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The topological quasigroups
with multiple identities

Mitrofan M. Choban and Liubomir L. Kiriyak

Abstract

In this article we describe the topological quasigroups with (n, m)-identities, which are
obtained by using isotopies of topological groups. Such quasigroups are called the (n, m)-
homogeneous quasigroups. Our main goal is to extend some a�rmations of the theory
of topological groups on the class of topological (n, m)-homogeneous quasigroups.

1. General notes
A non-empty set G is said to be a groupoid relative to a binary operation
denoted by · or by juxtaposition, if for every ordered pair a, b of elements
of G, is de�ned a unique element ab ∈ G.

If the groupoid G is a topological space and the multiplication operation
(a, b) → a · b is continuous, then G is called a topological groupoid.

A groupoid G is called a groupoid with division, if for every a, b ∈ G the
equations ax = b and ya = b have solutions, not necessarily unique.

A groupoid G is called reducible or cancellative, if for each equality
xy = uv the equality x = u is equivalent to the equality y = v.

A groupoid G is called a primitive groupoid with the divisions, if there
exist two binary operations l : G × G → G, r : G × G → G such that
l (a, b) ·a = b, a ·r (a, b) = b for all a, b ∈ G. Thus a primitive groupoid with
divisions is a universal algebra with three binary operations.

If in a topological groupoid G the primitive divisions l and r are con-
tinuous, then we can say that G is a topological primitive groupoid with
continuous divisions.
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A primitive groupoid G with divisions is called a quasigroup if every of
the equations ax = b and ya = b has unique solution. In the quasigroup G
the divisions l, r are uniques.

An element e ∈ G is called an identity if ex = xe = x for every x ∈ X.
A quasigroup with an identity is called a loop.

If a multiplication operation in a quasigroup (G, ·) with a topology is
continuous, then G is called a semitopological quasigroup.

If in a semitopological quasigroup G the divisions l and r are continuous,
then G is called a topological quasigroup.

A quasigroup G is called medial if it satis�es the law xy · zt = xz · yt for
all x, y, z, t ∈ G.

If a medial quasigroup G contains an element e such that e · x = x
(x · e = x) for all x in G, then e is called a left (right) identity element of G
and G is called a left (right) medial loop.

Let N = {1, 2, ...} and Z = {...,−2,−1, 0, 1, 2, ...}. We shall use the
terminology from [3, 5].

2. Multiple identities
We consider a groupoid (G,+). For every two elements a, b from (G,+)
we denote

1 (a, b, +) = (a, b,+) 1 = a + b ,
n (a, b, +) = a + (n− 1) (a, b, +) ,
(a, b, +)n = (a, b,+) (n− 1) + b

for all n > 2.
If a binary operation (+) is given on a set G, then we shall use the

symbols n(a, b) and (a, b)n instead of n (a, b, +) and (a, b, +)n.

De�nition 1. Let (G,+) be a groupoid, n > 1 and m > 1. The element e
of a groupoid (G,+) is called an (n,m)-zero of G if e+ e = e and n (e, x) =
(x, e) m = x for every x ∈ G. If e + e = e and n (e, x) = x for every x ∈ G,
then e is called an (n,∞)-zero. If e + e = e and (x, e) m = x for every
x ∈ G, then e is called an (∞,m)-zero. It is clear that e ∈ G is an
(n,m)-zero, if it is an (n,∞)-zero and an (∞,m)-zero.

Remark 1. In the multiplicative groupoid (G, ·) the element e is called an
(n,m)-identity. The notion of the (n,m)-identity was introduced in [4].
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Theorem 1. Let (G, ·) be a multiplicative groupoid, e ∈ G and the following
conditions hold:

1. ex = x for every x ∈ G;
2. x2 = x · x = e for every x ∈ G;
3. x · yz = y · xz for all x, y, z ∈ G;
4. For every a, b ∈ G there exists a unique point y ∈ G such that ay = b.

Then e is a (1, 2)-identity in G.

Proof. Fix x ∈ G. Pick y ∈ G such that xe · y = x. By virtue of the
condition 2 we have x · (xe · y) = x · x = e, i.e. x · (xe · y) = e. From the
condition 3 it follows that xe · xy = e. It is clear that xe · xe = e. Thus
xe · xy = xe · xe, xy = xe and y = e. Therefore (x · e) · e = (x · e) · y = x
and e is a (1, 2)-identity. The proof is complete.

Example 1. Let (G,+) be a commutative additive group with a zero 0.
Consider a new binary operation x · y = y − x. Then (G, ·) is a medial
quasigroup with a (1, 2)-identity 0. If x + x 6= 0 for some x ∈ G, then 0 is
not an identity in (G, ·).

Theorem 2. Let (G, ·) be a multiplicative groupoid, e ∈ G and the following
conditions hold:

1. ex = x for every x ∈ G;
2. x · x = e for every x ∈ G;
3. xy · uv = xu · yv for all x, y, u, v ∈ G;
4. If xa = ya, then x = y.

Then G is a medial quasigroup with a (1, 2)-identity e.

Proof. If x ∈ G, then xe · e = xe · xx = xx · ex = e · ex = x. Thus e is a
(1, 2)-identity.

Consider the equation xa = b. Then xa · e = b · e, xa · ee = be and
xe · ae = be. Thus (xe · ae) · (be) = e, (xe · b) · (ae · e) = e, (xe · b) a = e,
(xe · b) · (ea) = e, (xe · e) · (ba) = e and x · ba = e. Therefore x · ba = ba · ba
and x = ba. Since ba · a = ba · ea = be · aa = be · e = b, the element
x = ba is a unique solution of the equation xa = e. Now we consider the
equation ay = b. In this case be = ay · e = ay · aa = aa · ya = e · ya = ya.
Thus y = be · a is a unique solution of the equation ay = b. The proof is
complete.
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Corollary 1. Let (G, ·) be a left medial loop, e ∈ G and x2 = e for every
x ∈ G. Then e is a (1, 2)-identity.

3. Homogeneous isotopes
De�nition 2. Let (G,+) be a topological groupoid. A groupoid (G, ·) is
called a homogeneous isotope of the topological groupoid (G,+) if there
exist two topological automorphisms ϕ,ψ : (G,+) → (G, +) such that
x · y = ϕ (x) + ψ (y) for all x, y ∈ G.

If h : X → X is a mapping, then h1 (x) = h (x) and hn (x) = h
(
hn−1 (x)

)
for all x ∈ X and n > 2.

De�nition 3. Let n,m 6 ∞. A groupoid (G, ·) is called an (n,m)-homoge-
neous isotope of a topological groupoid (G,+) if there exist two topological
automorphisms ϕ, ψ : (G,+) → (G,+) such that:

1. x · y = ϕ (x) + ψ (y) for all x, y ∈ G;
2. ϕψ = ψϕ;
3. If n < +∞, then ϕn (x) = x for every x ∈ G.
4. If m < +∞, then ψm (x) = x for every x ∈ G.

De�nition 4. A groupoid (G, ·) is called an isotope of a topological groupoid
(G,+), if there exist two homeomorphisms ϕ, ψ : (G,+) → (G,+) such that
x · y = ϕ (x) + ψ (y) for all x, y ∈ G.

Under the conditions of De�nition 4 we shall say that the isotope (G, ·) is
generated by the homeomorphisms ϕ, ψ of the topological groupoids (G,+)
and denote (G, ·) = g (G,+, ϕ, ψ).

Theorem 3. Let (G, +) be a topological groupoid, ϕ,ψ : G → G be homeo-
morphisms and (G, ·) = g (G,+, ϕ, ψ). Then:

1. (G,+) =
(
G, ·, ϕ−1, ψ−1

)
;

2. (G, ·) is a topological groupoid;
3. If (G, +) is a reducible groupoid, then (G, ·) is a reducible groupoid

too;
4. If (G,+) is a groupoid with a division, then (G, ·) is a groupoid with

a division too;
5. If (G, +) is a topological primitive groupoid with a division, then (G, ·)
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is a topological primitive groupoid with a division too;
6. If (G,+) is a topological quasigroup, then (G, ·) is a topological quasi-

group too;
7. If n,m, p, k ∈ N and (G, ·) is an (n,m)-homogeneous isotop of

the groupoid (G,+) and e is a (k, p)-zero in (G, +), then e is an
(mk, np)-identity in (G, ·).

Proof. We have x · y = ϕ (x) + ψ (y). Therefore

ϕ−1(x) · ψ−1(y) = ϕ
(
ϕ−1(x)

)
+ ψ

(
ψ−1(y)

)
= x + y

and (G,+) = g
(
G, ·, ϕ−1, ψ−1

)
. The assertion 1 is proved. The assertion 2

and 3 are obvious.
Let (G,+, r, l) be a topological primitive groupoid with the divisions,

where l : G × G → G and r : G × G → G be continuous primitive
divisions. Then the mappings l1(a, b) = ϕ−1 (l (ψ(a), b)) and r1(a, b) =
ψ−1 (r (ϕ(a), b)) are the divisions of the groupoid (G, ·) . The divisions l1,
r1 are continuous if and only if the divisions l, r are continuous. The asser-
tions 4, 5 and 6 are proved.

Let (G, ·) be an (n,m)-homogeneous isotope of the groupoid (G,+) and
e be a (k, p)-zero in (G, +). We mention that ϕq(e) = ψq(e) = e for every
q ∈ N . If k < +∞, then in (G, +) we have qk (e, x, +) = x for each x ∈ G
and for every q ∈ N .

Let m < +∞ and ψm(x) = x for all x ∈ G.
Then 1 (e, x, ·) = 1 (e, ψ(x),+) and q (e,x, ·) = q (e, ψq(x), +) for every

q > 1. Therefore

mk (e, x, ·) = mk
(
e, ψmk(x),+

)
= mk (e, x,+) = x.

Analogously we obtain that

(e, x, ·) np = (e, ϕnp(x), +)np = (e, x, +)np = x.

Hence e is an (mk, np)-identity in (G, ·). The statement 7 is proved.
The proof of Theorem 3 is complete.

Remark 2. Let (G, +) be a topological quasigroup, a, b ∈ G and ϕ,ψ be
two automorphisms of (G, +). If x · y = (a + ϕ(x)) + (ψ(y) + b), then we
denote (G, ·) = g (G, +, ϕ, ψ, a, b) . It is clear that (G, ·) is a topological
quasigroup too. If ϕ1(x) = a+ϕ(x) and ψ1(x) = ψ(x)+ b, then ϕ1, ψ1 are
homeomorphism of (G,+) and (G,+, ϕ, ψ, a, b) = (G,+, ϕ1, ψ1) .
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4. The homogeneous isotopes and congruences
We consider a topological groupoid (G,+). If α is a relation on G, then
α(x) = {y ∈ G : xαy} for every x ∈ G.

An equivalence relation α on G is called a congruence on (G,+) if
from xαu and yαv it follows (x + y) α (u + v). If (G, +) is a primitive
groupoid with divisions l and r, then we consider that l (x, y) αl (u, v) and
r (x, y)αr (u, v) provided xαu and yαv.

Two congruences α and β on G are called conjugate if there exists a
topological automorphism ϕ : G → G such that the relation xαy is
equivalent to the relation ϕ(x)βϕ(y).

Let α, β be two conjugate congruences on G and ϕ be the topologi-
cal automorphism for which the relation xαy is equivalent to the relation
ϕ(x)βϕ(y). Let α (x) = {y ∈ G : xαy}. Then ϕ (α(x)) = β (ϕ(x)). If
{βµ : µ ∈ M} is a family of congruences on (G, +), then there exists the
intersection β = ∩{βµ : µ ∈ M}, where β (x) = ∩{βµ (x) : µ ∈ M}. The
relation xβy is hold, if and only if xβµy is hold for every µ ∈ M .

Theorem 4. Let (G, ·) = g (G,+, ϕ, ψ) be an isotope of the topological
primitive groupoid (G,+) with the divisions {r, l} , ϕ, ψ be topological au-
tomorphisms of (G,+), and α be a congruence on the groupoid (G,+, l, r).
Then:

1. If (G, ·) is a homogeneous isotope, then there exists a countable set
of congruences {βn : n ∈ N} of the groupoid (G,+), conjugate to α,
such that α ∈ {βn :n ∈ N} and β = ∩{βn : n ∈ N} is a common
congruence of the groupoids (G, +) and (G, ·).

2. If (G, ·) is an (n,m)-homogeneous isotope of the groupoid (G,+), and
n,m < +∞, then there exists a �nite set of congruences {βi : i 6 nm}
of the groupoid (G,+), conjugate to α, such that β = ∩{βi : i 6 nm}
is a common congruence of the groupoids (G,+) and (G, ·).

Proof. Let Z be the set of all integer numbers. If n = 0, then ϕ0(x) = x for
all x ∈ G. If n ∈ Z and n < 0, then ϕn =

(
ϕ−1

)−n. Denote by {hn : n ∈ Z}
the set of the all automorphisms
{

ϕk1 ◦ ψm1 ◦ ϕk2 ◦ ψm2 ◦ ... ◦ ϕkn ◦ ψmn : n ∈ N, k1,m1, ..., kn,mn ∈ Z
}

.

If ϕψ = ψϕ, then

{hn : n ∈ Z} =
{

ϕk ◦ ψm : k,m ∈ Z
}

.
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For each n ∈ N we de�ne the congruence βn (x) = hn (α (x)) for all x ∈ G.
Denote β = ∩{βk : k ∈ N}. Then ϕ (β (x)) = ψ (β (x)) = β (x) for each

x ∈ G. Hence β is a common congruence of groupoids (G,+) and (G, ·).
Suppose that automorphisms ϕ and ψ satisfy the De�nition 3 and (G, ·) is
an (n,m)-isotope of groupoid (G,+). In this case we have

ϕk1 · ψq1 · ϕk2 · ψq2 · ... · ϕkn · ψqn =
(
ϕk1+...+kn

)
· (ψq1+...+qn

)

Therefore

{hk : k ∈ N} =
{
ϕi · ψj : i = 1, . . . , n, j = 1, . . . , m

}
= {hk : k 6 nm}

and the set {βn : n ∈ N} is �nite and contains no more than nm distinct
elements. The proof is complete.

Remark 3. Let α and β be two conjugate congruences on a topological
groupoid G. Then:

1. The sets α (x) are Gδ-sets i� the sets β (x) are Gδ-sets in G.
2. The sets α (x) are closed in G i� the sets β (x) are closed in G.
3. The sets α (x) are open in G i� the sets β (x) are open in G.

Remark 4. Let {βn : n ∈ N ′ ⊂ N} be a family of congruences on a topo-
logical goupoid G and β = ∩{βn : n ∈ N}. Then:

1. If the sets βn (x) are Gδ-sets in G, then the sets β (x) are Gδ-sets in
G too.

2. If the set N ′ is �nite and the sets βn (x) are open, then the sets β (x)
are open in G.

5. General properties of medial quasigroups
Let (G, ·) be a topological medial quasigroup. By virtue of Toyoda's The-
orem [7] there exist a binary operation (+) on G, two elements 0, c ∈ G
and two topological automorphisms ϕ,ψ : (G,+) → (G,+) such that
(G,+) is a topological commutative group, 0 is the zero of (G,+) and
(G, ·) = g (G,+, ϕ, ψ, 0, c) is a homogeneous isotope of (G,+). In particu-
lar, ϕψ = ψϕ.

In [2] G.B. Beleavskaya has proved a generalization of Toyoda's Theo-
rem.
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Theorem 5. Let (G,+) be a topological quasigroup, 0 ∈ G, 0 + 0 = 0, ϕ, ψ
be two automorphisms of (G,+) and (G, ·) = (G,+, ϕ, ψ) . Then:

1. {0} is a subquasigroup of the quasigroups (G, +) and (G, ·) .

2. If n < +∞, then 0 is an (n,∞)-identity of (G, ·) i� ϕn(x) = x for
every x ∈ G.

3. If m < +∞, then 0 is an (∞,m)-identity of (G, ·) i� ψm(x) = x
for every x ∈ G.

4. If n,m < +∞, then 0 is an (n,m)-identity of (G, ·) i� ϕn(x) =
ψm(x) = x for every x ∈ G.

Proof. Let n < +∞. If ϕn(x) = x for every x ∈ G, then from Theorem 3 it
follows that 0 is an (n, +∞)-identity in (G, ·).

Let 0 be an (n,∞)-identity in (G, ·). By construction, ϕ (0) = ψ (0) = 0
and x · y = ϕ(x) + ψ(y). Then (x, 0) k = ϕk(x) and (0, x) k = ϕk(x) for
every k ∈ N . Since (x, 0) n = x we obtain that ϕn(x) = x. The proof is
complete.

Consider on G some equivalence relation α. Denote by G/α the col-
lection of classes of equivalence α (x) and πα : G → G/α is the natural
projection. On G/α we consider the quotient topology. The mapping πα is
continuous. If α is a congruence on (G, ·) (or on (G,+)), then the mapping
πα is open.

An equivalence relation α on G is called compact if the sets α (x) are
compact.

Theorem 6. Let (G,+) be a commutative topological group, 0 be a zero
of (G,+), c ∈ G, ϕ and ψ be two automorphisms of the topological group
(G,+) and (G, ·) = g (G, +, ϕ, ψ, 0, c) . If the space G contains a non-empty
compact subset F of countable character, then for every open subset U of
G containing 0 there exists a compact equivalence relation αU on G such
that:

1. αU (0) ⊆ U .
2. αU is a congruence on (G, ·).
3. αU is a congruence on (G,+).
4. The natural projection πU = παU : G → G/αU is an open perfect

mapping.
5. The space G/αU is metrizable.
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Proof. We consider that 0 ∈ F ⊆ U . Fix a sequence {Un : n ∈ N} of open
subsets of G such that for every open set V containing F there exists n ∈ N
such that F ⊆ Un ⊆ V . Suppose that F ⊆ Un and Un+1 ⊆ Un for every
n ∈ N .

Then there exists a sequence {Vn : n ∈ N} of open sets of G such that
for every n ∈ N we have:
• Vn+1 + Vn+1 ⊆ Vn ⊆ Un, clGVn+1 ⊆ Vn and Vn = −Vn,
• ϕ (Vn+1) ∪ ψ(Vn+1) ⊆ Vn.

We put H = ∩{Vn : n ∈ N}. By construction, H is a compact subgroup
and the natural projection π : G → G/H is open and perfect. Let α (x) =
x + H for every x ∈ G. Then α is a congruence on (G,+). Suppose that
xαz and yαv. Then

x · y = ϕ (x) + ψ (y) + c,

z · v = ϕ (z) + ψ (v) + c,

ϕ (x)− ϕ (z) ∈ H, ψ (y)− ψ (v) ∈ H.

Thus
(x · y)− (z·v) =

= (ϕ (x) + ψ (y))− (ϕ (z) + ψ (v)) =
= (ϕ (x)− ϕ (z)) + (ψ (y)− ψ (v)) ∈ H.

Therefore α is a congruence on (G, ·) too.
It is clear that the space G/H is metrizable. The proof is complete.

Corollary 2. A �rst countable topological medial quasigroup is metrizable.

A space X is called a paracompact p-space if there exists a perfect map-
ping g : X → Y onto some metrizable space Y (see [1]).

Corollary 3. If a topological medial quasigroup contains a non-empty com-
pact subset of countable character then it is a paracompact space p-space and
admits an open perfect homomorphism onto a medial metrizable quasigroup.

Corollary 4. A �ech complete topological medial quasigroup is paracom-
pact and admits an open perfect homomorphism onto a complete metrizable
medial quasigroup.

Corollary 5. A locally compact medial quasigroup is paracompact and ad-
mits an open perfect homomorphism onto a metrizable locally compact me-
dial quasigroup.
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6. On Haar measures on medial quasigroups
By B(X) denote the family of all Borel subsets of the space X.

A non-negative real-valued function µ de�ned on the family B(X) of
Borel subsets of a space X is said to be a Radon measure on X if it has the
following properties:
− µ(H) = sup{µ(F ) : F ⊆ H, F is a compact subset of H} for every

H ∈ B(X);

− for every point x ∈ X there exists an open subset Vx containing
x such that µ(Vx) < ∞.

De�nition 5. Let (A, ·) be a topological quasigroup with the divisions
{r, l}. A Radon measure µ on A is called:
− a left invariant Haar measure, if µ (U) > 0 and µ (xH) = µ (H) for

every non-empty open set U ⊆ A, a point x ∈ A and a Borel set
H ∈ B(A);

− a right invariant Haar measure, if µ (U) > 0 and µ (Hx) = µ (H)
for every non-empty open set U ⊆ A, a point x ∈ A and Borel set
H ∈ B(A);

− an invariant Haar measure if µ (U) > 0 and µ (xH) = µ (Hx) =
µ (l (x,H)) = µ (r (H, x)) = µ (H) for every non-empty open set
U ⊆ A, a point x ∈ A and a Borel set H ∈ B(A);

De�nition 6. We say that on a topological quasigroup (A, ·) there exists
a unique left (right) invariant Haar measure, if for every two left (right)
invarinat Haar measures µ1, µ2 on A there exists a constant c > 0 such that
µ2 (H) = c · µ1 (H) for every Borel set H ∈ B(A).

If (G, +) is a locally compact commutative group, then on G there
exists a unique invariant Haar measure µG (see [6]).

Theorem 7. Let (G, ·) be a locally compact medial quasigroup, (G,+)
be a commutative topological group, ϕ, ψ : G → G be automorphisms of
(G,+), b ∈ G and (G, ·) = g (G,+, ϕ, ψ, 0, b) . On the group (G,+) consider
the invariant Haar measure µG. Then :

1. On (G, ·) the right (left) invariant Haar measure is unique.
2. If µ is a left (right) invariant Haar measure on (G, ·) , then µ is a

left (right) invariant Haar measure on (G,+) too.
3. On (G, ·) there exists some right invariant Haar measure if and only
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if µG(ϕ(H)) = µG(H) for every H ∈ B(A).
4. If n < +∞, and on G there exists some (n, +∞)−identity, then on

(G, ·) the measure µG is a unique right invariant Haar measure.
5. If m < +∞, and on G there exists some (+∞,m)−identity, then

on (G, ·) the measure µG is a unique left invariant Haar measure.
6. If n, m < +∞, and on G there exists some (n,m)−identity, then

on (G, ·) the measure µG is a unique invariant Haar measure.

Proof. Let µ be a right invariant Haar measure on (G, ·). Since x · y =
ϕ (x) + ψ (y) +b for all x, y ∈ G, then Hx = ϕ(H) + ψ(H) + b. Thus µ
is an invariant Haar measure on (G,+) and there exists a constant c > 0
such that µ (H) = c · µG (H) . Thus µG is a right invariant Haar measure
on (G, ·). The assertions 1,2 and 3 are proved.

Consider some topological automorphism h of (G,+). Then µh (H) =
µG (h (H)) is an invariant Haar measure on (G,+) . There exists a constant
ch > 0 such that µh (H) = µG (h (H)) = ch · µG (H) for every Borel subset
H ∈ B(G). In particular, µG

(
hk (H)

)
= ck

hµG (H) for every k ∈ N . If
n < +∞ and 0 is an (n, +∞)−identity, then ϕn(x) = x for every x ∈ G
and cn

ϕ = 1. Thus cϕ = 1, µG (H) = µG (h (H)) and µG is a right invariant
Haar measure on (G, ·) . The assertions 4, 5 and 6 are proved. The proof is
complete.

In this way we can prove the following results.

Theorem 8. Let (G,+) be a topological quasigroup and (G, ·) be an (n,m)-
homogeneous isotope of (G,+). Then:

1. On (G,+) there exists a left (right) invariant Haar measure if and
only if on (G, ·) there exists a left (right) invariant Haar measure.

2. If on (G,+) the a left (right) invariant Haar measure is unique, then
on (G, ·) the a left (right) invariant Haar measure is unique too.

Theorem 9. On a compact medial quasigroup G there exists a unique Haar
measure µ for which µ (G) = 1.

Theorem 10. Let (G,+) be a locally compact group, µG be the left in-
variant Haar measure on (G,+) and ϕ,ψ : G → G be the topological
automorphism of (G,+). Fix c ∈ G and consider the binary operation
x · y = ϕ(x) + ψ(y) + c. Then:

1. (G, ·) is a topological quasigroup.
2. If µG (ψ(H)) = µG (H) for every Borel subset H ∈ B(G), then µG
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is a left invariant Haare measure on (G, ·).
3. If m ∈ N and ψm(x) = x for every x ∈ G, then µG is a left invariant

Haar measure on (G, ·).
4. If (G,+) is a compact group, then µG is an invariant Haar measure

on (G, ·).

7. Examples
Example 2. Let (R, +) be a topological commutative group of real num-
bers, a > 0, b > 0 , ϕ(x) = ax, ψ(y) = bx and x · y = ϕ(x) + ψ(y). Then
(R, ·) is a commutative locally compact medial quasigroup. If H = [c, d],
then 0 ·H = [ac, ad] and H · 0 = [bc, bd]. Thus:
− on (G, ·) there exists some right invariant Haar measure if and only

if a = 1;

− on (G, ·) there exists some left invariant Haar measure if and only if
b = 1;

− if a 6= 1 and b 6= 1, then on (G, ·) does not exist any left or right
invariant Haar measure.

Example 3. Denote by Zp = Z/pZ = {0, 1, ..., p − 1} the cyclic Abelian
group of order n. Consider the Abelian group (G, +) = (Z5, +) and ϕ (x) =
2x, ψ (x) = 4x. Then (G, ·) = g (G, +;ϕ,ψ) is a medial quasigroup and
each element from (G, ·) is (2, 4)-identity in G.

Example 4. Consider the Abelian group (G, +) = (Z5,+) and ϕ (x) =
ψ (x) = 3x. Then (G, ·) = g (G,+;ϕ, ψ) is medial quasigroup and all ele-
ments from (G, ·) are the (4, 4)-identities in G.

Example 5. Consider the commutative group (G,+) = (Z5,+) , ϕ(x) =
2x, ψ(x) = 2x + 1 and x · y = 2x + 2y + 1. Then (G, ·) = g (G,+;ϕ,ψ, 0, 1)
is a commutative medial quasigroup and (G, ·) does not contain (n,m)-
identities.

Example 6. Consider the commutative group (G, +) = (Z, +) , ϕ(x) =
x, ψ(x) = x + 1 and x · y = x + y + 1. Then (G, ·) = g (G,+;ϕ,ψ) is a
medial quasigroup and (G, ·) does not contain (n,m)-identities. On (G, ·)
there exists an invariant Haar measure.
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Example 7. Let (G, +) be an Abelian group and x + x 6= 0 for each
x ∈ G. For example (G, +) ∈ {(Zp, +) : p ∈ N, p > 2}. Denote ϕ (x) = x
and ψ (x) = −x for each x ∈ G. Then (G, ·) = g (G,+;ϕ, ψ) is a medial
quasigroup and (G, ·) contains the unique (1, 2)-identity, which coincide
with the zero element in (G,+).

Example 8. Let (G,+) = (Z7, +) , and ϕ (x) = 3x and ψ (x) = 5x. Then
(G, ·) = g (G,+;ϕ,ψ) is a medial quasigroup. In this case 0 and 3 are
(12, 6)-identities.
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