x1), . . . , µ(xn)}+ µ(a)]

= min{1
2
[µ(x1) + µ(a)] , . . . , 1

2
[µ(xn) + µ(a)]}

= min{ν(x1), ν(x2), . . . , ν(xn)}.

Hence ν is a fuzzy subgroupoid of G and ν+ is de�ned by ν+(x) =
ν(x) + 1 − ν(θ) is normal (Proposition 3.2). Thus ν+ ∈ N (G) and
ν+(x) > µ(x) for all x ∈ G.

Note that

ν+(a) = ν(a) + 1− ν(θ)

= 1
2
[µ(a) + µ(a)] + 1− 1

2
[µ(θ) + µ(a)]

= 1
2
[µ(a) + 1] > µ(a)

and ν+(a) < 1 = ν+(θ). Hence ν+ is non-constant, and µ is not a
maximal element of N (G). This is a contradiction.

De�nition 3.9. A fuzzy set µ de�ned on G is called maximal if it is
non-constant and µ+ is a maximal element of the poset (N (G),⊆).

Theorem 3.10. Let µ be a maximal fuzzy subgroupoid of a unipotent
groupoid G. Then

(i) µ is normal,
(ii) µ takes only the values 0 and 1,

(iii) Gµ = {x ∈ G : µ(x) = µ(θ)} is a maximal subgroupoid of G,
(iv) µGµ = µ .

Proof. Let µ be a maximal fuzzy subgroupoid. Then µ+ is a non-
constant maximal element of the poset (N (G),⊆) and (by Proposi-
tion 3.8) takes only the values 0 and 1. But µ+(x) = 1 i� µ(x) = µ(θ),
and µ+(x) = 0 i� µ(x) = µ(θ) − 1, which by Corollary 3.3 gives
µ(x) = 0. Hence µ(θ) = 1, i.e., µ is normal and µ+ = µ. This proves
(i) and (ii).

(iii) Gµ is a proper subgroupoid because µ is non-constant. Let
S be a subgroupoid of G such that Gµ ⊆ S. Noticing that, for any
subgroupoids A and B of G, A ⊆ B i� µA ⊆ µB, then we obtain
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µ = µGµ ⊆ µS. Since µ and µS are normal and µ = µ+ is a maximal
element of N (G), we have that either µ = µS or µS = 1, where 1 is
a fuzzy set de�ned by 1(x) = 1 for all x ∈ G. The later case implies
that S = G. If µ = µS, then obviously Gµ = GµS

= S. This proves
that Gµ is a maximal subgroupoid of G.

(iv) Clearly µGµ ⊆ µ and µGµ takes only the values 0 and 1. Let
x ∈ G. If µ(x) = 0, then obviously µ ⊆ µGµ . If µ(x) = 1, then x ∈ Gµ,
and so µGµ(x) = 1. This shows that µ ⊆ µGµ .

De�nition 3.11. A normal fuzzy subgroupoid µ of G G is called
completely normal if there exists x ∈ G such that µ(x) = 0.

The set of all completely normal fuzzy subgroupoids of G is de-
noted by C(G). It is clear that C(G) ⊆ N (G).

Proposition 3.12. If G is a unipotent groupoid, then any non-
constant maximal element of (N (G),⊆) is also maximal in (C(G),⊆).

Proof. Let µ be a non-constant maximal element of (N (G),⊆). By
Proposition 3.8, µ takes only the values 0 and 1, and so µ(θ) = 1 and
µ(x) = 0 for some x ∈ G. Hence µ ∈ C(G).

Assume that there exists ν ∈ C(G) such that µ ⊆ ν. Obviously
µ ⊆ ν also in N (G). Since µ is maximal in (N (G),⊆) and ν
is non-constant, therefore µ = ν. Thus µ is maximal element of
(C(G),⊆).

Proposition 3.13. Any maximal fuzzy subgroupoid of a unipotent
groupoid is completely normal.

Proof. Let µ be a maximal fuzzy subgroupoid. By Theorem 3.10 µ
is normal and µ = µ+ takes only the values 0 and 1. Since µ is
non-constant, it follows that µ(θ) = 1 and µ(x) = 0 for some x ∈ G,
which completes the proof.

Proposition 3.14. Let µ be a fuzzy subgroupoid of a unipotent
groupoid G . If h : [0, µ(θ)] → [0, 1] is an increasing function, then
a fuzzy set µh de�ned on G by µh(x) = h(µ(x)) is a fuzzy groupoid.



Fuzzi�cation of n-ary groupoids 57

Moreover, µh is normal i� h(µ(θ)) = 1.

Proof. Since h is increasing, then for all x1, x2, . . . , xn ∈ G we have

µh(f(xn
1 )) = h(µ(f(xn

1 )) > h(min{µ(x1), µ(x2), . . . , µ(xn)})
= min{h(µ(x1)), h(µ(x2)), . . . , h(µ(xn))}
= min{µh(x), µh(x2), . . . , µh(y)} .

This proves that µh is a fuzzy subgroupoid. The rest is obvious.

4. Cartesian products of fuzzy subgroupoids
According to [3], the Cartesian product of two fuzzy sets µ and ν in
G is de�ned by

(µ× ν)(x, y) = min{µ(x), ν(y)}

for all x, y ∈ G.

It is clear that µ× ν = ν × µ and L(µ× ν, t) = L(µ, t)× L(ν, t)
for all t ∈ [0, 1]. If µ and ν are normal, then also µ × ν is normal.
Moreover, if µ and ν are fuzzy subgroupoids in G , then µ × ν is a
fuzzy subgroupoid in G ×G , but not converse. Indeed, as an example
we can consider two fuzzy sets µ and ν such that µ(x) 6 ν(x) for
all x ∈ G. The Cartesian product of µ and ν depends only on µ . It
is a fuzzy subgroupoid in G × G i� µ is a fuzzy subgroupoid in G.

Theorem 4.1. Let µ and ν be two fuzzy sets in a unipotent n-ary
groupoid G such that µ× ν is a fuzzy subgroupoid of G × G. Then

(i) either µ(x) 6 µ(θ) or ν(x) 6 ν(θ) for all x ∈ G,
(ii) if µ(x) 6 µ(θ) for all x ∈ G, then either µ(x) 6 ν(θ) or

ν(x) 6 ν(θ),
(iii) if ν(x) 6 ν(θ) for all x ∈ G, then either µ(x) 6 µ(θ) or

ν(x) 6 µ(θ),
(iv) either µ or ν is a fuzzy subgroupoid of G.
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Proof. (i) Suppose that µ(x) > µ(θ) and ν(y) > ν(θ) for some
x, y ∈ G. Then

(µ× ν)(x, y) = min{µ(x), ν(y)} > min{µ(θ), ν(θ)} = (µ× ν)(θ, θ),

which is a contradiction. Thus either µ(x) 6 µ(θ) or ν(x) 6 ν(θ) for
all x ∈ G.

(ii) Assume that µ(x) > ν(θ) and ν(y) > ν(θ) for some x, y ∈ G.
Then (µ× ν)(θ, θ) = min{µ(θ), ν(θ)} = ν(θ) and hence

(µ× ν)(x, y) = min{µ(x), ν(y)} > ν(θ) = (µ× ν)(θ, θ).

This is a contradiction. Hence (ii) holds.
(iii) Similarly as (ii).
(iv) Let F be the n-ary operation in G × G induced by f . Since,

by (i), either µ(x) 6 µ(θ) or ν(x) 6 ν(θ) for all x ∈ G, without loss
of generality we may assume that ν(x) 6 ν(θ). It follows from (iii)
that either µ(x) 6 µ(θ) or ν(x) 6 µ(θ).

If ν(x) 6 µ(θ) for all x ∈ G, then

ν(f(xn
1 )) = min{µ(θ), ν(f(xn

1 ))} = (µ× ν)(θ, f(xn
1 ))

= (µ× ν)( f(θ, θ, . . . , θ), f(xn
1 ) )

= (µ× ν)( F ((θ, x1), (θ, x2), . . . , (θ, xn)) )

> min{ (µ× ν)(θ, x1), (µ× ν)(θ, x2), . . . , (µ× ν)(θ, xn) }
= min{µ(θ), ν(x1), ν(x2), . . . , ν(xn) }
= min{ ν(x1), ν(x2), . . . , ν(xn) },

which proves that ν is a fuzzy subgroupoid in G.
If ν(x) 6 µ(θ) is not satis�ed, then ν(y) > µ(θ) for some y ∈ G

and, by the assumption, µ(x) 6 µ(θ) for all x ∈ G, which gives
ν(θ) > ν(y) > µ(θ) > µ(x) , i.e. ν(θ) > µ(x) for all x ∈ G. Hence
(µ× ν)(x, θ) = min{µ(x), ν(θ)} = µ(x) and, in the consequence,

µ(f(xn
1 )) = (µ× ν)(f(xn

1 ), θ) = (µ× ν)(f(xn
1 ), f(θ, θ, . . . , θ) )

= (µ× ν)( F ((x1, θ), (x2, θ), . . . , (xn, θ)) )

> min{ (µ× ν)(x1, θ), (µ× ν)(x2, θ), . . . , (µ× ν)(xn, θ) }
= min{µ(x1), µ(x2), . . . , µ(xn)}
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which proves that µ is a fuzzy subgroupoid of G.
This completes the proof.

The composition (intersection) of fuzzy sets µ and ν in G de�ned
as

(µ · ν)(x) = (µ ∩ ν)(x) = min{µ(x), ν(x) }
for all x ∈ G (cf. [13]) is a special product connected with µ× ν .

The relationship between fuzzy subgroupoids µ× ν and µ · ν can
be viewed by the following diagram:

G - G×G
d

?

µ · ν
?

µ

?

ν

´
´

´
´

´
´

´
´́+

µ× ν

I ¾ I × I
T

where I = [0, 1] , T (α, β) = min{α, β} and d : G → G×G is de�ned
by d(x) = (x, x) (cf. [7]).

Obviously µ ·ν = µ ·ν and µ ·µ = µ . If µ and ν are normal, then
so is µ · ν. Similarly, if µ and ν are fuzzy subgroupoids in G, then
so is µ · ν. The converse is not true, because for µ ⊆ ν the product
µ · ν depends only on µ .

De�nition 4.2. Let ν be a fuzzy set in G. The strongest fuzzy
relation on G is a fuzzy set ρν : G×G → [0, 1] de�ned by

ρν(x, y) = min{ ν(x), ν(y) }

for all x, y ∈ G .

ρν is an extension of a fuzzy set ν de�ned in G to the Cartesian
product of G . Obviously ρν(x, x) = ν(x) for all (x, x) ∈ G×G.

It is clear that a fuzzy set ρν is normal in G × G i� a fuzzy set
ν is normal in G .
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The following result is proved in [3].

Proposition 4.3. Let ν be a fuzzy set in G. Then all levels of ρν

have the form L(ρν , t) = L(ν, t)× L(ν, t) , where t ∈ [0, 1].

Applying this result to our Theorem 2.3, we obtain

Corollary 4.4. Let ν be a fuzzy set in an n-ary groupoid G. Then
ρν is a fuzzy subgroupoid of G × G i� all nonempty sets of the form
L(ν, t)× L(ν, t) are subgroupoids of G × G.

Proposition 4.5. If ν is a fuzzy subgroupoid of G , then ρν is a
fuzzy subgroupoid of G × G.

Proof. Indeed, for all xi, yi ∈ G, i = 1, 2, . . . , n, we have

ρν(F ((x1, y1), . . . , (xn, yn)))

= ρν( f(xn
1 ), f(yn

1 ) ) = min{ ν(f(xn
1 )), ν(f(yn

1 )) }
> min{min{ν(x1), . . . , ν(xn)}, min{ν(y1), . . . , ν(yn)}}
= min{min{ν(x1), ν(y1)}, . . . , min{ν(xn), ν(yn)} }
= min{ ρν(x1, y1), ρν(x2, y2), . . . , ρν(xn, yn) } ,

which completes the proof.

Theorem 4.6. Let ν be a fuzzy set of a unipotent n-ary groupoid G.
Then ρν is a fuzzy subgroupoid of G×G i� ν is a fuzzy subgroupoid.

Proof. Assume that ρν is a fuzzy subgroupoid of G × G. Since G is
a unipotent groupoid, we have

F ((x, y), . . . , (x, y)) = ( f(x, . . . , x), f(y, . . . , y) ) = (θ, θ)

for all (x, y) ∈ G×G. Thus ρν(θ, θ) > ρν(x, y) (by Lemma 2.2) and,
in the consequence,

ν(θ) = min{ν(θ), ν(θ)} = ρν(θ, θ) > ρν(x, x) = ν(x)

for all x ∈ G.
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Therefore

ν(f(xn
1 )) = min{ν(f(xn

1 )), ν(θ)}
= ρν(f(xn

1 ), f(θ, . . . , θ)) = ρν( F ( (x1, θ), . . . , (xn, θ) ) )

> min{ρν(x1, θ), . . . , ρν(xn, θ)}
= min{min{ν(x1), ν(θ)}, . . . , min{ν(xn), ν(θ)} }
= min{ν(x1), ν(x2), . . . , ν(xn)}.

This proves that ν is a fuzzy subgroupoid of G.
The converse statement follows from the previous Proposition.

5. Fuzzy ideals
De�nition 5.1. A fuzzy set µ on an n-ary groupoid (G, f) is called
a fuzzy k-ideal if

µ(f(xn
1 )) > µ(xk)

holds for all x1, x2, . . . , xn ∈ G. If µ is a fuzzy k-ideal for every
k = 1, 2, . . . , n, then it is called a fuzzy ideal.

A simple example of a (normal) fuzzy ideal is a characteristic func-
tion χ

S
, where S is an ideal of (G, f).

It is clear that every fuzzy k-ideal is a fuzzy subgroupoid, but there
are fuzzy subgroupoids which are not fuzzy ideals.

Example 5.2. Let f be an n-ary operation (n > 2) de�ned on the
set G = {m ∈ N : m > 1} by the formula

f(xn
1 ) = x1 · x2 · . . . · xn + 2 .

It is not di�cult to see that a fuzzy set µ such that µ(x) = 0.5 for
x = 2m, and µ(x) = 0.7 for x = 2m + 1, is a fuzzy subgroupoid of
(G, f). It is not a k-ideal because for xk = 1 and xi = 2 , where i 6= k,
we have µ(f(xn

1 )) = 0.5 < µ(xk). Similarly, by routine calculations we
know that ν(x) = 1− 1

x
is a fuzzy k-ideal for every k = 1, 2, . . . , n.
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Theorem 5.3. A fuzzy set µ of an n-ary groupoid G is a fuzzy k-ideal
i� for every t ∈ [0, 1], L(µ, t) is either empty or a k-ideal of G.

Proof. Assume that every nonempty level is a k-ideal (for �xed k). If
µ(f(xn

1 )) > µ(xk) is not true, then there are y1, y2, . . . , yn ∈ G such
that µ(f(yn

1 )) < µ(yk) . But in this case µ(f(yn
1 )) < t < µ(yk), for

t =
1

2
( µ(f(yn

1 )) + µ(yk) ),

which gives yk ∈ L(µ, t). Thus f(yn
1 ) ∈ L(µ, t) , because L(µ, t) is a

k-ideal. Hence µ(f(yn
1 )) > t.

Obtained contradiction proves that µ must be a fuzzy k-ideal.
The converse statement is obvious.

Theorem 5.4. Any subgroupoid of G can be realized as a level k-ideal
of some fuzzy k-ideal of G.

Proof. It is straightforward by Theorem 2.4.

It is not di�cult to see that all results from the previous parts
will be true if we replace the word "subgroupoid" by "k-ideal" or by
"ideal". N (G) denotes in this case the set of all normal fuzzy k-ideals
(ideals, respectively).

6. Fuzzi�cation of quasigroups
An n-ary quasigroup (brie�y; quasigroup) is de�ned as a groupoid G
in which for all x0, x1, . . . , xn ∈ G and for all i = 1, 2, . . . , n there
exists a uniquely determined zi ∈ G such that

f(xi−1
1 , zi, x

n
i+1) = x0 .

In any n-ary quasigroup G for every s = 1, 2, . . . , n one can de�ne
the s-th inverse n-ary operation f (s) putting

f (s)(xn
1 ) = y ⇐⇒ f(xs−1

1 , y, xn
s+1) = xs .
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Obviously, the operation f (s) is the s-inverse operation for the opera-
tion f i�

f (s)(xs−1
1 , f(xn

1 ), xn
s+1) = xs

for all x1, . . . , xn ∈ G (cf. [2]). In this case we have also

f(xs−1
1 , f (s)(xn

1 ), xn
s+1) = xs.

Therefore (as in the binary case) the class of all n-ary quasigroups
may be treated as the variety of equationally de�nable algebras with
n + 1 fundamental operations f, f (1), . . . , f (n). ( For n = 2 , f (1) and
f (2) are the left and right inverse operation in the sense of [1] and
[10]).

A nonempty subset S of G is called a subquasigroup of G if it is
an n-ary quasigroup with respect to f.

According to [2], a nonempty subset S of an n-ary quasigroup
(G, f) is an n-ary subquasigroup i� it is closed with respect to n + 1
operations f, f (1), . . . , f (n), i.e., i� g(xn

1 ) ∈ G for all x1, . . . , xn ∈ G
and all g ∈ F = {f, f (1), f (2), . . . , f (n)} .

De�nition 6.1. A fuzzy set µ de�ned on G is called a fuzzy subquasi-
group of an n-ary quasigroup G = (G, f) if

µ(f(xn
1 )) > min{µ(x1), . . . , µ(xn)}

for all x1, . . . , xn ∈ G and all g ∈ F .

Proposition 6.2. If µ is a fuzzy subquasigroup of G, then
min{µ(x1), . . . , µ(xi−1), µ(g(xn

1 )), µ(xi+1, . . . , µ(xn)}
min{µ(x1), . . . , µ(xi), . . . , µ(xn)}

for all x1, . . . , xn ∈ G and all g ∈ F .

Proof. Indeed, for g = f we have
min{µ(x1), . . . , µ(xi−1), µ(f(xn

1 )), µ(xi+1, . . . , µ(xn)}
> min{µ(x1), . . . , µ(xi−1), min{µ(x1), . . .

. . . , µ(xi), . . . , µ(xn)}, µ(xi+1, . . . , µ(xn)}
= min{µ(x1), . . . , µ(xi−1), µ(xi), µ(xi+1, . . . , µ(xn)}
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= min{µ(x1), . . . , µ(xi−1), µ(f (i)(xi−1
1 , f(xn

1 ), xn
i+1), µ(xi+1, . . . , µ(xn)}

> min{µ(x1), . . . , µ(xi−1), min{µ(x1), . . .

. . . , µ(xi−1), µ(f(xn
1 )), µ(xi+1), . . . , µ(xn)}, µ(xi+1, . . . , µ(xn)}

= min{µ(x1), . . . , µ(xi−1), µ(f(xn
1 )), µ(xi+1, . . . , µ(xn)}

for all x1, . . . , xn ∈ G.
In the case g = f (i) the proof is analogous, but we must use the

identity f(xi−1
1 , f (i)(xn

1 ), xn
i+1) = xi.

Theorem 6.3. A fuzzy set µ of an n-ary groupoid G is a fuzzy sub-
groupoid i� for every t ∈ [0, 1], L(µ, t) is either empty or a sub-
groupoid of G.

Proof. Straightforward.

Theorem 6.4. Any subgroupoid of G can be realized as a level sub-
groupoid of some fuzzy subgroupoid of G.

It is not di�cult to see that similar results as results presented in
parts 2, 3 and 4 can be proved for n-ary quasigroups.

7. Anti fuzzy subgroupoids
The concept of anti fuzzy subgroups (in the binary case) was intro-
duced by R. Biswas in [4] and was studied by many authors. we
generalize this concept to the n-ary case.

De�nition 7.1. A fuzzy set ρ de�ned on an n-ary groupoid G will be
called an anti fuzzy subgroupoid if

ρ(f(xn
1 )) 6 max{ρ(x1), . . . , ρ(xn)}

holds for all x1, . . . , xn ∈ G.
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The set
U(ρ, t0 = {x ∈ G : ρ(x) 6 t},

where t ∈ [0, 1 is �xed, is called a level cut of ρ.

It is clear that (in general) anti fuzzy subgroupoids are not fuzzy
subgroupoids and conversel, fuzzy subgroupoids are not anti fuzzy
subgroupoids.

It is not di�cult to see that the following two results are true.

Proposition 7.2 If ρ is a fuzzy subgroupoid of a unipotent groupoid
(G, f, θ), then ρ(θ) 6 ρ(x) for all x ∈ G.

Proposition 7.2 A fuzzy set ρ of an n-ary groupoid G is an anti
fuzzy subgroupoid i� for every t ∈ [0, 1], U(ρ, t) is either empty or a
subgroupoid of G.

Basing on this two simple propositions it is not di�cult to observe
that the most part of results presented in this article is valid also for
anti fuzzy subgroupoids, ideals and subquasigroups.

Note also that fuzzy subgroupoids (ideals, subquasigroups) and
anti fuzzy subgroupoids (ideals, subquasigroups) can be used to the
construction of intuitionistic fuzzy groupoids (respectively: ideals and
subquasigroups).
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