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The abstract groups (3, 3 | 3, p),
their subgroup structure,

and their significance for Paige loops
Petr Vojtéchovsky

Abstract

For most (and possibly all) non-associative finite simple Moufang loops, three generators
of order 3 can be chosen so that each two of them generate a group isomorphic to
(3,31]3,p). The subgroup structure of (3,3]3,p) depends on the solvability of a certain

quadratic congruence, and it is described here in terms of generators.

1. Introduction

Moufang loops and, more generally, diassociative loops are usually an abun-
dant source of two-generated groups. In the end, this is what diassociativ-
ity is all about: every two elements generate an associative subloop, i.e. a
group. (We refer the reader not familiar with the theory of loops to [5].)
This short paper emerged as an offshoot of our larger-scale program to fully
describe the subloop structure of all non-associative finite simple Moufang
loops, sometimes called Paige loops.

Let M*(q) denote the Paige loop constructed over F' = GF'(q) as in [4].
That is, M*(q) consists of vector matrices

M:<ﬁb>’

where a, b € F, o, 3 € F3, det M = ab— o -3 = 1, and where M is
identified with —M. The multiplication in M*(q) coincides with the Zorn

2000 Mathematics Subject Classification: 20D30, 20N10
Keywords: non-associative finite simple Moufang loop, Paige loop, the abstract
group (3, 3 | 3, p), loop generator, quadratic congruence



98 P. Vojtéchovsky

matrix multiplication
a « c v\ ac+a-0 ay+da— (X6
B b 5 d) \ cB+bl+axy By +bd ’

where « - 3 (resp. a x 3) is the standard dot product (resp. cross product).
We have shown in [6, Theorem 1.1] that every M*(q) is three-generated,
and when ¢ # 9 is odd or ¢ = 2 then the generators can be chosen as

(1 e (1 e _ 0 ues (1)
g1 = 0 1 y 92 = O 1 , g3 = _u—le3 1 )

where u is a primitive element of F' (cf. [6, Proposition 4.1]). In particular,
note that g1, g2 and g3 generate M*(p) for every prime p. We find it more
convenient to use another set of generators.

Proposition 1. Let ¢ # 9 be an odd prime power or ¢ = 2. Then M*(q)
15 generated by three elements of order three.

Proof. Let us introduce

0 (0,0,u)
94 = g3g1 = (0 u _ufl) 1 s
0 (0,0, u)
It follows from (1) that M*(q) is generated by g3, g4, and gs. One easily
verifies that these elements are of order 3. ]

The groups (g3, g4), (93, g5) and (g4, g5) play therefore a prominent role
in the lattice of subloops of M*(q). As we prove in Section 3, each of them
is isomorphic to the group (3, 3 | 3, p), defined below.

2. The abstract groups (3, 3 | 3, p)
The two-generated abstract groups (I, m | n, k) defined by presentations
Lm|n, k)= (z,y|a'=y™=(zy)" = (" "y)") (2)

were first studied by Edington [3], for some small values of I, m, n and k.
The notation we use was devised by Coxeter [1] and Moser [2]|, and has a
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deeper meaning that we will not discuss here. From now on, we will always
refer to presentation (2) when speaking about (I, m | n, k).

The starting point for our discussion is Theorem 2, due to Edington |3,
Theorem IV and pp. 208-210]. (Notice that there is a typo concerning the
order of (3, 3| 3, n), and a misprint claiming that (3, 3 | 3, 3) is isomorphic
to Ay.). For the convenience of the reader, we give a short, contemporary
proof.

Theorem 2 (Edington). The group G = (3,3 | 3, n) exists for every
n > 1, is of order 3n?, and is non-abelian when n > 1. It contains a
normal subgroup H = (x?y, xy?) = C,, x Cy,. In particular, G = Cs when
n=1, G= Ay when n =2, and G is the unique non-abelian group of order
27 and exponent 3 when n = 3.

Proof. Verify that (3,3 | 3, 1) is isomorphic to C5. Let n > 1. Since
w(@*y)zt =yt = y(2Py)y~' € H, and 2 (zy*)z = v’z =y (ay?)y €
H, the subgroup H is normal in G. It is an abelian group of order at most
n? since 2%y - xy? = x(zy)?y = z(zy) "y = zy? - 2%y. Clearly, G/H = C;
(enumeration of cosets works fine), and hence |G| = 3|H| < 3n?.

Let N = (a) x (b) =2 C,, x Cp, and K = (f) < Aut(N), where f is
defined by f(a) = a='b, f(b) = a~!. Let E be the semidirect product of
N and K via the natural action of K on N. We claim that E is non-
abelian, and isomorphic to (3,3 | 3, n) with generators x = (1, f) and
y = (a, f). Wehave (a, /) = (af(a), 12) = (b, ), (b, 21, ) = (b, id),
and (1, f)(b, f?) = (a~!,id). Thus E is non-abelian, and generated by
(1, f), (a, f). A routine computation shows that (1, f)? = (a, f)? =
(1, F)a, ) = (1, ) Ma, P = 1.

The group E proves that |G| = 3|H| = 3n%. In particular, H = C,, x
Ch. O

We would like to give a detailed description of the lattice of subgroups
of (3,3 ] 3, p) in terms of generators x and y. From a group-theoretical
point of view, the groups are rather boring, nevertheless, the lattice can be
nicely visualized. The cases p = 2 and p = 3 cause troubles, and we ezxclude
them from our discussion for the time being.

Lemma 3. Let G and H be defined as before. Then H is the Sylow p-
subgroup of G, and contains p + 1 subgroups H(i) = (h(7)), for 0 < i < p,
or p = o0, all isomorphic to C,. We can take

h(i) = 22y(ey?), for 0<i<p and h(co) = zy*.
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There are p? Sylow 3-subgroups G(k, 1) = (g(k, 1)), for 0 < k, | < p, all
1somorphic to Cs. We can lake

g(k, 1) = (%) F(ay®) 2 (a®y)* (xy?).

Proof. The subgroup structure of H is obvious. Every element of G\ H has
order 3, so there are p? Sylow 3-subgroups of order 3 in G. The subgroup
H acts transitively on the set of Sylow 3-subgroups. (By Sylow Theorems,
G acts transitively on the copies of C3. As |G| = 3p?, the stabilizer of each
Cs under this action is isomorphic to C'3. Since p and 3 are relatively prime,
no element of H can be found in any stabilizer.) This shows that our list
of Sylow 3-subgroups is without repetitions, thus complete. O

For certain values of p (see below), there are no other subgroups in G.
For the remaining values of p, there are additional subgroups of order 3p.

If K < G has order 3p, it contains a unique normal subgroup of order p,
say L < H. Since L is normalized by both K and H, it is normal in G. Then
G/L is a non-abelian group of order 3p, and has therefore p subgroups of
order 3. Using the correspondence of lattices, we find p subgroups of order
3p containing L (the group K is one of them).

Lemma 4. The group H(i) is normal in G if and only if
i +i+1=0(modp). (3)

Ifp=1 (mod 3), there are two solutions to (3). For other values of p, there
s no solution.

Proof. We have
e h(i)e = a2y (zy?) e = xyPy? (ay®) e
= (zy?)(yP2)"™ = (a2y) =0TV (2y?).

Thus 2~ 'h(i)z belongs to H (i) if and only if (z2y) ~HDi(2y?) = (22y)(xy?)?,
i.e. if and only if 7 satisfies (3). Similarly,

y 1 h(i)y =y 2Py (ay?) 'y = () (xy?)y* (zy?)'y

= (v2z)(zy?) (y2x)" = (z?y) TV (zy?).

Then y~1h(i)y belongs to H(i) if and only if i satisfies (3).

The quadratic congruence (3) has either two solutions or none. Pick
a € GF(p)*, a # 1. Then a® + a+ 1 = 0 if and only if a® = 1, since
a® —1=(a—1)(a®> + a+ 1). This simple argument shows that (3) has a
solution if and only if 3 divides p — 1 = |GF(p)*|. O
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Theorem 5 (The Lattice of Subgroups of (3,3 | 3, p)). For a prime

p>3,letG=(3,3|3,p), H=(2?y, zy?), h(i) = 2%y(zy?)" for 0 <i < p,
h(oo) = xy®, H(i) = (h(i)), g(k, 1) = (2%y) " (ay®)x(z?y)* (xy?)" for
0<k,l<p, and G(k, 1) = (g(k, )>

Then H(oo) = Cp, H(i) = Cp, G(k, 1) = Cs are the minimal subgroups
of G, and H(i) V H(j) = H = Cp x Cp for every i # j. When 3 does
not divide p — 1, there are no other subgroups in G. Otherwise, there are
additional 2p non-abelian mazximal subgroups of order 3p; p for each 1 <
i < p satisfying i> = 1 (mod p). These subgroups can be listed as K (i, [) =
H(i) vG(0,1), for 0 <l < p. Then H(i)V GK, ') = K(i,1) if and
only if ' — 1 = ik’ (mod p); otherwise H(i) V G(k', l') = G. Finally, let
(k, 1) # (K, U"). Then G(k,1) vV G(K', ') = H(i) V G(k, 1) if and only if
there is 1 < i < p satisfying i = 1 (mod p) such that I! — 1 = (k' — k)i
(mod p); otherwise G(k, )V G(K', ') =G.

The group (3,3 | 3, 2) is isomorphic to A4, the alternating group on
4 points, and (3, 3 | 3, 3) is the unique non-abelian group of order 27 and
exponent 3.

Proof. Check that h(i)~tg(k, )h(i) = g(k + 1,1+ i), and conclude that
H(i)V G(k, 1) = H(i) V G(K, ) if and only if ' — | = i(k' — k) (mod p).
This also implies that, for some 1 < i < p, H(i) V G(K', ') equals K (i, 1) if
and only if I’ — I = ik’ (mod p) and i® =1 (mod p).

Finally, if S = G(k, 1)V G(K', ') # G, it contains a unique H (i) < G.
Moreover, we have S = H(i) V G(k, 1) = H(i) V G(K', ') solely on the
grounds of cardinality, and everything follows. 0

We illustrate Theorem 5 with p = 7. The congruence (3) has two solu-
tions, i = 2 and i = 4. The subgroup lattice of (3, 3 | 3, 7) is depicted in the
3D Figure 1. The 49 subgroups G(k, l) are represented by a parallelogram
that is thought to be in a horizontal position. All lines connecting the sub-
groups G(k, 1) with K(2, 0) and K (4, 0) are drawn. The lines connecting
the subgroups G(k, 1) with K (2, j), K(4, j), for 1 < j < p, are omitted for
the sake of transparency. The best way to add these missing lines is by the
means of affine geometry of GF(p) x GF(p). To determine which groups
G(k, 1) are connected to the group K(i, j), start at G(0, j) and follow the
line with slope 7, drawn modulo the parallelogram.

The group A4 fits the description of Theorem 5, too, as can be seen from
its lattice of subgroups in Figure 2. So does the group (3, 3 | 3, 3).
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Figure 1: The lattice of subgroups of (3, 3 | 3, 7)
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Figure 2: The subgroup structure of Ay
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3. Three subgroups

We promised to show that each of the subgroups (gs, g4), (93, 95), (94, g5)
of M*(q) is isomorphic to (3, 3 | 3, p).

Proposition 3.1. Let g3, g4, g5 be defined as above, ¢ = p". Then
the three subgroups (g3, g4), (93, 95), (94, g5) of M*(p") are isomorphic to
(3,313,p),if q#9 is odd or g =2.

Proof. We prove that G1 = (g3, g4) = (3, 3 | 3, p); the argument for the
other two groups is similar. We have g5 = g3 = (g394)% = (g493)3

(95 '94)” = (9394)P = e. Thus G1 < (3, 3| 3, p). Also, H1 = (9394, 9393)
Cp x Cp. When p # 3, we conclude that |G1| = 3p?, since G contains an
element of order 3. When p = 3, we check that g3 ¢ Hi, and reach the
same conclusion.

11l

(I

We finish this paper with a now obvious observation, that in order to
describe all subloops of M*(q), one only has to study the interplay of the
isomorphic subgroups (gs, g4), (93, g5), and (g4, gs)-
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