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Non-associative algebraic system in cryptology.

Protection against "meet in the middle" attack

Jézsef Dénes and Tamas Dénes

Abstract

In this paper we shall mention an algorithm of zero knowledge proof based on Latin
squares. We shall define the DL,,(n) type Latin squares, which have a further property
that is stronger than the pan-Hamiltonian squares: Every pair of DL,,(n) rows and

columns is a cycle of length n, if n is prime.

1. Basic notions

In general the cryptology is based on fields which are commutative and asso-
ciative. There is a method which studies the evolution of differences during
encryption of pairs of plaintexts, and derives the most likely keys from a
pool of many pairs. It is called differential cryptanalysis. Differential crypt-
analysis can also be used to find collisions in "hash" functions. For DES
(Data Encryption Standard) like cryptosystems the differences are usually
in terms of exclusive or of the intermediate data in the pair. Differential
cryptanalysis might apply "meet in the middle attack" (introduced in [2]).

Definition 1.1. Meet in the Middle Attack: An attack in which the evolu-
tion of the data is studied from both directions: from the plaintext forwards
towards an intermediate round and from the ciphertext backwards towards
the same intermediate round. If the results at the intermediate round are
not the same in both directions, then the tested value of the key is not the
real value. If both results are the same in several encryptions, then the
tested value of the key is the real value with high probability.
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Details in cryptography one can learn e.g. [14]. The Latin squares are
the tools for generalizations of finite field (see [6]).

Definition 1.2. A finite set J on which two binary operations are defined
(4) and (e) such J is a loop with respect to the operation (4) with identity
element 0 say, J\{0} is a group with respect to the operation (e) and for
which for all a,b,c € J the following distributive laws

a(b+c)=ab+ac and (b+c)a=ba+ ca

hold, is called a neofield.

A neofield is not necessarily commutative or associative. Neofields can
be applied in cryptology (see [6]). Neofields were first introduced by L. J.
Paige in 1949. In [3] the applications of algebraic systems without associa-
tivity and commutativity has been predicted to apply in the future.

The number of Latin squares without associativity and commutativity
is much larger than group tables (see e.g. [1]).

The cryptosystems based on quasigroups are as follows: equipment of
hardware encryption (patent [8], theoretical construction [4], [7]), hash func-
tion (see [5]), transposition cipher (see [10]) and Hamming distances (see
[11]). A cipher system based on neofield (see [6]).

In the remaining part of the this paper we shall mention an algorithm
of zero knowledge proof based on Latin squares.

2. Zero knowledge protocol

The classical method of authenticating a person by means of a machine is the
use of a password (PIN number). There are many problems involved with
the improper use of passwords. More sophisticated than simple passwords
the challenge-and-response protocol.

It’s hard to believe, but procedures exist that enable user A to convince
user B that he knows a secret without giving B the faintest idea of what
the secret is. Such procedures are naturally enough called zero knowledge
protocols.

Jean-Jacques Quisquater and Louis Guillou explain zero-knowledge with
a story about a cave (see [13]|). The cave, illustrated in Figure 1. has a
secret.

Someone who knows the magic words can open the secret door between
C and D. To everyone else, both passages lead to dead ends.
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Peggy knows the secret of the cave. She wants to prove her knowledge
to Victor, but she doesn’t want to reveal the magic words. Here’s how she
convinces him:

(1) Victor stands at point A.

(2) Peggy walks all the way into the cave, either to point C or point D.

(3) After Peggy has disappeared into the cave, Victor walks to point B.

(4) Victor shouts to Peggy, asking her either to:

(a) come out of the left passage or
(b) come out of the right passage.

(5) Peggy complies, using the magic words to open the secret door if

she has to.

(6) Peggy and Victor repeat steps (1) through (5) n times.

O00oooOooaad A OO00o0o0oOoan
O00oooOooaad OO00o0o0oOoan
O00oooOooaad OO00o0o0oOoan
Oodagd oOo
Oodagd B oOo
Oodagd oOo
Oodagd O00oooOooaad oOo
Oodagd O00oooOooaad oOo
Oodagd O00oooOooaad oOo
Oodagd O00oooOooaad oOo
Oodagd O00oooOooaad oOo
Oodagd oOo
Oodagd oOo
Oodagd ¢|D oOo
O00o0O00boooooooboooboOoo
O00o0O00boooooooboooboOoo
O00o0O00boooooooboooboOoo
Figure 1.

3. DD algorithm

Assume the users (uy, ua, ..., ug) form a network. u; has public-key L, L;Li
(denote two isotopic Latin squares at order n and secret-key I,,, (denotes
the isotopism of L, upon L;Ll) u; wants to prove identity for u; but he
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doesn’t want to reveal the secret-key (zero-knowledge proof).

1. u; randomly permutes L,,; to produce another Latin square H.
2. u; sends H to u;.
3. u; asks u; either to:
a. prove that H and L;i are isotopic,
b. prove that H and L,,, are isotopic.
4. u; complies. He either
a. prove that H and L;i are isotopic,
b. prove that H and L,,, are isotopic.

5. u; and u; repeat steps 1. through 4. n times.

One of the present authors gave a lecture on DD Algorithm in 1996
at USC (Los Angeles), Prof L. Welch made a comment. Prof L. Welch
said that the security of the scheme varying on Latin squares which used
as a public-keys. Strongest so called pan-Hamiltonian Latin squares. Pan-
Hamiltonian Latin squares are introduced by J. Wanless (see [15]).

Definition 3.1. A Latin square L at order n is a pan-Hamiltonian if every
row cycle of L has length n.

Pan-Hamiltonian squares have applications besides the cryptography in
the combinatorics. These squares have no proper subrectangles.

Pan-Hamiltonian Latin squares has been called a C-type Latin squares
(see [7]). When n is not prime, a C-type n x n Latin square cannot be a
group table. For all n > 7 there exists a C-type Latin square of order n
that is not group table (see [7]).

Infinitely many values of p prime (p > 11 and p = 2(mod 3)) there
exists a C-type Latin square of order p which cannot based on a group (see
[7]).

In [12] gave what is believed to be the first published example of a sym-
metric 11 x 11 Latin square (see Figure 2.) which, although not cyclic, has
the property that the permutation between any two rows is an 11-cycle. In
[12] there was proved how this 11 x 11 Latin square can be obtained by a
general construction for n x n Latin square where n is prime with n > 11.
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0* 1* 2 4 8 5 10 9 7 3 6
1 6 3 5 9 10 0 2 4 7
3 1 6 10 7 9 0 4 5 8

4 5 6 2 1* 9 3 7 0 8 10
8 9 10 1 4 2 7 6 3 0 5
L= 5 10 7 9 2* 8 4 3 1* 6 0
10 0 9 3 7 4 5 8 6 2 1
9 2 0 7 6 3 8§ 10 5 1 4
7 8 4 0 3 1 6 5 9 10 2
3 4 5 8 0 6 2 1 10 9
6 7 8 10 5 0 1 2 9 3

Figure 2.

One of the present authors introduced an algorithm in [9]. (This algo-
rithm has been called DT algorithm.) The DT algorithm lexicography listed
all elements of the symmetric group of degree n (Sy,) (71,72, ..., Tn1 € Sp).

—~

DT algorithm can be demonstrated (n = 4) in Figure 3.
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13. 1 19. 13

14, 2|1 20. 1|3

15. 1 21. 2|3

16, 1)1 22. 2|3

17. 1 23. 43

18, 31 24, 43
Figure 3.

The correspondence one to one the permutations of degree n and natu-
ral numbers 1 to n!l. DT algorithm has the property for arbitrary natural
number 1 < m < (n — 1)! there corresponds a single subset of S,, contain-
ing n permutations, which are the rows of a Latin square of order n (see
(1)). These Latin squares (denote DL, (n)) uniquely determines the row
permutations as follows:

Tm
T(n—1)14m
T2(n—1)4+m
DL, (n) = 1<m< (n-1)! (1)

T(n—1)(n—1)"4+m

A subset of Latin squares DL,,(n) of order n will defined by two pa-
rameters (n, m). Consequently to store or transmission of the Latin square
is not necessarily the original matrix. Similarly to this property is really
applicable to zero-knowledge-proof in the cryptography.

Applying the Wilson theorem (If p is prime number, then (p—1)!4+1=
0(mod p)) to the DT algorithm (see [9]), then we have the next theorem:

Theorem 1. If p is prime number, then the DL,,(p) are pan-Hamiltonian
squares.
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Example 1. n=5and m=1

m 1 2 3 45
m25 2 41 5 3
DLi(5)=| m9 | =4 5 2 3 1
73 5 3 4 1 2
T97 315 2 4

Example 2. n =5 but the Latin square is not DL,,(n) type:

T 1 2 3 45
T43 4 5 2 1 3
LB)y=| m7 | =5 3 4 2 1
88 3 4 1 5 2
114 21 5 3 4

(14 235 (15 234
™M3=\ 41 5923 TT=\ 51 349
(13 245 (12 345
=\ 31 459 e =\ 91 534

From the point of view of cryptology the DL,,(n) type Latin squares
have a further property that is stronger than the pan-Hamiltonian squares:

Every pair of DL,(n) rows (and columns, its number k = ( ;L >) s a
cycle of length n (see [9]).
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