Quasigroups and Related Systems 8 (2001), 45 — 65

Subtree-counting loops

Francois Lemieux, Cristopher Moore and Denis Thérien

Abstract

An important objective of the algebraic theory of languages is to determine the com-
binatorial properties of the languages recognized by finite groups and semigroups. In
[20], finite nilpotent groups are characterized as those groups that have the ability to
count subwords. In this paper, we attempt to generalize this result to finite loops. We
introduce the notion of subtree-counting and define subtree-counting loops. We prove a
number of algebraic results. In particular, we show that all subtree-counting loops and
their multiplication groups are nilpotent. We conclude with several small examples and

a number of open questions related to computational complexity.

1. Introduction

A body of recent work focuses on the computational complexity of various
problems involving algebraic structures, such as evaluating circuits and ex-
pressions [2, 3, 4], predicting cellular automata [15, 16], solving equations
[11], and communication complexity [19]. While these algebraic problems
are interesting in their own right, they also offer elegant characterizations
of some low-lying complexity classes, and may even help us prove new sep-
arations between them.

Most of this work has dealt with associative structures, namely groups,
semigroups and monoids, largely because the idea of a syntactic monoid is
familiar from the theory of finite-state automata. However, some progress
has been made in the non-associative case as well |5, 6, 13, 10, 17|. Here,
concepts such as solvability generalize in several competing ways, and find-
ing the appropriate one for a given problem can be difficult. For instance,
the complexity of circuit evaluation and expression evaluation over loops

2000 Mathematics Subject Classification: 20N05, 68Q70
Keywords: finite loop, nilpotency, formal language, tree, subtree.

46 F. Lemieux, C. Moore and D. Thérien

is determined by two different generalizations of solvability, which we call
polyabelianness (being a certain kind of product of Abelian groups) and
M-solvability (having a solvable multiplication group) [17].

In this paper, we attempt to generalize the concept of nilpotence, by
building on Thérien’s result that nilpotent groups are characterized by
counting subwords up to some constant size [20]. In the non-associative
case, we expect subwords to become subtrees, and so we explore loops
which count subtrees of constant size. We find that many of the properties
of nilpotent groups hold true for these loops as well.

The paper is structured as follows. After defining some terms in alge-
bra, we review the properties of nilpotent groups and their ability to count
subwords. We then introduce the notion of subtree counting and define
subtree-counting loops. We prove a number of algebraic results relating
these to nilpotent and M-nilpotent loops. We conclude with several small
examples and a number of open questions related to computational com-
plexity.

2. Algebraic definitions

For the theory of quasigroups and loops, we refer the reader to [1, 7, 8, 18].
We will use the following terms, and additional definitions are given in the
text.

By a groupoid (G, -) is mean a binary operation f : G x G — G, written
f(a,b) = a - b or simply ab. The order of a groupoid is the number of
elements in G, written |G].

A quasigroup is a groupoid whose multiplication table is a Latin square,
in which each symbol occurs once in each row and each column. Equiv-
alently, for every a,b there are unique elements a/b and a\b such that
(a/b) -b = a and a - (a\b) = b; thus the left (right) cancellation property
holds, that bc = bd (resp. cd = bd) implies ¢ = d.

An identity is an element 1 such that 1-a =a-1 = a for all a. A loop
is a quasigroup with an identity.

A groupoid is associative if a-(b-¢) = (a-b)-cfor all a,b,c. A semigroup
is an associative groupoid, and a monoid is a semigroup with identity. A
group is an associative quasigroup; groups have inverses and an identity. In
a group, the order of an element a is the smallest p > 0 such that o =1
(or pa =0 in an Abelian group).

Two elements a,b commute if a-b="b-a. A groupoid is commutative if
all pairs of elements commute. Commutative groups are also called Abelian.

Subtree-counting loops 47

We will use + instead of - for products in an Abelian group, and call the
identity O instead of 1. The simplest Abelian group is the cyclic group
Zp ={0,1,...,p — 1}, the set of integers with addition mod p.

A subgroupoid (subquasigroup, subloop, etc.) of a finite groupoid G is a
subset H C G such that b; - by € H for all by,bs € H. The subgroupoid
generated by a set .S, consisting of all possible products of elements in .5, is
written (S).

A homomorphism is a function ¢ from one groupoid (A,-) to another
(B,) such that p(a-b) = ¢(a) x(b). An isomorphism is a one-to-one and
onto homomorphism; we will write A = B if A and B are isomorphic.

An equivalence relation is a relation ~ that is reflexive and transitive.
Its index is the number of equivalence classes. An equivalence relation is a
congruence with respect to G if a ~ b and ¢ ~ d implies that ac ~ bd. (For
infinite quasigroups, we also demand that a/c ~ b/d and a\c ~ b\d.) We
can then define a groupoid G/ ~ whose elements are ~’s equivalence classes,
and the obvious map from G to G/~ is a homomorphism. Conversely, for
any homomorphism ¢ we can define a congruence a ~ b if p(a) = ¢(b).
The groupoid G/~ is called a quotient or factor of G. A groupoid is simple
if it has no factors other than {1} and itself.

A divisor is a factor of a subgroupoid. Since a sub of a factor is the
factor of a sub, the divisor relation is the transitive closure of the sub and
factor relations.

The left (right) cosets of a subloop H C G are the sets

aH ={ah|h € H} and Ha={ha|h e H}
for each a € G. A subloop H is normal if the following hold for all a,b € G:
aH = Ha, a(bH)= (ab)H, and (aH)b= a(Hb)
Then the relation
a~b if a=0bh forsome heH

is a congruence, the left and right cosets coincide, and the cosets form a
quotient subloop G/H.

The commutator of two elements in a loop is [a,b] = ab/ba, i.e. the
unique element such that ab = [a,b](ba). The associator of three ele-
ments is [a,b,c] = (ab)c/a(bc), i.e. the unique element such that (ab)c =
[a, b, c](a(bc)). The subloop ([G, G], [G, G, G]) generated by all possible com-
mutators and associators in a loop G is called the commutator-associator

48 F. Lemieux, C. Moore and D. Thérien

subloop or derived subloop G'. It is normal, and it is the smallest subloop
such that the quotient G/G’ is an Abelian group.
The derived series of a loop G is the series of normal subloops

GZGQDGlDGQD-"

where G,11 = G}. A loop is solvable of degree k if Gy = {1}.
The center of a loop is the set of elements that associate and commute
with everything,

Z(Q) ={c|cx = zc, c(zy) = (xc)y = x(yc) for all z,y € G}.

It is a normal subloop of G, and is always an Abelian group.

The upper central series of aloopis {1} = Zy C Z1 C --- where Z;11/7;
is the center of G/Z;. The lower central seriesis G =Ty D T'1 D --- where
iy = ([G,Ty], |G, G, T;]) is generated by the commutators and associators
of I'; with elements of G. A loop is nilpotent of class k if Z;, = G or if
I'y = {1}; these turn out to be equivalent and k is the same in either case.

In a groupoid G, we can define left and right multiplication as functions
L,(b) = a-b and R,(b) = b - a, namely the rows and columns of the
multiplication table. The left (right) multiplication semigroup M (G) (resp.
Mp(@)) is the set of functions on G generated by the L, (resp. the R,),
and the multiplication semigroup is the set of functions generated by both.
If G is a quasigroup, the L, and R, are permutations, so M (G), Mgr(G)
and M(G) are groups.

A pseudovariety is a class of groupoids V such that subgroups, factors,
and finite direct products of groupoids in V are also in V. The solvable and
nilpotent loops both form pseudovarieties.

For a given alphabet A, we define the groupoid A(T) as the smallest set
that includes A and such that whenever f and ¢ belong to A() then their
formal product (fg) also belongs to A(*). It is isomorphic to the set of
non-empty binary trees whose leaves are labelled with elements of A, or the
set of parenthesized words generated by the grammar S — (S-S5), S — A.
The free groupoid over A is the set A®) = A U {1}, where 1 is the empty
tree. The free monoid over A is the associative version of this, namely the
set A* of finite words over A, where the product is by concatenation and 1
is the empty word.

The yield of a labelled tree is the word formed by reading its leaves
from left to right, which is clearly a homomorphism from A®) to A*. Thus
free monoids are factors of free groupoids under the congruence that iden-
tifies trees with the same yield, and so removes the non-associativity of the
groupoid.

Subtree-counting loops 49

Moreover, every finite groupoid (monoid) is a divisor of the free groupoid
(monoid) over some finite alphabet, i.e. it can be derived from a free object
by imposing some congruence with a finite index.

The length of a word w, or the number of leaves in a tree w, is denoted
|w|. Except for the free algebras, all loops used in this paper are finite.

3. Nilpotence and subword counting

Counting subwords is a well-known operation in combinatorial algebra (e.g.
Ch. 6 of [14]). If x and w are two words over some alphabet A, then |z|, is
the number of ways that = can be written

T = Yowi1yYy1wse - - - WrYk

where wjws - - -w = w and y; € A*. For instance, |ababl,, = 3. (Note that
many authors write () instead of |z|,.) If 2 and y are both words over A,
we can define the subword counts of their product recursively:

’xy‘w = Z ’x‘u’y‘v (1)

u,v € A*
uv = w

summing over all the ways to break w into a pair of words.

In a group or monoid, we can define two words as equivalent if they
evaluate to the same element. It is interesting to ask what exactly about
a long word makes it evaluate to one element or another; different groups
are ‘sensitive’ to different properties of the word. To make this precise,
we say that a language L C A* is recognized by a monoid M if there is
a homomorphism h from A* to M, and a subset K C M, such that L =
h~Y(K). In other words, h maps each symbol of A to an element of M, and
L is the set of words where the resulting string evaluates to an accepting
element of M.

In the associative case, Thérien [20] showed that nilpotent groups are
exactly those that are sensitive to counting subwords up to a certain fixed
length. Specifically, define an equivalence class NZ that counts, mod p,
subwords of length up to k:

z~py if |zly = |yly modp forall |u| <k

It is easy to show from Equation 1 that this is a congruence. Then we have

50 F. Lemieux, C. Moore and D. Thérien

Theorem 1 (Thérien). If a group G has order p and is generated by m
elements, it is nilpotent of class k if and only if it is a divisor of A*/~%
where A is the free monoid on m symbols. Therefore, any language recog-
nized by G is a union of equivalence classes of ~%.

Thus nilpotent groups can be characterized completely by the combina-
torics of subwords.

For instance, if we take the free group with two generators a and b and
count the subwords a, b, ab and ba mod 2, we get an 8-element group

{1, a, b, ab, ba, aba, bab, abab}

Note, for instance, that abab = baba since (mod 2) both have zero a’s, zero
b’s, one ab, and one ba. Furthermore, abab commutes with every element.
The reader can check that this is isomorphic to the dihedral group Dy, the
symmetries of the square, where a and b correspond to reflections around
axes 45° apart, and abab is a 180° rotation.

Similarly, if we have two generators ¢ and j and we count i’s and j’s
mod 2, but combine the counts of ¢4, jj and ji by adding them together
mod 2, we get the quaternion group Qs = {1, +i,+j, +k}. The combined
count of i, jj and ji gives the sign if ij = k is defined as positive, which
makes sense since i° = j2 = —1 and ji = —k.

To put it differently, {a,b}*/~3 is a 32-element group, of which both
Dy and Qg are factors. (Since there are six subwords of length < 2, namely
a, b, aa, ab, ba and bb, in principle this group could have 64 elements.
However, subword counts are not independent of each other.)

4. Subtree-counting loops

In the non-associative case, subwords presumably become subtrees. Count-
ing subtrees is actually simpler than counting subwords, since there is only
one way to divide a binary tree into smaller ones. The intuitive definition
seems to be the following, where x, y, u, v are elements of the free groupoid
A™ and a,b € A are generators:

\1!a=0
lali =0
lala =1
lalp =0

[(@Y)la = |z]a + |Yla

Subtree-counting loops 51

Given p > 2 and k > 0, define = ~} y iff |z], = |y|u (mod p) for all
u € A® of size at most k. The following lemma follows directly from the
definition:

Lemma 2. The relation Nﬁ 1$ a congruence of finite index.

Define D} = {z € A¥ |z ~} 1}
Lemma 3. A(*)/Nz is a finite loop with identity DY,

Proof. We want to prove that (zy) ~¥ (zz) implies y ~} ¢z (the proof of
left cancellation is symmetric). It suffices to show that for all s € A®) of
size less than k, |(zy)|s = |(z2)|s implies that |y|s = |zs.

The proof is by mathematical induction on |s|. This is clear when
|s| < 1. Otherwise s = (uv) and

2]s + |yls + 12|ulylo
|[z]s + |2]s + |7|ul2]o
|(z2)]s (mod p)

[(zy)ls

Hence, there exists some constant ¢ = |z|, such that
lyls +clylo = |2]s + ¢|z] (mod p)

By the inductive hypothesis, we have that |y|, = |z],. So, we obtain
Yl(uwo) = |2l(uw) and y ~ 2. O

Definition 1. Loops that divide A(*)/NZI; are called subtree-counting loops
of class k.

When a subtree-counting loop is express as an algebra (G,-,\,/), we
can deduce how to count subtrees in quotients z/y and y\z:

Lemma 4.
a) |z/yla = y\vla = |2]a — |yla if a€ A
b) |7/ylww = |2|uww — |Yluww — |2/Ylu [yl
c) [Y\zlw = 2]uw — |Yluww — |Ylu [¥\20

Proof.
|z]a = [(2/Y)Yla = |2/Yla + |Y]a

Zluw = [(2/Y)Yluw = |2/Yluw + Yluww + [2/Ylu [Y]o
and similarly for y\z. O

52 F. Lemieux, C. Moore and D. Thérien

The definition of A®)/~% implies that for any s,t € A™) satisfying
s ~b t, we have that s and ¢ evaluate to the same element in AWM/ ~.
This property is generalized in the following lemma.

Lemma 5. A loop G is subtree-counting if and only if there exists two
positive integers k and p such that for any s,t € G satisfying s ~p t,
we have that s and t evaluate to the same element in G.

Proof. Let G be a subtree counting loop and consider first the special case
where G = A™) / ~%. Without loss of generality, we can assume that A C G,
which means that A is a basis for G. By definition, we know that for all
z,y € AD) if 2 ~ y, then = and y evaluate to the same element in G.

Let h: G — AM) be any mapping such that h(g) evaluates to g, for all
g € G and such that h(a) = a for all @ € A. We can extend h in the natural
way to a groupoid morphism h : G — A Thus, for any t € G, we
have that ¢ and h(t) evaluate to the same element in G.

Let u € G™) be such that |u| < k, let X (u) be the set of all leaves of u
that are in A, and let Y (u) be the set of all other leaves. Given v € A
we are interested by the occurrences of v in h(u) that contains all the leaves
from X (u) and at least one leaf from h(g), for each g € Y (u). We denote
the number of such occurrences with ||h(u)||,. We have

()= > sk~ [Ih(w)]
uwe G
[u] < [v]

Hence, s ~} t implies that h(s) ~} h(t) and that s and ¢ evaluate to the
same element in G.

Consider now the general case where G divides A®*)/ ~p. Let S be a
subloop of G and let h : S — G be a loop morphism. Define the func-
tion h™' : G — S by choosing h~!(g) to be any element in S such that
h(h=%(g)) = g and extend it in the natural way to a groupoid morphism
A=t G = (h1(G))).

Let 7,y € G™) be such that ~ y. Then, we must have h=!(z) ~/
h~!(y) and, since h~!(z) and h~!(y) belong to A*)/~P they both evaluate
to the same element in S. Since h is a morphism, x and y must evaluate to
the same element in G.

The other direction of the proof is immediate.]

Subtree-counting loops 53

5. Properties of subtree-counting loops

Let G = AW/ ~P where p > 2 and k > 1. Let n: A® — A/ P
be the natural morphism. For 0 < i < k, let DY = {2 € A® |z ~P 1}
and define AP = 7(D?), a normal subloop of G. We can then define the
following descending series of normal subloops, which we call the subtree
series:

G=A{2AYD--- DA} ={1}

This series can still be defined if G is a proper divisor of A(*)/ ~4. In this
case, there exists a subloop S C A(*)/Nz and a loop morphism A : 5 — G.
Hence, it suffices to define A? = h(n(D¥)NS).

Commutators and associators are contained in various AI; because their
counts of small subtrees cancel out, as the next two lemmas show.

Lemma 6. If x € A} and y € A, then their commutator [z, y] € AJ 4.

Proof. Let S be defined as above. We observe that any commutator y of
G is the morphic image of a commutator z in S. Hence, if 2 € n(D?) then
y € AP, Consequently, it suffices to consider the case where G = A/ ~p.
The reader can show that |[z,y]|, =0 (mod p) for all a € A, and that

[, Yllww = |7lu [Ylo — |Ylu [7]o — [, y]|u [yz]» (mod p)

If |[z, y]|w = 0 for all words shorter than uv, then the last term is zero, and
the first two terms are also zero unless |u| > k and |v| > [or vice versa.
Thus the shortest subword with nonzero count in [z,y] has length at least

k+1+2, so [z,y] € Agyisa. U
Lemma 7. If z € A, y € A7, and z € A}, then their associator
[x,y,z] € AZ+l+m+2'

Proof. Again, it is sufficient to consider the case where G = A®) [~ A As
in the previous lemma, |[z,y, 2]l =0 for all @ € A. If u = rs and v = tw,
then

|[l',y, Z”uv = |x|r |y|s |Z|tw - |x|rs |y|t |Z|w - |[{L‘, Y, Z”u |(5L'y)z|v (mOdp)

(the first and second terms, respectively, disappear if |u| = 1 or |[v| = 1). So
the shortest word with nonzero count must be the product of three words
of length greater than k, [and m respectively; its length is then at least
E+14+m+3,s0 [z,9,2] € Aktitmta O

54 F. Lemieux, C. Moore and D. Thérien

Thérien’s result [20] shows that in the associative case, subtree-counting
and nilpotence are the same thing. In the non-associative case, this is still
true in one direction:

Theorem 8. If a loop G is subtree-counting of class k, it is nilpotent of
class k.

Proof. Assume G divides A®)/ ~4 for some p and k. Recall the definition
of the lower central series I';, We have Al =Ty = G, and I'; C A? follows
by induction from lemmas 3 and 4 for all ¢ > 0. Therefore, if A} = {1},
then Ty = {1}. O

If the loop is commutative, we can make this stronger:

Theorem 9. If a loop G is commutative and subtree-counting of class k,
it 1s nilpotent of class [k/2].

Proof. Al =Ty = G, and if all commutators are the identity, then I'; C A,
follows by induction from lemma 4 for all ¢ > 0. Therefore, if A} = {1},
then I'; = {1} where 2j > 1. O

Nilpotence implies solvability |7], but we can show that a loop’s solv-
ability degree is exponentially smaller than its subtree-counting class:

Theorem 10. If a loop G is subtree-counting of class k, it is solvable
of degree [logy(k + 1)]. If it is also commutative, it is solvable of degree

[logs(k +1)].

Proof. Recall the definition of the derived series G;. We have A = G =
G, and G; C A implies Gj;1 C A}, | by lemmas 3 and 4. Therefore,
Gy C Ab, | forall i >0, so if A} = {1} then I'; = {1} where 27 > k + 1.
If all commutators are the identity, then G C A} implies Gj;1 C AL,
by lemma 4. Therefore G; C A%, |, so if A} = {1} then I'; = {1} where
3 >k+1. O

We close this section with a characterization of the first few classes of
subtree-counting loops. Recall that the center of aloop is the set of elements
that commute and associate with all other elements. We also say that a
loop is associator-distributive if [wz,y, z] = [w,y, 2] [z, y, z] and similarly on
the other two variables. Then:

Theorem 11. Suppose a loop is subtree-counting of class k. If k =1, it is
an Abelian group. If k =2, it is a group and nilpotent of class 2. If k = 3,
1t 15 associator-distributive and its associators are in its center.

Subtree-counting loops 55

Proof. If k =1, all commutators and associators are the identity by lemmas
3 and 4. If k£ = 2, all associators are the identity by lemma 4, so it is a
group and is subword-counting of class 2. If k = 3, we can check that an
associator [u,v,w] commutes with any element = by counting subtrees. If

|£E [U7an]|s = |x|8 + |[U,’U,’LU]|S = |[’LL,U,’LU] '7:’8 (mOdp)

since [u,v,w] contains no subtrees of size 1 or 2 by Lemma 7. A similar
argument shows that an associator associates with any pair of elements. To
show associator-distributivity, since [wz, y, z] contains no subtrees of size 1
or 2, we just have to count subtrees of size 3. If a,b,c € A, then

[wz, y, 2]|(ab)e = [wzla [yl [2]c (mod p)
= (Jwla + [7]a) |ylb |2]c (mod p)
[w, y, 2]l (ab)e + |17, Y 2] (ab)c (mod p)
[w,y, 2][z, Y, 2]|(ap) (mod p)

and similarly for a(bc). O

6. M-nilpotence and nilpotence

If we think of left and right multiplication as functions L,(b) = ab and
Ry (b) = ba, the L, and R, are permutations given by the rows and columns
of the multiplication table. Recall that the left (right) multiplication group
of a loop G is the group generated by the L, (resp. R,), and the multipli-
cation group M(QG) is generated by both.

In [17], we used the idea of M-solvability, the property of having a
solvable multiplication group, to address the complexity of expression eval-
uation in loops. Here, we will say that a loop is M-nilpotent of class k if
its multiplication group is nilpotent of class k, and left (right) M-nilpotent
if its left (right) multiplication group is.

The following inclusions are known |7, 21]:

M-nilpotent = nilpotent = M-solvable = solvable

For groups, M(G) is in the variety generated by G, so M-nilpotence and
nilpotence coincide. In the non-associative case, however, the M-nilpotent
loops are a proper subclass of the nilpotent ones. For instance, the following

56 F. Lemieux, C. Moore and D. Thérien

loop is nilpotent of class 2:

1 2 3 45 6
21 4 3 6 5
345 6 21
4 3 6 5 1 2
5 6 1 2 3 4
6 5 2 1 4 3

Its derived subloop {1,2} is also its center. However, its left, right and full
multiplication groups are all equal to a 24-element group which is solvable
of degree 2 but not nilpotent.

Then we can show that subtree-counting loops are M-nilpotent:

Theorem 12. If a loop G is subtree-counting of class k, then it is M-
nilpotent of class k.

Proof. Define a spine as a tree where every node has at most one child

which is not a leaf. An element of M(G) is characterized by its action on

the elements of G. Since the multiplications L, and R, add leaves on the

left and right, an element of M(G) corresponds to |G| spines of the same

shape one for each element. For instance, L, Ry L. corresponds to the spines
) for each = € G as shown in figure 1.

?_\‘A‘A'@.z@

Figure 1: A spine corresponding to m = L, RpL. and its subtrees of size 3.

Let m € M(G), and call these spines m(x) for each x € G. For each =z,
the spines m(z) have two kinds of subtrees, namely those that don’t include
x and those that do. If a subtree of m(z) of size k doesn’t include z, it
corresponds to a subword of m of size k. If it does include z, it corresponds
to a subword of m of size k — 1. In either case, the subtrees of m(z) are
dictated by the subwords of m of the same size or smaller.

Therefore, if mi, mg € M(G) have the same subword counts of size k
or less, then for all x their spines m;j(x) and mg(x) have the same subtree
counts of size k or less. Since G is subtree-counting of class k, mi(z) =
ma(x) for all z € G, but this means that m; = mgy. Thus M(G) is subword-
counting of class k, and by theorem 1 it is nilpotent of class k. O

Subtree-counting loops 57

We can also obtain a partial converse to the last part of theorem 11, with
a purely algebraic corollary. Recall the notion of associator-distributivity
from the previous section. Then:

Theorem 13. If a loop G has the following properties:
e (5 is associator-distributive, and
o all of G’s associators are in its center, and

e there is a set of generators A for G such that the subgroup of Mp(G)
generated by their right multiplications, ({Rq|a € A}) is nilpotent
of class k,

then it is subtree-counting of class max(3,k). Therefore, G is M-nilpotent
of class max(3,k).

Proof. If we are given a tree in G™), we start by rewriting it as a tree in
A®) by replacing elements of G with products of elements of A. Now define
a (left) combin A™ as a tree where every node’s right child, if it has one, is
a leaf. Inductively, the empty tree is a comb, and ca is a comb if ¢ is a comb
and a € A. Since the parenthesization of a comb is fixed, we can denote it
without ambiguity by its yield, e.g. ((ab)c)d is simply denoted abed.

Then we start by converting an arbitrary tree to a comb with the same
yield which is equivalent with respect to G, keeping track of the associators
as we do so. We do this inductively, first transforming subtrees of depth
2, then subtrees of depth 3, and so on. Suppose that at some point in this
process we are about to transform a subtree ¢. If ¢ is already a comb, there
is nothing to do. Otherwise, t = ba where b =by-- by and a = a; - - - a; are
two combs of size k > 1 and | > 2, where bj,a; € A for all j,i. To apply
the transformation, we use the following:

ba ="b(ay - a)
= (blay---aj—1))ar[byar---aj—1, a]

= (by---brar @) Hizg[ba ar---ai_1,ai)

Since associators are in the center of GG, each one can be moved to the side
of the expression as it is created.
Now since G is associator-distributive, we can write this product of

associators as
-1

kol
ITIT 115 an i

Jj=1li=2h=1

.

58 F. Lemieux, C. Moore and D. Thérien

There is a bijection between the associators [b;, ap,a;] in this product and
the subtrees b;(apa;) of size 3 rooted at the node where b and a meet. By
induction, the transformation of a tree into a left comb creates precisely one
associator [a, b, ¢] for each subtree a(bc) where a,b,c € A.

Thus we can convert a tree into an equivalent comb, and the product of
associators it takes to do this is a function only of subtrees of size 3. Since
a left comb in A™ is formed by composing a series of right multiplications
R, for a € A, and since these generate a nilpotent group of class k£, we can
evaluate the comb by counting subcombs of size k. Since the comb has the
same yield as the original tree, this is the same as counting subtrees of size
k in the original tree and combining subtrees of the same yield.

Thus the value of the tree is determined by counting subtrees of size
max(3, k), so G is subtree-counting of this class. Finally, G is M-nilpotent
of class max(3,%k) by Theorem 12. O

Obviously, the third condition of Theorem 13 is satisfied whenever G
is right-M-nilpotent of class k. For instance, consider the octonion loop
O16, which consists of 16 elements {£1,+i,+j, +k, +F, +I,+J +K}. Its
multiplication table is

which we extend to elements with minus signs in the obvious way. Just as
the quaternions are commutative up to a sign, the octonions are associa-
tive up to a sign. Since all commutators and associators are in the center
{£1}, Os6 is nilpotent of class 2. Moreover, the reader can check that it
is associator-distributive and its right multiplication group (which has 128
elements) is nilpotent of class 2. Therefore, it is subtree-counting of class
3, and its full multiplication group (which has 1024 elements) is nilpotent
of class 3.

The reader might hope that all nilpotent loops of class 2 are associator-
distributive. This is not the case, as we will show below.

Subtree-counting loops 59

7. Examples

If we take the free groupoid on one generator {1, a, aa, a(aa), (aa)a, ...} and
consider equivalence classes that count subtrees up to size 3 (mod 2), then
{a}*)/ ~2 is a subtree-counting loop of class 3 with 8 elements. It is an
extension of Zs by Z4, and its multiplication table is

1 23 45 6 7 8
214365 87
3412785 6
4 3 21876 5 2)
5 6 8 7 3 4 21
6 5 78 4 3 1 2
7T 8 6 51 2 4 3
8 7 5 6 21 3 4

The eight elements can be represented by 1, 2 = a((aa)a), 3 = aa, 4 =
a(a(a((aa)a))), 5 = a, 6 = a(a((aa)a)), 7 = (aa)a, and 8 = a(aa). In
fact, there are no non-associative subtree-counting loop with fewer than 8
elements, since the smallest non-associative nilpotent loops have 6 elements,
and these all have a multiplication group ZgZs of order 24 that is solvable
but not nilpotent (here ¢ is the wreath product [12]).

Counting subtrees of size 3 mod p for larger p gives class 3 loops of size
cp? where ¢ appears to depend only on p(mod 6):

1 if p(mod6)=1orbH

. 2 if p(mod6)=2or4
) 3 if p(mod6) =3
6 if p(mod6) =0

We have checked this for p < 25, and we conjecture it is true for all p.
Counting subtrees up to size 4(mod 2) gives a subtree-counting loop of class
4 with 128 = 27 elements, and counting mod 3 gives 729 = 3% elements.

All of these loops are generated by a single element, like the free groupoid
of which they are factors. For an example with two generators, if we take the
free groupoid on two generators a,b and impose the relations a? = b? = 1
and zy = yx for all x,y, we get a subtree-counting loop of class 3 with 16

60 F. Lemieux, C. Moore and D. Thérien

elements. Its multiplication table is

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15
3 4 1 2 7 8 5 6 11 12 9 10 15 16 13 14
4 3 2 1 8 7 6 5 12 11 10 9 16 15 14 13
5 6 7 8 1 2 3 4 13 14 15 16 10 9 12 11
6 5 8 7 2 1 4 3 14 13 16 15 9 10 11 12
7T 8 5 6 3 4 1 2 15 16 13 14 12 11 10 9
8§ 7 6 5 4 3 2 1 16 15 14 13 11 12 9 10
9 10 11 12 13 14 15 16 1 2 3 4 7 8 5 6
10 9 12 11 14 13 16 15 2 1 4 3 8 7 6 5
11 12 9 10 15 16 13 14 3 4 1 2 5 6 7 8
12 11 10 9 16 15 14 13 4 3 2 1 6 5 8 7
13 14 15 16 10 9 12 11 7 8 5 6 1 2 3 4
14 13 16 15 9 10 11 12 8 7 6 5 2 1 4 3
15 16 13 14 12 11 10 9 5 6 7 8 3 4 1 2
6 15 14 13 11 12 9 10 6 o5 8 7 4 3 2 1

where the generators are (say) 5 = a and 9 = b. Counting (mod 3),
(mod 4), and mod 5 gives loops of 81, 256, and 625 elements respectively.

Going back to a one-symbol alphabet and counting (mod?2) the five
subtrees of depth 2 or less, a, aa, (aa)a, a(aa) and (aa)(aa), gives a 16-
element loop

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
21 4 3 6 5 8 7 10 9 12 11 14 13 16 15
3 4 5 6 9 10 11 12 1 2 14 13 15 16 8 7
4 3 6 5 10 9 12 11 2 1 13 14 16 15 7 8
5 6 7 8 2 1 4 3 13 14 16 15 10 9 11 12
6 5 8 7 1 2 3 4 14 13 15 16 9 10 12 11
T 8 1 2 13 14 15 16 6 5 9 10 12 11 3 4
8§ 7 2 1 14 13 16 15 5 6 10 9 11 12 4 3
9 10 11 12 4 3 6 5 15 16 7 8 2 1 14 13
10 9 12 11 3 4 5 6 16 1b 8 7 1 2 13 14
1 12 14 13 16 15 9 10 7 8 1 2 4 3 6 5
12 11 13 14 15 16 10 9 8 7 2 1 3 4 5 6
13 14 15 16 8 7 2 1 12 11 4 3 5 6 9 10
14 13 16 1 7 8 1 2 11 12 3 4 6 5 10 9
15 16 10 9 11 12 14 13 3 4 6 &5 7 8 2 1
6 15 9 10 12 11 13 14 4 3 5 6 8 7 1 2

Subtree-counting loops 61

Here {1, 2} is a normal subloop, and dividing it out gives the 8-element loop
(2) above.

If we count just the balanced trees a, aa and (aa)(aa) up to depth 2,
we get another 8-element loop,

1 23 45 6 7 8
23416 7 85
3456 7 81 2
416 7 85 2 3
5 6 7 8 1 2 3 4
6 7 8 5 2 3 41
78 1 2 3 45 6
8 52 3 416 7

where the generator is (say) 2 = a. This loop is not isomorphic to (2) since
only two elements give the identity when squared. It is commutative but
not associative, since (22)3 = 5 but 2(23) = 1. However, like (2) it is an
extension of Zo by Zy4.

In fact, all loop extensions of Zs by Z4 are nilpotent and M-nilpotent,
since Zo ! Zy4 is nilpotent of class 4. Similarly, all loop extensions of Zy by
Z3 are M-nilpotent, since Za ! Z3 is nilpotent of class 3. We do not know if
all of these are subtree-counting.

This loop also shows that, unlike the derived series and the central lower
series, the subtree series can halt for a while and then continue downward.
Ay ={1,3,5,7} is generated by 3 = a? and is isomorphic to Z4, while Ay
and Agz coincide and are both {1,5 = (aa)(aa)}. Finally, Ay = {1}. Thus

Ag DAL DAy =A3D A4

In general, counting (mod 2) balanced trees with one generator up to depth
k gives a subtree-counting loop of class 2¥ and size 2¥*1. Thus, in the non-
associative case, a loop of size n can have a subtree-counting degree linear in
n, whereas the nilpotence degree of a loop can be at most logarithmic in n.
This suggests that determining when a given loop is not subtree-counting
may require exponentially more computation than telling when a loop is
not nilpotent.

As these examples show, we can choose to count some subset S of the
set of trees of size less than or equal to k, instead of all of them. This will be
a congruence, and so will give a well-defined loop, if and only if S is closed
under subtrees, i.e. uv € S implies © € S and v € S. For instance, we can
choose to count subtrees up to a certain depth rather than a certain size;

62 F. Lemieux, C. Moore and D. Thérien

balanced subtrees up to a certain depth; left or right combs of a certain
depth; and so on.

If we define loops as (balanced) subtree-counting of depth k in the obvious
way, we have

Lemma 14. If a loop is subtree-counting of class k, then it is (balanced)
subtree-counting of depth k. If it is (balanced) subtree-counting of depth d,
then it is subtree-counting of class 2¢.

Proof. A subtree of size k is contained in a balanced subtree of depth at
most k, and a subtree of depth d has size at most 2¢. O

However, a tree which is not a comb is not contained in a comb of
any size, so the subcomb-counting loops might be a proper subclass of the
subtree-counting ones.

8. Open questions

We have introduced the class of subtree-counting loops and show that it is
a subclass of the M-nilpotent loops. However, we still don’t know if this
inclusion is strict. If so, it would be interesting to have some examples and
investigate their combinatorial properties.

A more basic problem is that we have no decision algorithm to deter-
mine if a finite loop G of order g is subtree-counting. This is equivalent to
determining if there exist p and k such that G divides A/~ for some
alphabet A. If G is subtree-counting, then we can take p = g and A = G
since it must be a morphic image of H = G®*/ ~¥. Since G/AY is an
abelian group divided by Z,, then g must be a multiple of p. This implies
that G divides G*)/ ~1.

Finding k seems to be more difficult. However, we observe that in order
to compute the number of subtrees of depth d > 1, it seems necessary to
have some information about the number of subtrees of depth d — 1. This
suggests that the number of elements in a subtree-counting loop G of class
k must be at least log k and that G must divide G(*)/Ngg. We conjecture
that this is true, in which case a decision algorithm would exist.

Another set of open questions come from the theory of computational
complexity, especially low-level parallel complexity classes. For instance,

Subtree-counting loops 63

expressions and circuits over solvable groups can be evaluated in the classes
ACC" and ACC!, while over non-solvable groups these problems are NC!-
complete and P-complete respectively (see [3, 4, 15] for definitions of these
classes and proofs of these results). Similarly, equations over nilpotent
groups can be solved in polynomial time, while for non-solvable groups this
problem is NP-complete [11] and for solvable groups quasipolynomial time
is believed to suffice. Finally, languages defined over groups have constant
multiplayer communication complexity if and only if they are nilpotent [19].

Subtree-counting loops can be shown to have many of the same com-
plexity properties as nilpotent groups, suggesting that subtree-counting may
play the same role for loops that nilpotence does for groups. However, we
have not yet been able to prove the converse computational hardness re-
sults for non-subtree-counting loops. In particular, we would like to know
if any expressions or programs over non-subtree-counting loops can always
express the logical AND of an arbitrary number of variables. We hope that
techniques from loop theory can be applied to this and other complexity-
theoretic questions.

Acknowledgements. F.L and D.T. where supported by grants from
FCAR (Québec) and NSERC (Canada). D.T where also supported by a
grant from the von Humbolt Foundation. C.M. is grateful to McGill Uni-
versity for a delightful visit to Montréal, and to Molly Rose and Spootie the
Cat for their support. We also thank William C. Waterhouse and Michael
Kinyon for helpful conversations.

References

[1] A. A. Albert: Quasigroups I, Trans. Amer. Math. Soc. 54 (1943),
507 — 519, and Quasigroups II, Trans. Amer. Math. Soc. 55 (1944),
401 — 419.

[2] D. A. Barrington: Bounded-width polynomial-size branching pro-
grams recognize exactly those languages in NC', J. Comput. System

Sci. 38 (1989), 150 — 164.

[3] D. A. Mix Barrington and D. Thérien: Finite monoids and the
fine structure of NC!, Journal of the ACM 35 (1988), 941 — 952.

64

F. Lemieux, C. Moore and D. Thérien

4]

1]

[6]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

M. Beaudry, P. McKenzie, P. Péladeau, and D. Thérien: Cir-
cuits with monoidal gates, Proc. STACS (1993), 555 — 565.

M. Beaudry and P. McKenzie: Circuits, matrices, and nonasso-
ciative computation, J. Comput. System Sci. 50 (1995), 441 — 455.

M. Beaudry, F. Lemieux, and D. Thérien: Finite loops recog-
nize exactly the regular open languages, Proc. 24th International Col-
loquium on Automata, Languages and Programming, Lecture Notes in
Computer Science 1256, Springer-Verlag 1997, 110 — 120.

R. H. Bruck: Contributions to the theory of loops, Trans. Amer.
Math. Soc. 60 (1946), 245 — 354.

R. H. Bruck: A survey of binary systems, Springer-Verlag 1966.

S. R. Buss: The Boolean formula value problem is in ALOGTIME,
Proc. 18th ACM Symp. on the Theory of Computing (1987), 123 —131.

H. Caussinus and F. Lemieux: The complexity of computing over
quasigroups, Proc. 14th annual FST&TCS (1994), 36 — 47.

M. Goldman and A. Russell: The complezity of solving equations
over finite groups, Proc. 14th Annual IEEE Conference on Computa-
tional Complexity 1999.

P. Hall: The theory of groups, Macmillan 1959.

F. Lemieux: Finite groupoids and their applications to computational
complezity, Ph. D. Thesis, School of Computer Science, McGill Uni-
versity, Montréal 1996.

M. Lothaire: Combinatorics on words, Encyclopedia of Mathematics
and its applications, (G.-C. Rota, Ed.) Addison-Wesley 1983.

C. Moore: Predicting non-linear cellular automata quickly by decom-
posing them into linear ones, Physica D 111 (1998), 27 — 41.

C. Moore: Quasi-linear cellular automata, Proceedings of the Interna-
tional Workshop on Lattice Dynamics, Physica D 103 (1997), 100—132.

C. Moore, D. Thérien, F. Lemieux, J. Berman, and A. Drisko:
Circuits and expressions with non-associative gates, J. Comput. System
Sci. (to appear)

Subtree-counting loops 65

[18] H. O. Pflugfelder: Quasigroups and loops: An Introduction, Helder-
mann Verlag 1990.

[19] J.-F. Raymond, P. Tesson and D. Thérien: An algebraic approach
to communication complexity: Proc. 25th International Colloquium on
Automata, Languages and Programming, Lecture Notes in Computer
Science 1443, Springer-Verlag 1998, 29 — 40.

[20] D. Thérien: Subword counting and nilpotent groups, Combinatorics on
Words, Progress and Perspectives, (Larry Cummings, Ed.) Academic
Press 1983, 297 — 306.

[21] A. Vesanen: Solvable groups and loops, J. Algebra 180 (1996), 862 —
876.

Received November 1, 2001

Frangois Lemieux

Département d’informatique et de mathématique, Université du Québec & Chicoutimi,
555 boulevard de 1'Université, Chicoutimi (Québec), Canada G7TH 2B1

e-mail: flemieux@ugqac.ca

Cristopher Moore

Computer Science Department, University of New Mexico, Farris Engineering Center,
Room 157, Albuquerque (NM), USA 87131 and the Santa Fe Institute, 1399 Hyde Park
Road, Santa Fe (NM) USA 87501

e-mail: moore@cs.unm.edu

Denis Thérien

School of Computer Science, McGill University, 3480 University Street, McConnell En-
gineering Building Room 318, Montréal (Québec), Canada H3A 2A7

e-mail: denisQ@cs.mcgill.ca

