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The topological quasigroups

with multiple identities

Mitrofan M. Choban and Liubomir L. Kiriyak

Abstract

In this article we describe the topological quasigroups with (n,m)-identities, which are
obtained by using isotopies of topological groups. Such quasigroups are called the (n,m)-
homogeneous quasigroups. Our main goal is to extend some affirmations of the theory

of topological groups on the class of topological (n, m)-homogeneous quasigroups.

1. General notes

A non-empty set G is said to be a groupoid relative to a binary operation
denoted by - or by juxtaposition, if for every ordered pair a,b of elements
of G, is defined a unique element ab € G.

If the groupoid G is a topological space and the multiplication operation
(a,b) — a-b is continuous, then G is called a topological groupoid.

A groupoid G is called a groupoid with division, if for every a,b € G the
equations axr =b and ya = b have solutions, not necessarily unique.

A groupoid G is called reducible or cancellative, if for each equality
zy = wv the equality x = u is equivalent to the equality y = v.

A groupoid G is called a primitive groupoid with the divisions, if there
exist two binary operations | : G X G — G, r: G x G — G such that
l(a,b)-a="b,a-r(a,b) =bfor all a,b € G. Thus a primitive groupoid with
divisions is a universal algebra with three binary operations.

If in a topological groupoid G the primitive divisions [ and r are con-
tinuous, then we can say that G is a topological primitive groupoid with
continuous divisions.
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A primitive groupoid G with divisions is called a quasigroup if every of
the equations az = b and ya = b has unique solution. In the quasigroup G
the divisions [, are uniques.

An element e € G is called an identity if ex = xe = x for every x € X.
A quasigroup with an identity is called a loop.

If a multiplication operation in a quasigroup (G,-) with a topology is
continuous, then G is called a semitopological quasigroup.

If in a semitopological quasigroup G the divisions [ and r are continuous,
then G is called a topological quasigroup.

A quasigroup G is called medial if it satisfies the law xy - 2zt = xz - yt for
all z,y,2,t € G.

If a medial quasigroup G contains an element e such that e-x = x
(x-e=x) for all z in G, then e is called a left (right) identity element of G
and G is called a left (right) medial loop.

Let N ={1,2,..} and Z = {...,—2,—-1,0,1,2,...}. We shall use the
terminology from [3, 5].

2. Multiple identities

We consider a groupoid (G, +). For every two elements a,b from (G,+)
we denote

1(a,b,+) = (a,b,+)1 =a+Db,
n(a,b,+):a+(n—1)(a,b,+),
(a,b,+)n = (a,b,+)(n—1)+b

for all n > 2.

If a binary operation (+) is given on a set G, then we shall use the
symbols n(a,b) and (a,b)n instead of n(a,b,+) and (a,b,+)n.

Definition 1. Let (G,+) be a groupoid, n > 1 and m > 1. The element e
of a groupoid (G, +) is called an (n,m)-zero of G if e+e = e and n(e,z) =
(x,e)m = x for every x € G. If e+ e =e and n(e,x) = z for every z € G,
then e is called an (n,00)-zero. If e + e = e and (x,e) m = x for every
x € G, then e is called an (oo, m)-zero. It is clear that e € G is an
(n,m)-zero, if it is an (n, 00)-zero and an (oo, m)-zero.

Remark 1. In the multiplicative groupoid (G, -) the element e is called an
(n, m)-identity. The notion of the (n, m)-identity was introduced in [4].
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Theorem 1. Let (G, ) be a multiplicative groupoid, e € G and the following
conditions hold:

ex =x for every x € G;

1
2. 22=x-x=e forevery xcG;
3

. xeyz=y-axz forall x,y,z € G;
4. For every a,b € G there exists a unique point y € G such that ay = b.
Then e is a (1,2)-identity in G.

Proof. Fix x € G. Pick y € G such that xe -y = z. By virtue of the
condition 2 we have z - (zve-y) =x -z =e, i.e. x-(ve-y) =e. From the
condition 3 it follows that ze - xy = e. It is clear that ze - xe = e. Thus
ze-xy = xe - xe, vy = ze and y = e. Therefore (z-¢€)-e=(x-e)-y=2x
and e is a (1, 2)-identity. The proof is complete. O

Example 1. Let (G,+) be a commutative additive group with a zero 0.
Consider a new binary operation x -y = y — . Then (G,-) is a medial
quasigroup with a (1,2)-identity 0. If x + x # 0 for some x € G, then 0 is
not an identity in (G, -).

Theorem 2. Let (G, ) be a multiplicative groupoid, e € G and the following
conditions hold:

1. ex=xa forevery z € G;
2. x-x=e forevery z €G;
3. zy-uv=zu-yv forall x,y,u,ve G,
4. If xa = ya, then z =y.
Then G is a medial quasigroup with a (1,2)-identity e.

Proof. If x € G, then ze-e =xe-2xx =2x-ex =e-ex = x. Thus e is a
(1, 2)-identity.

Consider the equation xa = b. Then za-e = b-e, za - ee = be and
ze - ae = be. Thus (ze-ae) - (be) = e, (xe-b) - (ae-e) = e, (ve-b)a = e,
(xe-b)-(ea) =e, (ze-e)-(ba) = e and x - ba = e. Therefore x -ba = ba - ba
and ¢ = ba. Since ba -a = ba -ea = be - aa = be - e = b, the element
x = ba is a unique solution of the equation xza = e. Now we consider the
equation ay = b. In this case be = ay-e = ay - aa = aa - ya = e - ya = ya.
Thus y = be - a is a unique solution of the equation ay = b. The proof is
complete. ]
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Corollary 1. Let (G,-) be a left medial loop, e € G and x* = e for every
x € G. Then e is a (1,2)-identity.

3. Homogeneous isotopes

Definition 2. Let (G, +) be a topological groupoid. A groupoid (G,-) is
called a homogeneous isotope of the topological groupoid (G, +) if there
exist two topological automorphisms ¢,v : (G,+) — (G,+) such that
z-y=¢(x)+¢(y) forall z,y € G.

If h: X — X isa mapping, then h' (z) = h (z) and h" (z) = h (K"~ (z))
forallz € X and n > 2.

Definition 3. Let n,m < co. A groupoid (G, ) is called an (n, m)-homoge-
neous isotope of a topological groupoid (G, +) if there exist two topological
automorphisms ¢, : (G, +) — (G, +) such that:

l. z-y=¢(x)+9¥(y) foral z,yecqG;
2. o =1by;
3. If n <400, then ¢"(x) =2z forevery z € G.
4. If m < 400, then Y™ (z) =z for every z € G.
Definition 4. A groupoid (G, -) is called an isotope of a topological groupoid

(G, +), if there exist two homeomorphisms ¢, : (G,+) — (G, +) such that
z-y=¢(x)+¢(y) forall z,y € G.

Under the conditions of Definition 4 we shall say that the isotope (G, -) is
generated by the homeomorphisms ¢, ¥ of the topological groupoids (G, +)
and denote (G,-) =g (G,+,p, ).

Theorem 3. Let (G,+) be a topological groupoid, ¢,v : G — G be homeo-
morphisms and (G, ) = g (G,+,¢,v). Then:

1. (G) +) — (Ga y 80_17 ¢_1);

2. (G,) is a topological groupoid;

3. If (G,+) is a reducible groupoid, then (G,-) is a reducible groupoid
too;

4. If (G,+) is a groupoid with a division, then (G, -) is a groupoid with
a division too;

5. If (G,+) is a topological primitive groupoid with a division, then (G, -)
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1s a topological primitive groupoid with a division too;

6. If (G,+) is a topological quasigroup, then (G,-) is a topological quasi-
group too;

7. If nym,p,k € N and (G,-) is an (n,m)-homogeneous isotop of
the groupoid (G,+) and e is a (k,p)-zero in (G,+), then e is an
(mk,np)-identity in (G, ).

Proof. We have = -y = ¢ (z) + ¢ (y). Therefore

e @) W) = (@) +y (¥ () =z+y

and (G,+) =g (G, : go_l,l/)_l). The assertion 1 is proved. The assertion 2
and 3 are obvious.

Let (G,+,r,1) be a topological primitive groupoid with the divisions,
where | : G x G — G and r : G x G — G be continuous primitive
divisions. Then the mappings l1(a,b) = ¢ ! (I((a),b)) and ri(a,b) =
Y~ (r (p(a),b)) are the divisions of the groupoid (G,-). The divisions Iy,
r1 are continuous if and only if the divisions [, r are continuous. The asser-
tions 4, 5 and 6 are proved.

Let (G, -) be an (n, m)-homogeneous isotope of the groupoid (G, +) and
e be a (k,p)-zero in (G,+). We mention that ¢9(e) = ¢9(e) = e for every
q € N. If k < 400, then in (G,+) we have gk (e,x,+) = x for each z € G
and for every g € N.

Let m < 400 and ¢™(z) =z for all z € G.

Then 1(e,z,-) = 1(e,¥(x),+) and q(e,z,-) = ¢ (e,v%(x),+) for every
q =2 1. Therefore

mk (e,x,-) = mk (e, YR (1), —|—> =mk(e,z,+) = x.
Analogously we obtain that
(e, 2,-)np = (e, 9" (x),+)np = (e, z, +) np = .

Hence e is an (mk, np)-identity in (G,-). The statement 7 is proved.
The proof of Theorem 3 is complete. O

Remark 2. Let (G,+) be a topological quasigroup, a,b € G and ¢, be
two automorphisms of (G,+). If x -y = (a + ¢(x)) + (¢¥(y) + b), then we
denote (G,-) = g(G,+,p,1,a,b). It is clear that (G,-) is a topological
quasigroup too. If ¢1(z) = a4+ ¢(z) and ¥1(x) = ¥(x)+ b, then 1, 1) are
homeomorphism of (G,+) and (G, +, ¢, ¥, a,b) = (G, +, ¢1,%1) -
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4. The homogeneous isotopes and congruences

We consider a topological groupoid (G,+). If a is a relation on G, then
a(x) ={y € G : zay} for every x € G.

An equivalence relation a on G is called a congruence on (G,+) if
from zaw and yow it follows (z+y)a(u+v). If (G,+) is a primitive
groupoid with divisions [ and r, then we consider that [ (z,y) ol (u,v) and
r(z,y) ar (u,v) provided zau and yaw.

Two congruences « and 3 on G are called conjugate if there exists a
topological automorphism ¢ : G — G such that the relation zay is
equivalent to the relation ¢(z)B¢(y).

Let a, B be two conjugate congruences on G and ¢ be the topologi-
cal automorphism for which the relation zay is equivalent to the relation
o(2)Bp(y). Let a(z) = {y € G:zay}. Then p(a(z)) = B(p(x). I
{By:pe M} is a family of congruences on (G, +), then there exists the
intersection § = N{B, : p € M}, where §(z) = N{B, (x) : p € M}. The
relation By is hold, if and only if x8,y is hold for every p € M.

Theorem 4. Let (G,-) = g(G,+,¢,v¥) be an isotope of the topological
primitive groupoid (G, +) with the divisions {r,l}, p,1 be topological au-
tomorphisms of (G,+), and o be a congruence on the groupoid (G,+,1,7).
Then:

1. If (G,-) is a homogeneous isotope, then there exists a countable set
of congruences {By :n € N} of the groupoid (G,+), conjugate to «,
such that o € {8, :n € N} and B = N{Bn:n € N} is a common
congruence of the groupoids (G,+) and (G,-).

2. If (G,") is an (n,m)-homogeneous isotope of the groupoid (G,+), and
n,m < 400, then there exists a finite set of congruences {3; : i < nm}
of the groupoid (G, +), conjugate to o, such that f=N{F;: 1 < nm}
is a common congruence of the groupoids (G,+) and (G,-).

Proof. Let Z be the set of all integer numbers. If n = 0, then ¢%(z) = x for
allz € G. If n € Z and n < 0, then " = (gofl)fn. Denote by {h,, : n € Z}
the set of the all automorphisms

{gpkl o™ ocpk2 oy o... oapk” o™ neN, ki,mi, ... knmy € Z}.
If o1 =1, then

{hn:nEZ}:{kaowm:k,mEZ}.
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For each n € N we define the congruence 3, (z) = hy, (a (x)) for all x € G.

Denote 8 =N{0k : k € N}. Then ¢ (5 (x)) =9 (8 (x)) = B (z) for each
x € G. Hence  is a common congruence of groupoids (G,+) and (G, -).
Suppose that automorphisms ¢ and v satisfy the Definition 3 and (G, ) is
an (n, m)-isotope of groupoid (G, +). In this case we have

@kl ,wa ,spkz ,¢q2 . (pkn . qu — ((pkl+~~-+kn> . (wa+~~-+qn)
Therefore
{hp:keN}y={¢" -/ :i=1,...,n, j=1,...,m} ={h : k <nm}

and the set {8, : n € N} is finite and contains no more than nm distinct
elements. The proof is complete. O

Remark 3. Let o and § be two conjugate congruences on a topological
groupoid G. Then:

1. The sets a(x) are Ggs-sets iff the sets ((z) are Gs-sets in G.
2. The sets a(x) are closed in G iff the sets (3 (x) are closed in G.
3. The sets «(z) are open in G iff the sets (3 (x) are open in G.

Remark 4. Let {3, :n € N’ C N} be a family of congruences on a topo-
logical goupoid G and = N{F, :n € N}. Then:

1. If the sets 3, (z) are Gs-sets in G, then the sets [ (z) are Gs-sets in
G too.

2. If the set N’ is finite and the sets 3, (x) are open, then the sets 3 (x)
are open in G.

5. General properties of medial quasigroups

Let (G,-) be a topological medial quasigroup. By virtue of Toyoda’s The-
orem [7] there exist a binary operation (+) on G, two elements 0,c¢ € G
and two topological automorphisms ¢,v : (G,+) — (G,+) such that
(G,+) is a topological commutative group, 0 is the zero of (G,+) and
(G,) = g(G,+,¢,1,0,c) is a homogeneous isotope of (G, +). In particu-
lar, @) = ip.

In [2] G.B. Beleavskaya has proved a generalization of Toyoda’s Theo-
rem.
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Theorem 5. Let (G, +) be a topological quasigroup, 0 € G,0+0 =0, ¢, 9
be two automorphisms of (G,+) and (G,-) = (G, +,p,¢). Then:

1. {0} is a subquasigroup of the quasigroups (G,+) and (G,-).

2. If n < +o0, then 0 is an (n,o0)-identity of (G,-) iff ¢"(z) ==z for
every x € G.

3. If m < 400, then 0 is an (0o, m)-identity of (G,-) iff v (x) ==x
for every x € G.

4. If n,m < +oo, then 0 is an (n,m)-identity of (G,-) iff p"(x) =
" (x) = x for every x € G.

Proof. Let n < +oo. If ¢"(z) = z for every x € G, then from Theorem 3 it
follows that 0 is an (n,+oo)-identity in (G, -).

Let 0 be an (n, co)-identity in (G, ). By construction, ¢ (0) =1 (0) =0
and -y = ¢(x) +¥(y). Then (x,0)k = ©F(x) and (0,z)k = p*(x) for
every k € N. Since (z,0)n = x we obtain that ¢"(z) = z. The proof is
complete. O

Consider on G some equivalence relation . Denote by G/a the col-
lection of classes of equivalence « (x) and 7, : G — G/« is the natural
projection. On G/a we consider the quotient topology. The mapping 7, is
continuous. If « is a congruence on (G, -) (or on (G, +)), then the mapping
Tq 18 Open.

An equivalence relation o on G is called compact if the sets « (z) are
compact.

Theorem 6. Let (G,+) be a commutative topological group, 0 be a zero
of (G,4), c € G, ¢ and ¥ be two automorphisms of the topological group
(G,+) and (G,-) = g(G,+,p,1,0,c¢). If the space G contains a non-empty
compact subset F' of countable character, then for every open subset U of

G containing 0 there exists a compact equivalence relation ay on G such
that:

1. ay(0) CU.
2. ay is a congruence on (G,-).
3. ay is a congruence on (G,+).

4. The natural projection my = ma, : G — G/ay is an open perfect
mapping.
5. The space G/ay is metrizable.
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Proof. We consider that 0 € F' C U. Fix a sequence {U, : n € N} of open
subsets of G such that for every open set V' containing F' there exists n € N
such that F C U, C V. Suppose that F* C U, and U,4+1 C U, for every
n € N.

Then there exists a sequence {V,, : n € N} of open sets of G such that
for every n € N we have:

° n+1 + Vn-‘rl - Vn - Un, ClGVn+1 - Vn and V., = —Vn7
o o (Vig1) Up(Viy1) € Vi

We put H =N{V, : n € N}. By construction, H is a compact subgroup
and the natural projection 7 : G — G/H is open and perfect. Let o (z) =
x + H for every z € G. Then « is a congruence on (G, +). Suppose that
xaz and yav. Then

p(r) —p(2) €

Thus
(x-y) = (2v) =

=(p(x)+v(y) —(
= (p(x) —p(2)) + (¥ (y)

Therefore « is a congruence on (G, -) too.
It is clear that the space G/H is metrizable. The proof is complete. [

Corollary 2. A first countable topological medial quasigroup is metrizable.

A space X is called a paracompact p-space if there exists a perfect map-
ping ¢g: X — Y onto some metrizable space Y (see [1]).

Corollary 3. If a topological medial quasigroup contains a non-empty com-
pact subset of countable character then it is o paracompact space p-space and
admits an open perfect homomorphism onto a medial metrizable quasigroup.

Corollary 4. A Cech complete topological medial quasigroup is paracom-
pact and admits an open perfect homomorphism onto a complete metrizable
medial quasigroup.

Corollary 5. A locally compact medial quasigroup is paracompact and ad-
mits an open perfect homomorphism onto a metrizable locally compact me-
dial quasigroup.
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6. On Haar measures on medial quasigroups

By B(X) denote the family of all Borel subsets of the space X.

A non-negative real-valued function p defined on the family B(X) of
Borel subsets of a space X is said to be a Radon measure on X if it has the
following properties:

— p(H) =sup{u(F): F C H,F is a compact subset of H} for every
H e B(X);

— for every point z € X there exists an open subset V, containing
x such that (V) < oo.

Definition 5. Let (A,-) be a topological quasigroup with the divisions
{r,1}. A Radon measure p on A is called:

— a left invariant Haar measure, if p(U) >0 and p(xH) = p(H) for
every non-empty open set U C A, a point =z € A and a Borel set
H € B(A);

— a right invariant Haar measure, if u(U) > 0 and p(Hz) = p(H)
for every non-empty open set U C A, a point x € A and Borel set
H € B(A);

— an invariant Haar measure if p(U) > 0 and p(zH) = p(Hz) =
p(l(x,H)) = p(r(H,xz)) = pw(H) for every non-empty open set
UC A, apoint x € A and a Borel set H € B(A);

Definition 6. We say that on a topological quasigroup (A,-) there ezists
a unique left (right) invariant Haar measure, if for every two left (right)
invarinat Haar measures pq, o on A there exists a constant ¢ > 0 such that
p2 (H) =c- 1 (H) for every Borel set H € B(A).

If (G,+) is a locally compact commutative group, then on G there
exists a unique invariant Haar measure pg (see [6]).

Theorem 7. Let (G,-) be a locally compact medial quasigroup, (G,+)
be a commutative topological group, p,v : G — G be automorphisms of
(G,+),b € G and (G,-) = g(G,+,¢,1,0,b). On the group (G,+) consider
the invariant Hoar measure pg. Then :

1. On (G,") the right (left) invariant Haar measure is unique.

2. If wis a left (right) invariant Haar measure on (G,-), then p is a
left (right) invariant Haar measure on (G,+) too.

3. On (G,-) there exists some right invariant Haar measure if and only
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if pa(p(H)) = pa(H) for every H € B(A).
4. If n < +oo, and on G there exists some (n, +00)—identity, then on
(G,-) the measure ug is a unique right invariant Haar measure.

5. If m < 400, and on G there exists some (400, m)—identity, then
on (G,-) the measure pg s a unique left invariant Haar measure.

6. If n,m < +oo, and on G there exists some (n, m)—identity, then
on (G,-) the measure pg is a unique invariant Haar measure.

Proof. Let p be a right invariant Haar measure on (G,-). Since z -y =
o(x)+ ¢ (y) +b for all z,y € G, then Hz = o(H)+ ¢¥(H) + b. Thus u
is an invariant Haar measure on (G, +) and there exists a constant ¢ > 0
such that p (H) = ¢- ug (H). Thus pug is a right invariant Haar measure
on (G,-). The assertions 1,2 and 3 are proved.

Consider some topological automorphism h of (G,+). Then u, (H) =
puc (h (H)) is an invariant Haar measure on (G, +) . There exists a constant
cp, > 0 such that pp (H) = pg (h(H)) = cp - pa (H) for every Borel subset
H € B(G). In particular, puc (h* (H)) = cfuc (H) for every k € N. If
n < +oo and 0 is an (n, +0o)—identity, then ¢"(z) = x for every z € G
and ¢, = 1. Thus ¢, =1, ug (H) = pe (h (H)) and pg is a right invariant
Haar measure on (G, -). The assertions 4, 5 and 6 are proved. The proof is
complete. O

In this way we can prove the following results.

Theorem 8. Let (G,+) be a topological quasigroup and (G, -) be an (n,m)-
homogeneous isotope of (G,+). Then:

1. On (G,+) there exists a left (right) invariant Haar measure if and
only if on (G,-) there exists a left (right) invariant Haar measure.

2. If on (G,+) the a left (right) invariant Haar measure is unique, then
on (G,-) the a left (right) invariant Haar measure is unique too.

Theorem 9. On a compact medial quasigroup G there exists a unique Haar
measure [ for which u(G) = 1.

Theorem 10. Let (G,+) be a locally compact group, uc be the left in-
variant Haar measure on (G,+) and ¢, : G — G be the topological
automorphism of (G,+). Fiz ¢ € G and consider the binary operation
-y =) +Y(y) +c. Then:

1. (G,-) is a topological quasigroup.

2. If ug(W(H)) = ug (H) for every Borel subset H € B(G), then ug
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is a left invariant Haare measure on (G, ).

3. If m € N and Y™ (x) = x for every x € G, then ug is a left invariant
Haar measure on (G,-).

4. If (G,+) is a compact group, then ug is an invariant Haar measure

on (G,-).

7. Examples

Example 2. Let (R, +) be a topological commutative group of real num-
bers, a > 0,b >0, p(z) = ax, Y(y) = bz and = -y = p(z) + ¢¥(y). Then
(R,-) is a commutative locally compact medial quasigroup. If H = [c,d],
then 0-H = [ac,ad] and H -0 = [bc, bd]. Thus:

— on (G

there exists some right invariant Haar measure if and only

—
L]
@
NG H\_/

there exists some left invariant Haar measure if and only if
b= 1,

— ifa# 1and b # 1, then on (G,-) does not exist any left or right
invariant Haar measure.

Example 3. Denote by Z, = Z/pZ = {0,1,...,p — 1} the cyclic Abelian
group of order n. Consider the Abelian group (G,+) = (Z5,4+) and ¢ (x) =
2z, ¥ (x) = 4x. Then (G,-) = ¢g(G,+;¢,7) is a medial quasigroup and
each element from (G, -) is (2,4)-identity in G.

Example 4. Consider the Abelian group (G,+) = (Z5,+) and ¢ (z) =
Y (z) = 3z. Then (G,-) = g(G,+;¢,v) is medial quasigroup and all ele-
ments from (G, -) are the (4, 4)-identities in G.

Example 5. Consider the commutative group (G,+) = (Z5,+), ¢(z) =
2z,(x) =2x+1land z-y =2z +2y+ 1. Then (G, ) = g (G, +;¢,1,0,1
is a commutative medial quasigroup and (G,-) does not contain (n,m)-
identities.

Example 6. Consider the commutative group (G,+) = (Z,4), ¢(z) =
z,p(z) =x+1land z-y =x+y+ 1. Then (G,:) = g(G,+;¢,7) is a
medial quasigroup and (G, -) does not contain (n,m)-identities. On (G, -)
there exists an invariant Haar measure.
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Example 7. Let (G,+) be an Abelian group and = + = # 0 for each
x € G. For example (G,+) € {(Zp,+) : p€ N,p > 2}. Denote ¢ (z) ==
and 9 () = —x for each x € G. Then (G,-) = g (G,+;p,1) is a medial
quasigroup and (G, -) contains the unique (1,2)-identity, which coincide
with the zero element in (G, +).

Example 8. Let (G,+) = (Z7,4+), and ¢ (z) = 3z and ¢ (x) = 5. Then
(G,") = g(G,+;p,v) is a medial quasigroup. In this case 0 and 3 are
(12, 6)-identities.
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