
Quasigroups and Related Systems 8 (2001), 45 � 65Subtree-
ounting loopsFrançois Lemieux, Cristopher Moore and Denis ThérienAbstra
tAn important obje
tive of the algebrai
 theory of languages is to determine the 
om-binatorial properties of the languages re
ognized by �nite groups and semigroups. In[20℄, �nite nilpotent groups are 
hara
terized as those groups that have the ability to
ount subwords. In this paper, we attempt to generalize this result to �nite loops. Weintrodu
e the notion of subtree-
ounting and de�ne subtree-
ounting loops. We prove anumber of algebrai
 results. In parti
ular, we show that all subtree-
ounting loops andtheir multipli
ation groups are nilpotent. We 
on
lude with several small examples anda number of open questions related to 
omputational 
omplexity.
1. Introdu
tionA body of re
ent work fo
uses on the 
omputational 
omplexity of variousproblems involving algebrai
 stru
tures, su
h as evaluating 
ir
uits and ex-pressions [2, 3, 4℄, predi
ting 
ellular automata [15, 16℄, solving equations[11℄, and 
ommuni
ation 
omplexity [19℄. While these algebrai
 problemsare interesting in their own right, they also o�er elegant 
hara
terizationsof some low-lying 
omplexity 
lasses, and may even help us prove new sep-arations between them.Most of this work has dealt with asso
iative stru
tures, namely groups,semigroups and monoids, largely be
ause the idea of a synta
ti
 monoid isfamiliar from the theory of �nite-state automata. However, some progresshas been made in the non-asso
iative 
ase as well [5, 6, 13, 10, 17℄. Here,
on
epts su
h as solvability generalize in several 
ompeting ways, and �nd-ing the appropriate one for a given problem 
an be di�
ult. For instan
e,the 
omplexity of 
ir
uit evaluation and expression evaluation over loops2000 Mathemati
s Subje
t Classi�
ation: 20N05, 68Q70Keywords: �nite loop, nilpoten
y, formal language, tree, subtree.



46 F. Lemieux, C. Moore and D. Thérienis determined by two di�erent generalizations of solvability, whi
h we 
allpolyabelianness (being a 
ertain kind of produ
t of Abelian groups) and
M-solvability (having a solvable multipli
ation group) [17℄.In this paper, we attempt to generalize the 
on
ept of nilpoten
e, bybuilding on Thérien's result that nilpotent groups are 
hara
terized by
ounting subwords up to some 
onstant size [20℄. In the non-asso
iative
ase, we expe
t subwords to be
ome subtrees, and so we explore loopswhi
h 
ount subtrees of 
onstant size. We �nd that many of the propertiesof nilpotent groups hold true for these loops as well.The paper is stru
tured as follows. After de�ning some terms in alge-bra, we review the properties of nilpotent groups and their ability to 
ountsubwords. We then introdu
e the notion of subtree 
ounting and de�nesubtree-
ounting loops. We prove a number of algebrai
 results relatingthese to nilpotent and M-nilpotent loops. We 
on
lude with several smallexamples and a number of open questions related to 
omputational 
om-plexity. 2. Algebrai
 de�nitionsFor the theory of quasigroups and loops, we refer the reader to [1, 7, 8, 18℄.We will use the following terms, and additional de�nitions are given in thetext.By a groupoid (G, ·) is mean a binary operation f : G×G → G, written
f(a, b) = a · b or simply ab. The order of a groupoid is the number ofelements in G, written |G|.A quasigroup is a groupoid whose multipli
ation table is a Latin square,in whi
h ea
h symbol o

urs on
e in ea
h row and ea
h 
olumn. Equiv-alently, for every a, b there are unique elements a/b and a\b su
h that
(a/b) · b = a and a · (a\b) = b; thus the left (right) 
an
ellation propertyholds, that bc = bd (resp. cd = bd) implies c = d.An identity is an element 1 su
h that 1 · a = a · 1 = a for all a. A loopis a quasigroup with an identity.A groupoid is asso
iative if a ·(b ·c) = (a ·b) ·c for all a, b, c. A semigroupis an asso
iative groupoid, and a monoid is a semigroup with identity. Agroup is an asso
iative quasigroup; groups have inverses and an identity. Ina group, the order of an element a is the smallest p > 0 su
h that ap = 1(or pa = 0 in an Abelian group).Two elements a, b 
ommute if a · b = b · a. A groupoid is 
ommutative ifall pairs of elements 
ommute. Commutative groups are also 
alled Abelian.



Subtree-
ounting loops 47We will use + instead of · for produ
ts in an Abelian group, and 
all theidentity 0 instead of 1. The simplest Abelian group is the 
y
li
 group
Zp = {0, 1, . . . , p − 1}, the set of integers with addition mod p.A subgroupoid (subquasigroup, subloop, et
.) of a �nite groupoid G is asubset H ⊆ G su
h that b1 · b2 ∈ H for all b1, b2 ∈ H. The subgroupoidgenerated by a set S, 
onsisting of all possible produ
ts of elements in S, iswritten 〈S〉.A homomorphism is a fun
tion ϕ from one groupoid (A, ·) to another
(B, ⋆) su
h that ϕ(a · b) = ϕ(a) ⋆ ϕ(b). An isomorphism is a one-to-one andonto homomorphism; we will write A ∼= B if A and B are isomorphi
.An equivalen
e relation is a relation ∼ that is re�exive and transitive.Its index is the number of equivalen
e 
lasses. An equivalen
e relation is a
ongruen
e with respe
t to G if a ∼ b and c ∼ d implies that ac ∼ bd. (Forin�nite quasigroups, we also demand that a/c ∼ b/d and a\c ∼ b\d.) We
an then de�ne a groupoid G/∼ whose elements are ∼'s equivalen
e 
lasses,and the obvious map from G to G/∼ is a homomorphism. Conversely, forany homomorphism ϕ we 
an de�ne a 
ongruen
e a ∼ b if ϕ(a) = ϕ(b).The groupoid G/∼ is 
alled a quotient or fa
tor of G. A groupoid is simpleif it has no fa
tors other than {1} and itself.A divisor is a fa
tor of a subgroupoid. Sin
e a sub of a fa
tor is thefa
tor of a sub, the divisor relation is the transitive 
losure of the sub andfa
tor relations.The left (right) 
osets of a subloop H ⊆ G are the sets

aH = {ah |h ∈ H} and Ha = {ha |h ∈ H}for ea
h a ∈ G. A subloop H is normal if the following hold for all a, b ∈ G:
aH = Ha, a(bH) = (ab)H, and (aH)b = a(Hb)Then the relation

a ∼ b if a = bh for some h ∈ His a 
ongruen
e, the left and right 
osets 
oin
ide, and the 
osets form aquotient subloop G/H.The 
ommutator of two elements in a loop is [a, b] = ab / ba, i.e. theunique element su
h that ab = [a, b](ba). The asso
iator of three ele-ments is [a, b, c] = (ab)c / a(bc), i.e. the unique element su
h that (ab)c =
[a, b, c](a(bc)). The subloop 〈[G, G], [G, G, G]〉 generated by all possible 
om-mutators and asso
iators in a loop G is 
alled the 
ommutator-asso
iator



48 F. Lemieux, C. Moore and D. Thériensubloop or derived subloop G′. It is normal, and it is the smallest subloopsu
h that the quotient G/G′ is an Abelian group.The derived series of a loop G is the series of normal subloops
G = G0 ⊃ G1 ⊃ G2 ⊃ · · ·where Gi+1 = G′

i. A loop is solvable of degree k if Gk = {1}.The 
enter of a loop is the set of elements that asso
iate and 
ommutewith everything,
Z(G) = {c | cx = xc, c(xy) = (xc)y = x(yc) for all x, y ∈ G}.It is a normal subloop of G, and is always an Abelian group.The upper 
entral series of a loop is {1} = Z0 ⊂ Z1 ⊂ · · · where Zi+1/Ziis the 
enter of G/Zi. The lower 
entral series is G = Γ0 ⊃ Γ1 ⊃ · · · where

Γi+1 = 〈[G, Γi], [G, G, Γi]〉 is generated by the 
ommutators and asso
iatorsof Γi with elements of G. A loop is nilpotent of 
lass k if Zk = G or if
Γk = {1}; these turn out to be equivalent and k is the same in either 
ase.In a groupoid G, we 
an de�ne left and right multipli
ation as fun
tions
La(b) = a · b and Ra(b) = b · a, namely the rows and 
olumns of themultipli
ation table. The left (right) multipli
ation semigroupML(G) (resp.
MR(G)) is the set of fun
tions on G generated by the La (resp. the Ra),and the multipli
ation semigroup is the set of fun
tions generated by both.If G is a quasigroup, the La and Ra are permutations, so ML(G), MR(G)and M(G) are groups.A pseudovariety is a 
lass of groupoids V su
h that subgroups, fa
tors,and �nite dire
t produ
ts of groupoids in V are also in V . The solvable andnilpotent loops both form pseudovarieties.For a given alphabet A, we de�ne the groupoid A(+) as the smallest setthat in
ludes A and su
h that whenever f and g belong to A(+) then theirformal produ
t (fg) also belongs to A(+). It is isomorphi
 to the set ofnon-empty binary trees whose leaves are labelled with elements of A, or theset of parenthesized words generated by the grammar S → (S · S), S → A.The free groupoid over A is the set A(∗) = A(+) ∪{1}, where 1 is the emptytree. The free monoid over A is the asso
iative version of this, namely theset A∗ of �nite words over A, where the produ
t is by 
on
atenation and 1is the empty word.The yield of a labelled tree is the word formed by reading its leavesfrom left to right, whi
h is 
learly a homomorphism from A(∗) to A∗. Thusfree monoids are fa
tors of free groupoids under the 
ongruen
e that iden-ti�es trees with the same yield, and so removes the non-asso
iativity of thegroupoid.



Subtree-
ounting loops 49Moreover, every �nite groupoid (monoid) is a divisor of the free groupoid(monoid) over some �nite alphabet, i.e. it 
an be derived from a free obje
tby imposing some 
ongruen
e with a �nite index.The length of a word w, or the number of leaves in a tree w, is denoted
|w|. Ex
ept for the free algebras, all loops used in this paper are �nite.3. Nilpoten
e and subword 
ountingCounting subwords is a well-known operation in 
ombinatorial algebra (e.g.Ch. 6 of [14℄). If x and w are two words over some alphabet A, then |x|w isthe number of ways that x 
an be written

x = y0w1y1w2 · · ·wkykwhere w1w2 · · ·wk = w and yi ∈ A∗. For instan
e, |abab|ab = 3. (Note thatmany authors write (

x
w

) instead of |x|w.) If x and y are both words over A,we 
an de�ne the subword 
ounts of their produ
t re
ursively:
|xy|w =

∑

u, v ∈ A∗

uv = w

|x|u|y|v (1)summing over all the ways to break w into a pair of words.In a group or monoid, we 
an de�ne two words as equivalent if theyevaluate to the same element. It is interesting to ask what exa
tly abouta long word makes it evaluate to one element or another; di�erent groupsare `sensitive' to di�erent properties of the word. To make this pre
ise,we say that a language L ⊂ A∗ is re
ognized by a monoid M if there isa homomorphism h from A∗ to M , and a subset K ⊂ M , su
h that L =
h−1(K). In other words, h maps ea
h symbol of A to an element of M , and
L is the set of words where the resulting string evaluates to an a

eptingelement of M .In the asso
iative 
ase, Thérien [20℄ showed that nilpotent groups areexa
tly those that are sensitive to 
ounting subwords up to a 
ertain �xedlength. Spe
i�
ally, de�ne an equivalen
e 
lass ∼p

k that 
ounts, mod p,subwords of length up to k:
x ∼p

k y if |x|u ≡ |y|u mod p for all |u| 6 kIt is easy to show from Equation 1 that this is a 
ongruen
e. Then we have



50 F. Lemieux, C. Moore and D. ThérienTheorem 1 (Thérien). If a group G has order p and is generated by melements, it is nilpotent of 
lass k if and only if it is a divisor of A∗/∼p
kwhere A is the free monoid on m symbols. Therefore, any language re
og-nized by G is a union of equivalen
e 
lasses of ∼p

k.Thus nilpotent groups 
an be 
hara
terized 
ompletely by the 
ombina-tori
s of subwords.For instan
e, if we take the free group with two generators a and b and
ount the subwords a, b, ab and ba mod 2, we get an 8-element group
{1, a, b, ab, ba, aba, bab, abab}Note, for instan
e, that abab = baba sin
e (mod 2) both have zero a's, zero

b's, one ab, and one ba. Furthermore, abab 
ommutes with every element.The reader 
an 
he
k that this is isomorphi
 to the dihedral group D4, thesymmetries of the square, where a and b 
orrespond to re�e
tions aroundaxes 45◦ apart, and abab is a 180◦ rotation.Similarly, if we have two generators i and j and we 
ount i's and j'smod 2, but 
ombine the 
ounts of ii, jj and ji by adding them togethermod 2, we get the quaternion group Q8 = {±1,±i,±j,±k}. The 
ombined
ount of ii, jj and ji gives the sign if ij = k is de�ned as positive, whi
hmakes sense sin
e i2 = j2 = −1 and ji = −k.To put it di�erently, {a, b}∗/∼2
2 is a 32-element group, of whi
h both

D4 and Q8 are fa
tors. (Sin
e there are six subwords of length 6 2, namely
a, b, aa, ab, ba and bb, in prin
iple this group 
ould have 64 elements.However, subword 
ounts are not independent of ea
h other.)4. Subtree-
ounting loopsIn the non-asso
iative 
ase, subwords presumably be
ome subtrees. Count-ing subtrees is a
tually simpler than 
ounting subwords, sin
e there is onlyone way to divide a binary tree into smaller ones. The intuitive de�nitionseems to be the following, where x, y, u, v are elements of the free groupoid
A(∗) and a, b ∈ A are generators:

|1|a = 0
|a|1 = 0
|a|a = 1
|a|b = 0

|(xy)|a = |x|a + |y|a
|(xy)|(uv) = |x|(uv) + |y|(uv) + |x|u|y|v



Subtree-
ounting loops 51Given p > 2 and k > 0, de�ne x ∼p
k y i� |x|u ≡ |y|u (mod p) for all

u ∈ A(∗) of size at most k. The following lemma follows dire
tly from thede�nition:Lemma 2. The relation ∼p
k is a 
ongruen
e of �nite index.De�ne Dp

k = {x ∈ A(∗) |x ∼p
k 1}Lemma 3. A(∗)/∼p

k is a �nite loop with identity Dp
kProof. We want to prove that (xy) ∼p

k (xz) implies y ∼p
k qz (the proof ofleft 
an
ellation is symmetri
). It su�
es to show that for all s ∈ A(∗) ofsize less than k, |(xy)|s = |(xz)|s implies that |y|s = |z|s.The proof is by mathemati
al indu
tion on |s| . This is 
lear when

|s| 6 1. Otherwise s = (uv) and
|(xy)|s ≡ |x|s + |y|s + |x|u|y|v

≡ |x|s + |z|s + |x|u|z|v
≡ |(xz)|s (mod p)Hen
e, there exists some 
onstant c = |x|u su
h that

|y|s + c|y|v ≡ |z|s + c|z|v (mod p)By the indu
tive hypothesis, we have that |y|v ≡ |z|v. So, we obtain
|y|(uv) ≡ |z|(uv) and y ∼p

k z.De�nition 1. Loops that divide A(∗)/∼p
k are 
alled subtree-
ounting loopsof 
lass k.When a subtree-
ounting loop is express as an algebra (G, ·, \, /), we
an dedu
e how to 
ount subtrees in quotients x/y and y\x :Lemma 4.

a) |x/y|a ≡ |y\x|a ≡ |x|a − |y|a if a ∈ A

b) |x/y|uv ≡ |x|uv − |y|uv − |x/y|u |y|v

c) |y\x|uv ≡ |x|uv − |y|uv − |y|u |y\x|vProof.
|x|a ≡ |(x/y)y|a ≡ |x/y|a + |y|a

|x|uv ≡ |(x/y)y|uv ≡ |x/y|uv + |y|uv + |x/y|u |y|vand similarly for y\x.



52 F. Lemieux, C. Moore and D. ThérienThe de�nition of A(∗)/∼p
k implies that for any s, t ∈ A(+) satisfying

s ∼p
k t, we have that s and t evaluate to the same element in A(∗)/ ∼p

k.This property is generalized in the following lemma.Lemma 5. A loop G is subtree-
ounting if and only if there exists twopositive integers k and p su
h that for any s, t ∈ G(+) satisfying s ∼p
k t,we have that s and t evaluate to the same element in G.Proof. Let G be a subtree 
ounting loop and 
onsider �rst the spe
ial 
asewhere G = A(∗)/∼p

k. Without loss of generality, we 
an assume that A ⊆ G,whi
h means that A is a basis for G. By de�nition, we know that for all
x, y ∈ A(+), if x ∼p

k y, then x and y evaluate to the same element in G.Let h : G → A(+) be any mapping su
h that h(g) evaluates to g, for all
g ∈ G and su
h that h(a) = a for all a ∈ A. We 
an extend h in the naturalway to a groupoid morphism h : G(+) → A(+). Thus, for any t ∈ G(+), wehave that t and h(t) evaluate to the same element in G.Let u ∈ G(+) be su
h that |u| 6 k, let X(u) be the set of all leaves of uthat are in A, and let Y (u) be the set of all other leaves. Given v ∈ A(+),we are interested by the o

urren
es of v in h(u) that 
ontains all the leavesfrom X(u) and at least one leaf from h(g), for ea
h g ∈ Y (u). We denotethe number of su
h o

urren
es with ‖h(u)‖v. We have

|h(s)|v =
∑

u ∈ G(+)

|u| 6 |v|

|s|u · ‖h(u)‖vHen
e, s ∼p
k t implies that h(s) ∼p

k h(t) and that s and t evaluate to thesame element in G.Consider now the general 
ase where G divides A(∗)/ ∼p
k. Let S be asubloop of G and let h : S → G be a loop morphism. De�ne the fun
-tion h−1 : G → S by 
hoosing h−1(g) to be any element in S su
h that

h(h−1(g)) = g and extend it in the natural way to a groupoid morphism
h−1 : G(+) → (h−1(G))(+).Let x, y ∈ G(+) be su
h that x ∼p

k y. Then, we must have h−1(x) ∼p
k

h−1(y) and, sin
e h−1(x) and h−1(y) belong to A(∗)/∼p
k, they both evaluateto the same element in S. Sin
e h is a morphism, x and y must evaluate tothe same element in G.The other dire
tion of the proof is immediate.



Subtree-
ounting loops 535. Properties of subtree-
ounting loopsLet G = A(∗)/ ∼p
k where p > 2 and k > 1. Let η : A(∗) → A(∗)/ ∼p

kbe the natural morphism. For 0 6 i 6 k, let Dp
i = {x ∈ A(∗) |x ∼p

i 1}and de�ne ∆p
i = η(Dp

i ), a normal subloop of G. We 
an then de�ne thefollowing des
ending series of normal subloops, whi
h we 
all the subtreeseries:
G = ∆p

0 ⊇ ∆p
1 ⊇ · · · ⊇ ∆p

k = {1}This series 
an still be de�ned if G is a proper divisor of A(∗)/∼p
k. In this
ase, there exists a subloop S ⊆ A(∗)/∼p

k and a loop morphism h : S → G.Hen
e, it su�
es to de�ne ∆p
i = h(η(Dp

i ) ∩ S).Commutators and asso
iators are 
ontained in various ∆p
j be
ause their
ounts of small subtrees 
an
el out, as the next two lemmas show.Lemma 6. If x ∈ ∆p

k and y ∈ ∆p
l , then their 
ommutator [x, y] ∈ ∆p

k+l+1.Proof. Let S be de�ned as above. We observe that any 
ommutator y of
G is the morphi
 image of a 
ommutator x in S. Hen
e, if x ∈ η(Dp

i ) then
y ∈ ∆p

i . Consequently, it su�
es to 
onsider the 
ase where G = A(∗)/∼p
k.The reader 
an show that |[x, y]|a = 0 (mod p) for all a ∈ A, and that

|[x, y]|uv ≡ |x|u |y|v − |y|u |x|v − |[x, y]|u |yx|v (mod p)If |[x, y]|w ≡ 0 for all words shorter than uv, then the last term is zero, andthe �rst two terms are also zero unless |u| > k and |v| > l or vi
e versa.Thus the shortest subword with nonzero 
ount in [x, y] has length at least
k + l + 2, so [x, y] ∈ ∆k+l+1.Lemma 7. If x ∈ ∆p

k, y ∈ ∆p
l , and z ∈ ∆p

m, then their asso
iator
[x, y, z] ∈ ∆p

k+l+m+2.Proof. Again, it is su�
ient to 
onsider the 
ase where G = A(∗)/∼p
k. Asin the previous lemma, |[x, y, z]|a ≡ 0 for all a ∈ A. If u = rs and v = tw,then

|[x, y, z]|uv ≡ |x|r |y|s |z|tw − |x|rs |y|t |z|w − |[x, y, z]|u |(xy)z|v (mod p)(the �rst and se
ond terms, respe
tively, disappear if |u| = 1 or |v| = 1). Sothe shortest word with nonzero 
ount must be the produ
t of three wordsof length greater than k, l and m respe
tively; its length is then at least
k + l + m + 3, so [x, y, z] ∈ ∆k+l+m+2.



54 F. Lemieux, C. Moore and D. ThérienThérien's result [20℄ shows that in the asso
iative 
ase, subtree-
ountingand nilpoten
e are the same thing. In the non-asso
iative 
ase, this is stilltrue in one dire
tion:Theorem 8. If a loop G is subtree-
ounting of 
lass k, it is nilpotent of
lass k.Proof. Assume G divides A(∗)/∼p
k for some p and k. Re
all the de�nitionof the lower 
entral series Γi. We have ∆p

0 = Γ0 = G, and Γi ⊂ ∆p
i followsby indu
tion from lemmas 3 and 4 for all i > 0. Therefore, if ∆p
k = {1},then Γk = {1}.If the loop is 
ommutative, we 
an make this stronger:Theorem 9. If a loop G is 
ommutative and subtree-
ounting of 
lass k,it is nilpotent of 
lass ⌈k/2⌉.Proof. ∆p

0 = Γ0 = G, and if all 
ommutators are the identity, then Γi ⊂ ∆p
2ifollows by indu
tion from lemma 4 for all i ≥ 0. Therefore, if ∆p

k = {1},then Γj = {1} where 2j > i.Nilpoten
e implies solvability [7℄, but we 
an show that a loop's solv-ability degree is exponentially smaller than its subtree-
ounting 
lass:Theorem 10. If a loop G is subtree-
ounting of 
lass k, it is solvableof degree ⌈log2(k + 1)⌉. If it is also 
ommutative, it is solvable of degree
⌈log3(k + 1)⌉.Proof. Re
all the de�nition of the derived series Gi. We have ∆p

0 = G0 =
G, and Gj ⊂ ∆p

i implies Gj+1 ⊂ ∆p
2i+1 by lemmas 3 and 4. Therefore,

Gi ⊂ ∆p

2i−1
for all i ≥ 0, so if ∆p

k = {1} then Γj = {1} where 2j ≥ k + 1.If all 
ommutators are the identity, then Gj ⊂ ∆p
i implies Gj+1 ⊂ ∆p

3i+2by lemma 4. Therefore Gi ⊂ ∆p

3i−1
, so if ∆p

k = {1} then Γj = {1} where
3j ≥ k + 1.We 
lose this se
tion with a 
hara
terization of the �rst few 
lasses ofsubtree-
ounting loops. Re
all that the 
enter of a loop is the set of elementsthat 
ommute and asso
iate with all other elements. We also say that aloop is asso
iator-distributive if [wx, y, z] = [w, y, z] [x, y, z] and similarly onthe other two variables. Then:Theorem 11. Suppose a loop is subtree-
ounting of 
lass k. If k = 1, it isan Abelian group. If k = 2, it is a group and nilpotent of 
lass 2. If k = 3,it is asso
iator-distributive and its asso
iators are in its 
enter.



Subtree-
ounting loops 55Proof. If k = 1, all 
ommutators and asso
iators are the identity by lemmas3 and 4. If k = 2, all asso
iators are the identity by lemma 4, so it is agroup and is subword-
ounting of 
lass 2. If k = 3, we 
an 
he
k that anasso
iator [u, v, w] 
ommutes with any element x by 
ounting subtrees. If
|s| 6 3,

|x [u, v, w]|s ≡ |x|s + |[u, v, w]|s ≡ |[u, v, w] x|s (mod p)sin
e [u, v, w] 
ontains no subtrees of size 1 or 2 by Lemma 7. A similarargument shows that an asso
iator asso
iates with any pair of elements. Toshow asso
iator-distributivity, sin
e [wx, y, z] 
ontains no subtrees of size 1or 2, we just have to 
ount subtrees of size 3. If a, b, c ∈ A, then
|[wx, y, z]|(ab)c ≡ |wx|a |y|b |z|c (mod p)

≡ (|w|a + |x|a) |y|b |z|c (mod p)

≡ |[w, y, z]|(ab)c + |[x, y, z]|(ab)c (mod p)

≡ |[w, y, z][x, y, z]|(ab)c (mod p)and similarly for a(bc).6. M-nilpoten
e and nilpoten
eIf we think of left and right multipli
ation as fun
tions La(b) = ab and
Ra(b) = ba, the La and Ra are permutations given by the rows and 
olumnsof the multipli
ation table. Re
all that the left (right) multipli
ation groupof a loop G is the group generated by the La (resp. Ra), and the multipli-
ation group M(G) is generated by both.In [17℄, we used the idea of M-solvability, the property of having asolvable multipli
ation group, to address the 
omplexity of expression eval-uation in loops. Here, we will say that a loop is M-nilpotent of 
lass k ifits multipli
ation group is nilpotent of 
lass k, and left (right) M-nilpotentif its left (right) multipli
ation group is.The following in
lusions are known [7, 21℄:

M-nilpotent ⇒ nilpotent ⇒ M-solvable ⇒ solvableFor groups, M(G) is in the variety generated by G, so M-nilpoten
e andnilpoten
e 
oin
ide. In the non-asso
iative 
ase, however, the M-nilpotentloops are a proper sub
lass of the nilpotent ones. For instan
e, the following
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lass 2:
1 2 3 4 5 6
2 1 4 3 6 5
3 4 5 6 2 1
4 3 6 5 1 2
5 6 1 2 3 4
6 5 2 1 4 3Its derived subloop {1, 2} is also its 
enter. However, its left, right and fullmultipli
ation groups are all equal to a 24-element group whi
h is solvableof degree 2 but not nilpotent.Then we 
an show that subtree-
ounting loops are M-nilpotent:Theorem 12. If a loop G is subtree-
ounting of 
lass k, then it is M-nilpotent of 
lass k.Proof. De�ne a spine as a tree where every node has at most one 
hildwhi
h is not a leaf. An element of M(G) is 
hara
terized by its a
tion onthe elements of G. Sin
e the multipli
ations La and Ra add leaves on theleft and right, an element of M(G) 
orresponds to |G| spines of the sameshape, one for ea
h element. For instan
e, LaRbLc 
orresponds to the spines

a((cx)b) for ea
h x ∈ G as shown in �gure 1.
x

a

c

a

b
c

cx xc

b

x

a
a

b
bFigure 1: A spine 
orresponding to m = LaRbLc and its subtrees of size 3.Let m ∈ M(G), and 
all these spines m(x) for ea
h x ∈ G. For ea
h x,the spines m(x) have two kinds of subtrees, namely those that don't in
lude

x and those that do. If a subtree of m(x) of size k doesn't in
lude x, it
orresponds to a subword of m of size k. If it does in
lude x, it 
orrespondsto a subword of m of size k − 1. In either 
ase, the subtrees of m(x) aredi
tated by the subwords of m of the same size or smaller.Therefore, if m1, m2 ∈ M(G) have the same subword 
ounts of size kor less, then for all x their spines m1(x) and m2(x) have the same subtree
ounts of size k or less. Sin
e G is subtree-
ounting of 
lass k, m1(x) =
m2(x) for all x ∈ G, but this means that m1 = m2. Thus M(G) is subword-
ounting of 
lass k, and by theorem 1 it is nilpotent of 
lass k.
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ounting loops 57We 
an also obtain a partial 
onverse to the last part of theorem 11, witha purely algebrai
 
orollary. Re
all the notion of asso
iator-distributivityfrom the previous se
tion. Then:Theorem 13. If a loop G has the following properties:
• G is asso
iator-distributive, and
• all of G's asso
iators are in its 
enter, and
• there is a set of generators A for G su
h that the subgroup of MR(G)generated by their right multipli
ations, 〈{Ra | a ∈ A}〉 is nilpotentof 
lass k,then it is subtree-
ounting of 
lass max(3, k). Therefore, G is M-nilpotentof 
lass max(3, k).Proof. If we are given a tree in G(∗), we start by rewriting it as a tree in

A(∗) by repla
ing elements of G with produ
ts of elements of A. Now de�nea (left) 
omb in A(∗) as a tree where every node's right 
hild, if it has one, isa leaf. Indu
tively, the empty tree is a 
omb, and ca is a 
omb if c is a 
omband a ∈ A. Sin
e the parenthesization of a 
omb is �xed, we 
an denote itwithout ambiguity by its yield, e.g. ((ab)c)d is simply denoted abcd.Then we start by 
onverting an arbitrary tree to a 
omb with the sameyield whi
h is equivalent with respe
t to G, keeping tra
k of the asso
iatorsas we do so. We do this indu
tively, �rst transforming subtrees of depth2, then subtrees of depth 3, and so on. Suppose that at some point in thispro
ess we are about to transform a subtree t. If t is already a 
omb, thereis nothing to do. Otherwise, t = ba where b = b1 · · · bk and a = a1 · · · al aretwo 
ombs of size k > 1 and l > 2, where bj , ai ∈ A for all j, i. To applythe transformation, we use the following:
ba = b(a1 · · · al)

= (b(a1 · · · al−1)) al [b, a1 · · · al−1, al]...
= (b1 · · · bka1 · · · al)

∏l
i=2[b, a1 · · · ai−1, ai]Sin
e asso
iators are in the 
enter of G, ea
h one 
an be moved to the sideof the expression as it is 
reated.Now sin
e G is asso
iator-distributive, we 
an write this produ
t ofasso
iators as

k
∏

j=1

l
∏

i=2

i−1
∏

h=1

[bj , ah, ai]
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tion between the asso
iators [bj , ah, ai] in this produ
t andthe subtrees bj(ahai) of size 3 rooted at the node where b and a meet. Byindu
tion, the transformation of a tree into a left 
omb 
reates pre
isely oneasso
iator [a, b, c] for ea
h subtree a(bc) where a, b, c ∈ A.Thus we 
an 
onvert a tree into an equivalent 
omb, and the produ
t ofasso
iators it takes to do this is a fun
tion only of subtrees of size 3. Sin
ea left 
omb in A(∗) is formed by 
omposing a series of right multipli
ations
Ra for a ∈ A, and sin
e these generate a nilpotent group of 
lass k, we 
anevaluate the 
omb by 
ounting sub
ombs of size k. Sin
e the 
omb has thesame yield as the original tree, this is the same as 
ounting subtrees of size
k in the original tree and 
ombining subtrees of the same yield.Thus the value of the tree is determined by 
ounting subtrees of size
max(3, k), so G is subtree-
ounting of this 
lass. Finally, G is M-nilpotentof 
lass max(3, k) by Theorem 12.Obviously, the third 
ondition of Theorem 13 is satis�ed whenever Gis right-M-nilpotent of 
lass k. For instan
e, 
onsider the o
tonion loop
O16, whi
h 
onsists of 16 elements {±1,±i,±j,±k,±E,±I,±J,±K}. Itsmultipli
ation table is

1 i j k E I J K

i −1 k −j I −E −K J

j −k −1 i J K −E −I

k j −i −1 K −J I −E

E −I −J −K −1 i j k

I E −K J −i −1 −k j

J K E −I −j k −1 −i

K −J I E −k −j i −1whi
h we extend to elements with minus signs in the obvious way. Just asthe quaternions are 
ommutative up to a sign, the o
tonions are asso
ia-tive up to a sign. Sin
e all 
ommutators and asso
iators are in the 
enter
{±1}, O16 is nilpotent of 
lass 2. Moreover, the reader 
an 
he
k that itis asso
iator-distributive and its right multipli
ation group (whi
h has 128elements) is nilpotent of 
lass 2. Therefore, it is subtree-
ounting of 
lass3, and its full multipli
ation group (whi
h has 1024 elements) is nilpotentof 
lass 3.The reader might hope that all nilpotent loops of 
lass 2 are asso
iator-distributive. This is not the 
ase, as we will show below.



Subtree-
ounting loops 597. ExamplesIf we take the free groupoid on one generator {1, a, aa, a(aa), (aa)a, . . .} and
onsider equivalen
e 
lasses that 
ount subtrees up to size 3 (mod 2), then
{a}(∗)/ ∼2

3 is a subtree-
ounting loop of 
lass 3 with 8 elements. It is anextension of Z2 by Z4, and its multipli
ation table is
1 2 3 4 5 6 7 8
2 1 4 3 6 5 8 7
3 4 1 2 7 8 5 6
4 3 2 1 8 7 6 5
5 6 8 7 3 4 2 1
6 5 7 8 4 3 1 2
7 8 6 5 1 2 4 3
8 7 5 6 2 1 3 4

(2)
The eight elements 
an be represented by 1, 2 = a((aa)a), 3 = aa, 4 =
a(a(a((aa)a))), 5 = a, 6 = a(a((aa)a)), 7 = (aa)a, and 8 = a(aa). Infa
t, there are no non-asso
iative subtree-
ounting loop with fewer than 8elements, sin
e the smallest non-asso
iative nilpotent loops have 6 elements,and these all have a multipli
ation group Z2 ≀Z3 of order 24 that is solvablebut not nilpotent (here ≀ is the wreath produ
t [12℄).Counting subtrees of size 3 mod p for larger p gives 
lass 3 loops of size
cp2 where c appears to depend only on p(mod 6) :

c =















1 if p(mod 6) = 1 or 5
2 if p(mod 6) = 2 or 4
3 if p(mod 6) = 3
6 if p(mod 6) = 0We have 
he
ked this for p 6 25, and we 
onje
ture it is true for all p.Counting subtrees up to size 4(mod 2) gives a subtree-
ounting loop of 
lass4 with 128 = 27 elements, and 
ounting mod 3 gives 729 = 36 elements.All of these loops are generated by a single element, like the free groupoidof whi
h they are fa
tors. For an example with two generators, if we take thefree groupoid on two generators a, b and impose the relations a2 = b2 = 1and xy = yx for all x, y, we get a subtree-
ounting loop of 
lass 3 with 16
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ation table is
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15
3 4 1 2 7 8 5 6 11 12 9 10 15 16 13 14
4 3 2 1 8 7 6 5 12 11 10 9 16 15 14 13
5 6 7 8 1 2 3 4 13 14 15 16 10 9 12 11
6 5 8 7 2 1 4 3 14 13 16 15 9 10 11 12
7 8 5 6 3 4 1 2 15 16 13 14 12 11 10 9
8 7 6 5 4 3 2 1 16 15 14 13 11 12 9 10
9 10 11 12 13 14 15 16 1 2 3 4 7 8 5 6
10 9 12 11 14 13 16 15 2 1 4 3 8 7 6 5
11 12 9 10 15 16 13 14 3 4 1 2 5 6 7 8
12 11 10 9 16 15 14 13 4 3 2 1 6 5 8 7
13 14 15 16 10 9 12 11 7 8 5 6 1 2 3 4
14 13 16 15 9 10 11 12 8 7 6 5 2 1 4 3
15 16 13 14 12 11 10 9 5 6 7 8 3 4 1 2
16 15 14 13 11 12 9 10 6 5 8 7 4 3 2 1where the generators are (say) 5 = a and 9 = b. Counting (mod 3),

(mod 4), and mod 5 gives loops of 81, 256, and 625 elements respe
tively.Going ba
k to a one-symbol alphabet and 
ounting (mod 2) the �vesubtrees of depth 2 or less, a, aa, (aa)a, a(aa) and (aa)(aa), gives a 16-element loop
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15
3 4 5 6 9 10 11 12 1 2 14 13 15 16 8 7
4 3 6 5 10 9 12 11 2 1 13 14 16 15 7 8
5 6 7 8 2 1 4 3 13 14 16 15 10 9 11 12
6 5 8 7 1 2 3 4 14 13 15 16 9 10 12 11
7 8 1 2 13 14 15 16 6 5 9 10 12 11 3 4
8 7 2 1 14 13 16 15 5 6 10 9 11 12 4 3
9 10 11 12 4 3 6 5 15 16 7 8 2 1 14 13
10 9 12 11 3 4 5 6 16 15 8 7 1 2 13 14
11 12 14 13 16 15 9 10 7 8 1 2 4 3 6 5
12 11 13 14 15 16 10 9 8 7 2 1 3 4 5 6
13 14 15 16 8 7 2 1 12 11 4 3 5 6 9 10
14 13 16 15 7 8 1 2 11 12 3 4 6 5 10 9
15 16 10 9 11 12 14 13 3 4 6 5 7 8 2 1
16 15 9 10 12 11 13 14 4 3 5 6 8 7 1 2



Subtree-
ounting loops 61Here {1, 2} is a normal subloop, and dividing it out gives the 8-element loop(2) above.If we 
ount just the balan
ed trees a, aa and (aa)(aa) up to depth 2,we get another 8-element loop,
1 2 3 4 5 6 7 8
2 3 4 1 6 7 8 5
3 4 5 6 7 8 1 2
4 1 6 7 8 5 2 3
5 6 7 8 1 2 3 4
6 7 8 5 2 3 4 1
7 8 1 2 3 4 5 6
8 5 2 3 4 1 6 7where the generator is (say) 2 = a. This loop is not isomorphi
 to (2) sin
eonly two elements give the identity when squared. It is 
ommutative butnot asso
iative, sin
e (22)3 = 5 but 2(23) = 1. However, like (2) it is anextension of Z2 by Z4.In fa
t, all loop extensions of Z2 by Z4 are nilpotent and M-nilpotent,sin
e Z2 ≀ Z4 is nilpotent of 
lass 4. Similarly, all loop extensions of Z2 by

Z
2
2 are M-nilpotent, sin
e Z2 ≀Z

2
2 is nilpotent of 
lass 3. We do not know ifall of these are subtree-
ounting.This loop also shows that, unlike the derived series and the 
entral lowerseries, the subtree series 
an halt for a while and then 
ontinue downward.

∆1 = {1, 3, 5, 7} is generated by 3 = a2 and is isomorphi
 to Z4, while ∆2and ∆3 
oin
ide and are both {1, 5 = (aa)(aa)}. Finally, ∆4 = {1}. Thus
∆0 ⊃ ∆1 ⊃ ∆2 = ∆3 ⊃ ∆4.In general, 
ounting (mod 2) balan
ed trees with one generator up to depth

k gives a subtree-
ounting loop of 
lass 2k and size 2k+1. Thus, in the non-asso
iative 
ase, a loop of size n 
an have a subtree-
ounting degree linear in
n, whereas the nilpoten
e degree of a loop 
an be at most logarithmi
 in n.This suggests that determining when a given loop is not subtree-
ountingmay require exponentially more 
omputation than telling when a loop isnot nilpotent.As these examples show, we 
an 
hoose to 
ount some subset S of theset of trees of size less than or equal to k, instead of all of them. This will bea 
ongruen
e, and so will give a well-de�ned loop, if and only if S is 
losedunder subtrees, i.e. uv ∈ S implies u ∈ S and v ∈ S. For instan
e, we 
an
hoose to 
ount subtrees up to a 
ertain depth rather than a 
ertain size;
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ed subtrees up to a 
ertain depth; left or right 
ombs of a 
ertaindepth; and so on.If we de�ne loops as (balan
ed) subtree-
ounting of depth k in the obviousway, we haveLemma 14. If a loop is subtree-
ounting of 
lass k, then it is (balan
ed)subtree-
ounting of depth k. If it is (balan
ed) subtree-
ounting of depth d,then it is subtree-
ounting of 
lass 2d.Proof. A subtree of size k is 
ontained in a balan
ed subtree of depth atmost k, and a subtree of depth d has size at most 2d.However, a tree whi
h is not a 
omb is not 
ontained in a 
omb ofany size, so the sub
omb-
ounting loops might be a proper sub
lass of thesubtree-
ounting ones. 8. Open questionsWe have introdu
ed the 
lass of subtree-
ounting loops and show that it isa sub
lass of the M-nilpotent loops. However, we still don't know if thisin
lusion is stri
t. If so, it would be interesting to have some examples andinvestigate their 
ombinatorial properties.A more basi
 problem is that we have no de
ision algorithm to deter-mine if a �nite loop G of order g is subtree-
ounting. This is equivalent todetermining if there exist p and k su
h that G divides A(∗)/ ∼p
k for somealphabet A. If G is subtree-
ounting, then we 
an take p = g and A = Gsin
e it must be a morphi
 image of H = G(∗)/ ∼p

k. Sin
e G/∆p
1 is anabelian group divided by Zp, then g must be a multiple of p. This impliesthat G divides G(∗)/∼g

k.Finding k seems to be more di�
ult. However, we observe that in orderto 
ompute the number of subtrees of depth d > 1, it seems ne
essary tohave some information about the number of subtrees of depth d − 1. Thissuggests that the number of elements in a subtree-
ounting loop G of 
lass
k must be at least log k and that G must divide G(∗)/∼g

2g . We 
onje
turethat this is true, in whi
h 
ase a de
ision algorithm would exist.Another set of open questions 
ome from the theory of 
omputational
omplexity, espe
ially low-level parallel 
omplexity 
lasses. For instan
e,



Subtree-
ounting loops 63expressions and 
ir
uits over solvable groups 
an be evaluated in the 
lasses
ACC

0 and ACC
1, while over non-solvable groups these problems are NC

1-
omplete and P-
omplete respe
tively (see [3, 4, 15℄ for de�nitions of these
lasses and proofs of these results). Similarly, equations over nilpotentgroups 
an be solved in polynomial time, while for non-solvable groups thisproblem is NP-
omplete [11℄ and for solvable groups quasipolynomial timeis believed to su�
e. Finally, languages de�ned over groups have 
onstantmultiplayer 
ommuni
ation 
omplexity if and only if they are nilpotent [19℄.Subtree-
ounting loops 
an be shown to have many of the same 
om-plexity properties as nilpotent groups, suggesting that subtree-
ounting mayplay the same role for loops that nilpoten
e does for groups. However, wehave not yet been able to prove the 
onverse 
omputational hardness re-sults for non-subtree-
ounting loops. In parti
ular, we would like to knowif any expressions or programs over non-subtree-
ounting loops 
an alwaysexpress the logi
al AND of an arbitrary number of variables. We hope thatte
hniques from loop theory 
an be applied to this and other 
omplexity-theoreti
 questions.A
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