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The abstract groups (3, 3 | 3, p),
their subgroup structure,

and their signi�cance for Paige loops

Petr Vojt¥chovský

Abstract

For most (and possibly all) non-associative �nite simple Moufang loops, three generators
of order 3 can be chosen so that each two of them generate a group isomorphic to
(3, 3 | 3, p). The subgroup structure of (3, 3 | 3, p) depends on the solvability of a certain
quadratic congruence, and it is described here in terms of generators.

1. Introduction
Moufang loops and, more generally, diassociative loops are usually an abun-
dant source of two-generated groups. In the end, this is what diassociativ-
ity is all about: every two elements generate an associative subloop, i.e. a
group. (We refer the reader not familiar with the theory of loops to [5].)
This short paper emerged as an o�shoot of our larger-scale program to fully
describe the subloop structure of all non-associative �nite simple Moufang
loops, sometimes called Paige loops.

Let M∗(q) denote the Paige loop constructed over F = GF (q) as in [4].
That is, M∗(q) consists of vector matrices

M =
(

a α
β b

)
,

where a, b ∈ F , α, β ∈ F 3, detM = ab − α · β = 1, and where M is
identi�ed with −M . The multiplication in M∗(q) coincides with the Zorn
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matrix multiplication
(

a α
β b

) (
c γ
δ d

)
=

(
ac + α · δ aγ + dα− β × δ

cβ + bδ + α× γ β · γ + bd

)
,

where α ·β (resp. α×β) is the standard dot product (resp. cross product).
We have shown in [6, Theorem 1.1] that every M∗(q) is three-generated,

and when q 6= 9 is odd or q = 2 then the generators can be chosen as

g1 =
(

1 e1

0 1

)
, g2 =

(
1 e2

0 1

)
, g3 =

(
0 ue3

−u−1e3 1

)
, (1)

where u is a primitive element of F (cf. [6, Proposition 4.1]). In particular,
note that g1, g2 and g3 generate M∗(p) for every prime p. We �nd it more
convenient to use another set of generators.

Proposition 1. Let q 6= 9 be an odd prime power or q = 2. Then M∗(q)
is generated by three elements of order three.

Proof. Let us introduce

g4 = g3g1 =
(

0 (0, 0, u)
(0, u,−u−1) 1

)
,

g5 = g3g2 =
(

0 (0, 0, u)
(−u, 0,−u−1) 1

)
.

It follows from (1) that M∗(q) is generated by g3, g4, and g5. One easily
veri�es that these elements are of order 3.

The groups 〈g3, g4〉, 〈g3, g5〉 and 〈g4, g5〉 play therefore a prominent role
in the lattice of subloops of M∗(q). As we prove in Section 3, each of them
is isomorphic to the group (3, 3 | 3, p), de�ned below.

2. The abstract groups (3, 3 | 3, p)
The two-generated abstract groups (l, m | n, k) de�ned by presentations

(l, m | n, k) = 〈x, y | xl = ym = (xy)n = (x−1y)k〉 (2)

were �rst studied by Edington [3], for some small values of l, m, n and k.
The notation we use was devised by Coxeter [1] and Moser [2], and has a
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deeper meaning that we will not discuss here. From now on, we will always
refer to presentation (2) when speaking about (l, m | n, k).

The starting point for our discussion is Theorem 2, due to Edington [3,
Theorem IV and pp. 208�210]. (Notice that there is a typo concerning the
order of (3, 3 | 3, n), and a misprint claiming that (3, 3 | 3, 3) is isomorphic
to A4.). For the convenience of the reader, we give a short, contemporary
proof.

Theorem 2 (Edington). The group G = (3, 3 | 3, n) exists for every
n > 1, is of order 3n2, and is non-abelian when n > 1. It contains a
normal subgroup H = 〈x2y, xy2〉 ∼= Cn × Cn. In particular, G ∼= C3 when
n = 1, G ∼= A4 when n = 2, and G is the unique non-abelian group of order
27 and exponent 3 when n = 3.

Proof. Verify that (3, 3 | 3, 1) is isomorphic to C3. Let n > 1. Since
x(x2y)x−1 = yx−1 = y(x2y)y−1 ∈ H, and x−1(xy2)x = y2x = y−1(xy2)y ∈
H, the subgroup H is normal in G. It is an abelian group of order at most
n2 since x2y · xy2 = x(xy)2y = x(xy)−1y = xy2 · x2y. Clearly, G/H ∼= C3

(enumeration of cosets works �ne), and hence |G| = 3|H| 6 3n2.
Let N = 〈a〉 × 〈b〉 ∼= Cn × Cn, and K = 〈f〉 6 Aut(N), where f is

de�ned by f(a) = a−1b, f(b) = a−1. Let E be the semidirect product of
N and K via the natural action of K on N . We claim that E is non-
abelian, and isomorphic to (3, 3 | 3, n) with generators x = (1, f) and
y = (a, f). We have (a, f)2 = (af(a), f2) = (b, f2), (b, f2)(1, f) = (b, id),
and (1, f)(b, f2) = (a−1, id). Thus E is non-abelian, and generated by
(1, f), (a, f). A routine computation shows that (1, f)3 = (a, f)3 =
((1, f)(a, f))3 = ((1, f)−1(a, f))n = 1.

The group E proves that |G| = 3|H| = 3n2. In particular, H ∼= Cn ×
Cn.

We would like to give a detailed description of the lattice of subgroups
of (3, 3 | 3, p) in terms of generators x and y. From a group-theoretical
point of view, the groups are rather boring, nevertheless, the lattice can be
nicely visualized. The cases p = 2 and p = 3 cause troubles, and we exclude
them from our discussion for the time being.

Lemma 3. Let G and H be de�ned as before. Then H is the Sylow p-
subgroup of G, and contains p + 1 subgroups H(i) = 〈h(i)〉, for 0 6 i < p,
or p = ∞, all isomorphic to Cp. We can take

h(i) = x2y(xy2)i, for 0 6 i < p and h(∞) = xy2.
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There are p2 Sylow 3-subgroups G(k, l) = 〈g(k, l)〉, for 0 6 k, l < p, all
isomorphic to C3. We can take

g(k, l) = (x2y)−k(xy2)−lx(x2y)k(xy2)l.

Proof. The subgroup structure of H is obvious. Every element of G\H has
order 3, so there are p2 Sylow 3-subgroups of order 3 in G. The subgroup
H acts transitively on the set of Sylow 3-subgroups. (By Sylow Theorems,
G acts transitively on the copies of C3. As |G| = 3p2, the stabilizer of each
C3 under this action is isomorphic to C3. Since p and 3 are relatively prime,
no element of H can be found in any stabilizer.) This shows that our list
of Sylow 3-subgroups is without repetitions, thus complete.

For certain values of p (see below), there are no other subgroups in G.
For the remaining values of p, there are additional subgroups of order 3p.

If K 6 G has order 3p, it contains a unique normal subgroup of order p,
say L 6 H. Since L is normalized by both K and H, it is normal in G. Then
G/L is a non-abelian group of order 3p, and has therefore p subgroups of
order 3. Using the correspondence of lattices, we �nd p subgroups of order
3p containing L (the group K is one of them).
Lemma 4. The group H(i) is normal in G if and only if

i2 + i + 1 ≡ 0 (mod p). (3)

If p ≡ 1 (mod 3), there are two solutions to (3). For other values of p, there
is no solution.

Proof. We have

x−1h(i)x = x−1x2y(xy2)ix = xy2y2(xy2)ix

= (xy2)(y2x)i+1 = (x2y)−(i+1)(xy2).

Thus x−1h(i)x belongs to H(i) if and only if (x2y)−(i+1)i(xy2)i = (x2y)(xy2)i,
i.e. if and only if i satis�es (3). Similarly,

y−1h(i)y = y−1x2y(xy2)iy = (y2x)(xy2)y2(xy2)iy

= (y2x)(xy2)(y2x)i = (x2y)−(i+1)(xy2).

Then y−1h(i)y belongs to H(i) if and only if i satis�es (3).
The quadratic congruence (3) has either two solutions or none. Pick

a ∈ GF (p)∗, a 6= 1. Then a2 + a + 1 = 0 if and only if a3 = 1, since
a3 − 1 = (a − 1)(a2 + a + 1). This simple argument shows that (3) has a
solution if and only if 3 divides p− 1 = |GF (p)∗|.
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Theorem 5 (The Lattice of Subgroups of (3, 3 | 3, p)). For a prime
p > 3, let G = (3, 3 | 3, p), H = 〈x2y, xy2〉, h(i) = x2y(xy2)i for 0 6 i < p,
h(∞) = xy2, H(i) = 〈h(i)〉, g(k, l) = (x2y)−k(xy2)−lx(x2y)k(xy2)l for
0 6 k, l < p, and G(k, l) = 〈g(k, l)〉.

Then H(∞) ∼= Cp, H(i) ∼= Cp, G(k, l) ∼= C3 are the minimal subgroups
of G, and H(i) ∨ H(j) = H ∼= Cp × Cp for every i 6= j. When 3 does
not divide p − 1, there are no other subgroups in G. Otherwise, there are
additional 2p non-abelian maximal subgroups of order 3p; p for each 1 <
i < p satisfying i3 ≡ 1 (mod p). These subgroups can be listed as K(i, l) =
H(i) ∨ G(0, l), for 0 6 l < p. Then H(i) ∨ G(k′, l′) = K(i, l) if and
only if l′ − l ≡ ik′ (mod p); otherwise H(i) ∨ G(k′, l′) = G. Finally, let
(k, l) 6= (k′, l′). Then G(k, l) ∨ G(k′, l′) = H(i) ∨ G(k, l) if and only if
there is 1 < i < p satisfying i3 ≡ 1 (mod p) such that l′ − l ≡ (k′ − k)i
(mod p); otherwise G(k, l) ∨G(k′, l′) = G.

The group (3, 3 | 3, 2) is isomorphic to A4, the alternating group on
4 points, and (3, 3 | 3, 3) is the unique non-abelian group of order 27 and
exponent 3.

Proof. Check that h(i)−1g(k, l)h(i) = g(k + 1, l + i), and conclude that
H(i) ∨ G(k, l) = H(i) ∨ G(k′, l′) if and only if l′ − l ≡ i(k′ − k) (mod p).
This also implies that, for some 1 < i < p, H(i)∨G(k′, l′) equals K(i, l) if
and only if l′ − l ≡ ik′ (mod p) and i3 ≡ 1 (mod p).

Finally, if S = G(k, l) ∨ G(k′, l′) 6= G, it contains a unique H(i) E G.
Moreover, we have S = H(i) ∨ G(k, l) = H(i) ∨ G(k′, l′) solely on the
grounds of cardinality, and everything follows.

We illustrate Theorem 5 with p = 7. The congruence (3) has two solu-
tions, i = 2 and i = 4. The subgroup lattice of (3, 3 | 3, 7) is depicted in the
3D Figure 1. The 49 subgroups G(k, l) are represented by a parallelogram
that is thought to be in a horizontal position. All lines connecting the sub-
groups G(k, l) with K(2, 0) and K(4, 0) are drawn. The lines connecting
the subgroups G(k, l) with K(2, j), K(4, j), for 1 6 j < p, are omitted for
the sake of transparency. The best way to add these missing lines is by the
means of a�ne geometry of GF (p) × GF (p). To determine which groups
G(k, l) are connected to the group K(i, j), start at G(0, j) and follow the
line with slope i, drawn modulo the parallelogram.

The group A4 �ts the description of Theorem 5, too, as can be seen from
its lattice of subgroups in Figure 2. So does the group (3, 3 | 3, 3).
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Figure 1: The lattice of subgroups of (3, 3 | 3, 7)
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Figure 2: The subgroup structure of A4
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3. Three subgroups
We promised to show that each of the subgroups 〈g3, g4〉, 〈g3, g5〉, 〈g4, g5〉
of M∗(q) is isomorphic to (3, 3 | 3, p).

Proposition 3.1. Let g3, g4, g5 be de�ned as above, q = pr. Then
the three subgroups 〈g3, g4〉, 〈g3, g5〉, 〈g4, g5〉 of M∗(pr) are isomorphic to
(3, 3 | 3, p), if q 6= 9 is odd or q = 2.

Proof. We prove that G1 = 〈g3, g4〉 ∼= (3, 3 | 3, p); the argument for the
other two groups is similar. We have g3

3 = g3
4 = (g3g4)3 = (g4g3)3 =

(g−1
3 g4)p = (g2

3g4)p = e. Thus G1 6 (3, 3 | 3, p). Also, H1 = 〈g2
3g4, g3g

2
4〉 ∼=

Cp × Cp. When p 6= 3, we conclude that |G1| = 3p2, since G1 contains an
element of order 3. When p = 3, we check that g3 6∈ H1, and reach the
same conclusion.

We �nish this paper with a now obvious observation, that in order to
describe all subloops of M∗(q), one only has to study the interplay of the
isomorphic subgroups 〈g3, g4〉, 〈g3, g5〉, and 〈g4, g5〉.
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