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Rough set theory applied to BCI-algebras

Wiestaw A. Dudek, Young Bae Jun and Hee Sik Kim

Abstract

As a generalization of subalgebras/ideals in BC'I-algebras, the notion of rough sub-

algebras/ideals is introduced, and some of their properties are discussed.

1. Introduction

In 1982, Pawlak introduced the concept of a rough set (see [13]). This
concept is fundamental for the examination of granularity in knowledge. It
is a concept which has many applications in data analysis (see [14]). An
algebraic approach to rough sets has been given by Iwinski [7]. Rough set
theory is applied to semigroups and groups (see [10, 11]). In 1994, Biswas
and Nanda |2] introduced and discussed the concept of rough groups and
rough subgroups. Recently, Jun [8] applied rough set theory to BCK-
algebras. In this paper, we apply the rough set theory to B('I-algebras,
and we introduce the notion of upper/lower rough subalgebras/ideals in
BC-algebras, and discuss some of their properties.

Note that BC'I-algebras are an algebraic characterization of some types
of non-classical logics. Moreover, BCI-algebras are also a generalization
of BC K-algebras. On the other side, BC'I-algebras are a generalization of
T-quasigroups, too. Namely, as it is proved in [3] and [4], a BCI-algebra
is a quasigroup if and only if it is medial. Such BC1I-algebra is uniquely
determined by some abelian group. In fact, such BCI-algebra is isotopic to
this group. The class of associative BC'I-algebras coincides with the class
of Boolean groups.
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2. Preliminaries

Recall that a BCI-algebra is an algebra (G,*,0) of type (2,0) satisfying
the following axioms: for every z,y, 2z € G,

o ((mxy)x(zx2))*(zxy) =0,
o (zx(zxy))xy=0,
o rxx =0,

e rxy=0and yxzx =0 imply x = y.

For any BC'I-algebra GG, the relation < defined by x < y if and only if
x *xy = 0 is a partial order on G. In any BCI-algebra the following two
identities hold:

(P1) zx0=u,
(P2) (zxy)*xz=(x*2)xy.

A non-empty subset S of a BCI-algebra G is said to be a subalgebra of
G if x xy € S whenever x,y € S. A non-empty subset A of a BCI-algebra
G is called an ideal of G, denoted by A C G, if

e e A,
e zxyc A and y€ A imply z € A.

An ideal A of a BCTI-algebra G is said to be closed if 0xx € A for all
x € A. Note that an ideal of a BCI-algebra may not be a subalgebra in
general, but every closed ideal is closed with respect to a BCI-operation,
i.e. it is a subalgebra (cf. [5]).

A non-empty subset A of a B(C'I-algebra G is called a p-ideal of G if it
satisfies the following two conditions

o 0c A,
o (zx2)x(yxz)ce A and y€ A imply z € A.

Note that in BCI-algebras every p-ideal is an ideal, but not converse
(see [15]).

Let p be a congruence relation on G, that is, p is an equivalence relation
on G such that (z,y) € p implies (z * 2,y * z) € p and (z*z,z *y) € p for
all z € G. The set of all equivalence classes of G with respect to p will be
denoted by G/p. On G/p we define an operation  putting [x],*[y], = [x*y],
for all [x],,[y], € G/p. It is clear that such operation is well-defined, but
(G/p,*,[0],) may not be a BCI-algebra, because G/p does not satisfy the
fourth condition of a BC'I-algebra.
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For any non-empty subsets A and B of a BCI-algebra G we define the
complex multiplication putting Ax B ={zxy |z € A, y € B}.

3. Roughness of some ideals

Let V be a set and p an equivalence relation on V and let P(V) denote
the power set of V. For all z € V, let [z], denote the equivalence class of
G with respect to p. Define the functions p_ and p~ from P(V) to P(V)
putting for every S € P(V)

p-(5) ={xeV|[z], C S},
p=(8) ={x eV |[z],NS # 0}

Scv p-(5) €S

p—(S) is called the lower approzimation of S while p~(S) is called the
upper approzimation. The set S is called definable if p_(S) = p~(5) and
rough otherwise. The pair (V, p) is called an approzimation space.

Directly from the definition by simple calculations we can see that the
following proposition holds.

Proposition 1. Let A and B be non-empty subsets of a BCI-algebra G.
If p is a congruence relation on G, then the following hold:

(1) p-(A) CACp (4),

(2) p(AUB)=p(4)Up(B),

(3) p(ANB)=p_(4)Np (B),

(4) AC B implies p_(A) Cp(B) and p~(A) S p~(B),

(5) p-(AUB)2p_(A)U —( )

(6) p(ANB)Cp (A)Np (B),

(7) p(A)xp(B) C p(AxB),

(8) p—(A)*p_(B ) p—(Ax B) whenever p_(A)x*p_(B)#0 and
p—(Ax )
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Proposition 2. If p is a congruence relation on a BCI-algebra G, then
the following are equivalent:

(1) zxyel0], and y=xx € 0], imply (z,y) € p,

(2) p is regular, i.e. [x], * [y], = [0], = [yl, * [x], implies [x], = [y],,
(3) (G/p,*,[0],) is a BCI-algebra.

Proof. (1) = (2) Suppose [z], * [y], = [0], = [y], * [z],- Then [z *y|, =
0], = [y * x],, and so (x *y,0) € p and (y*x,0) € p. It follows from (1)
that (z,y) € p. Hence [z], = [y],.

(2) = (3) Obvious.

(3) = (1) Let z,y € G be such that z*y € [0], and y * = € [0],. Then

[2]p* [ylp = [z *ylp, = [0, = [y * z], = [yl * [2], -

It follows from the fourth condition of the definition of a BC'I-algebra that
[z], = [yl,- Thus (z,y) € p. This completes the proof. O

Theorem 3. If p is a congruence relation on G, then [0], is a closed ideal,
and hence a subalgebra of G.

Proof. Obviously, 0 € [0],. Let z,y € G be such that  xy € [0], and
y € [0],. Then (z *y,0) € p and (y,0) € p. Since p is a congruence
relation on G, it follows from (P;) that (z xy,z) = (z xy,z*0) € p so
that (z,0) € p, that is, x € [0],. If z € [0],, then (2,0) € p and hence
(0%2,0) = (0xx,0%0) € p, that is, 0%z € [0],. Hence [0], is a closed ideal
of G. O]

Definition 4. A non-empty subset S of a BC'I-algebra G is called an upper
(resp. a lower) rough subalgebra (or, (closed) ideal) of G if the upper (resp.
nonempty lower) approximation of S is a subalgebra (or, (closed) ideal) of
G. If S is both an upper and a lower rough subalgebra (or, (closed) ideal)
of G, we say that S is a rough subalgebra (or (closed) ideal) of G.

Theorem 5. Every subalgebra is a rough subalgebra.

Proof. Let S be a subalgebra of a BCI-algebra G. Taking A = B = S in
Proposition 1(8), we have

p—(S) * p—(S) € p-(5*5) C p-(9)

because S is a subalgebra of G. Hence p_(S) is a subalgebra of G, that is, S
is a lower rough subalgebra of G. We now show that p~(5) is a subalgebra
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of G. Let z,y € p~(S). Then [z],NS # 0 and [y],N S # 0. Thus there
exist az, ay € S such that a, € [z], and a, € [y],. It follows that (a,,x) € p
and (ay,y) € p so that (az * ay,x *y) € p, that is, a; * ay € [z * y|,.
On the other hand, since S is a subalgebra of G, we have a, x a, € S.
Hence ag * ay € [z xy], NS, that is, [x *y], NS # 0. This shows that
xxy € p (S). Therefore S is an upper rough subalgebra of G. This
completes the proof. ]

For any subset I of a BC'I-algebra G, define a relation p(I) on G induced
by I in the following way:

(x,y) € p(l) <= xzxy,yxz el

p(I)—(S) is called the lower approzimation of S by I, while p(I)~(95) is
called the upper approximation by I. In the case p(I)_(S) = p(I)~(S) we
say that S is called definable with respect to I. In otherwise S is rough with
respect to I. Obviously p(I)-(G) = G = p(I)~(G) for any I = G. This
means that any BC'I-algebra is definable with respect to any its ideal.

If I is an ideal of G, then p([) is a regular congruence relation on G (see
[9]). Note that in the case of BC'I-quasigroups every subalgebra is an ideal.
The converse is not true (see [4]), but a finite subset of such quasigroup is
an ideal if and only if it is a subalgebra. Thus in BCI-algebras all relations
p(I) induced by a finite set I are regular congruences.

The following example shows that there exists non-empty subset S of G
which is not an ideal, but for which S is an upper rough subalgebra of G.
Hence we know that the notion of an upper rough subalgebra is an extended
notion of a subalgebra.

Example 6. Let G = {0,a,b,c,d} be a BCI-algebra with the following
Cayley table:

QO T OO

QU O O Ol

o OO o oo

S OO OO X
o

QL O T Of*
QO O O

Then I = {O,CL} C G, and thus [O]p(]) = [a]p(]) = I, [b]p(]) = {b},
oy = {c}, and [d] 1) = {d}. Consider a subset S = {a, b} of G which is
not a subalgebra of G. Then p(I)~(S) = {0, a,b} which is a subalgebra.

On the other hand, for M = {0, a,c} which is a subalgebra but not an
ideal, we have p(I)~ (M) = p(I)_(M) = M. Hence M is definable with
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respect to I. It is not to difficult to see that M is not definable with respect
to J ={0,b} C G.

Proposition 7. Every non-empty subset of a BC'I-algebra is definable with
respect to the trivial ideal {0}.

Proof. If a € [z],qoy) then (a,2) € p({0}) and so a*x € {0} and
z+a € {0}. It follows that a = z so that [z],qoy = {z} for all z € G.
Hence

p({0})-(S) ={z € G| [z] oy € S} =S
and

p({0})7(8) = {z € G| [z]poy NS # 0} = S.
This completes the proof. O

Lemma 8. If I and J are ideals of a BCI-algebra G such that I C J,
then p(I) € p(J).

Proof. It (x,y) € p(I), then x xy € I C J and y*xxz € I C J. Hence
(x,y) € p(J), completing the proof. O

Remark 9. Let [ and J be ideals of G such that I # J. Then p(I)_(J) is
not an ideal of G in general. Indeed, it is easy to see that I = {0,a} and
J ={0,b} are ideals of a BCI-algebra G defined in Example 6. But

p(I)-(J) ={z € G| [z]pr) € J} = {b}
is not an ideal of G.

The following example shows that there exists a non-ideal J of G for
which J is an upper rough ideal of G with respect to an ideal of G. Hence
we know that the notion of an upper rough ideal is an extended notion of
an ideal.

Example 10. Consider a BCI-algebra G = {0, a, b, ¢, d} with the following
Cayley table:

Qe—e,

QL O T OO
ST T OO0 O |
QOO0 o0
SO0 o0 |

L O T Q Of*
o o0 oo O
O/

e
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Then for I = {0,a} £ G we have 0],y = [a],) = I, [b],) = {b}, and
el oy = [d]p(ry = {c,d}. Thus for J = {0,b, c}, which is not an ideal of G,

we obtain

p(I)~(J) ={z € G| [z] (N J #0} ={0,a,b,c,d} C G.

Theorem 11. Let I C J be two ideals of a BCI-algebra G. Then

(1) p(I)—(J) (#£ 0) is an ideal of G, that is, J is a lower rough ideal of G
with respect to I.

(2) p(I)~(J) is an ideal of G, that is, J is an upper rough ideal of G with
respect to 1. Moreover if J is closed, then so is p(I)~(J).

Proof. (1) Let z € [0],). Then x = 20 € I C J and so [0],(;y € J. Hence
0€p(I)-(J). Let z,y € G be such that zxy € p(I)_(J) and y € p(I)_(J).
Then [y],) € J and

(] p(1) * (Yl p(r) = [2 % ylpay € .

Let a; € [z],r) and ay € [y],r). Then (az,x) € p(I) and (ay,y) € p(I),
which imply (as * ay,x *y) € p(I). Hence a, * ay € [z *y],) € J. Since
ay € [yl € J, it follows that a, € J. Therefore [x],) C J, or equiva-
lently, 2 € p(I)_(J). This shows that p(I)_(J) is an ideal of G.

(2) Obviously, 0 € p(I)~(J). Let =,y € G be such that y € p(I)~(J)
and zxy € p(I)~(J). Then [y],NJ # 0 and [x*y],)NJ # 0, and so there
exist u,v € J such that u € [y],r) and v € [z * y] ;). Hence (u,y) € p(I)
and (v,z*y) € p(I) which imply y*u eI CJ and (z*xy)*xv el CJ.
Since u,v € J and J is an ideal, it follows that y € J and zxy € J so
that = € J. Note that x € [z],(1), thus z € [2],)NJ, that is, [x],NT # 0.
Therefore = € p(I)~(J), and consequently J is an upper rough ideal of G
with respect to I. Now let 2 € p(I)~(J). Then [z],) NJ # 0, and so
there exists a, € J such that a; € [z],p). Since J is closed, it follows that
0 * a; € J and hence

Oxay € ([O]p(l) * [x]p(l)) nJ = [O*x]p([) nJ,

that is, [0* 2],y NJ # 0. Hence 0z € p(I)~(J). This completes the
proof. O
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Lemma 12. ([15, Theorem 4.1]) An ideal I of a BCI-algebra G is a p-ideal
if and only if for each x,y,z € G,

(x*x2z)*(y*xz) €l implies xxy € I.

It is not difficult to see that in the case of BC'I-quasigroups every ideal
is a p-ideal and conversely.

Theorem 13. Let I © G and let J be a p-ideal of a BCI-algebra G
containing I. Then p(I)_(J) (#0) and p(I)~(J) are p-ideals of G.

Proof. Let x,y,z € G be such that (x x z)* (y*2) € p(I)_(J). Then

(I]p(ry * (o)) * (Wlpn) * [Zlp(r)) = [(2 % 2) % (y % 2)] oy C .

Let w € [z *ylyr) = [Tl * Wlp)- Then w = a, * ay for some
az €[],y and ay € [y, From a, € [x],) and ay € [y, we have
(az,7) € p(I) and (ay,y) € p(I). Taking a, € [2],p), then (a,z) € p(I).
Since p(I) is a congruence relation, we get (ay * az,z * z) € p(I) and
(ay * ay,y*z) € p(I), and thus

((az * az) * (ay * az), (xx2) * (y * 2)) € p(I).

This means that

(az * az) * (ay x a;) € [(z+2) * (y* 2)] 1) € J.

Since J is a p-ideal, it follows from Lemma 12 that w = a; * a, € J so that
[z %y, € J, or equivalently, z*y € p(I)_(J). Combining Theorem 11(1)
and Lemma 12, p(I)_(J) is a p-ideal of G.

Now let z,y,z2 € G be such that (x *z)* (y *2) € p(I)~(J) and
y € p(I)=(J). Then [yl NJ #0 and [(z * 2) * (y * 2)],) N J # 0, and
thus there are a,b € J such that a € [y] ;) and b € [(z * 2) * (y * 2)]5(1)-
Hence (a,y) € p(I) and (b, (z * z) * (y * 2)) € p(I), which imply that
yxa €l CJ and ((z*2)x(y*z))*belC J.Since J is an ideal and
since a,b € J, we have y € J and (z*z)* (y*z) € J. Since J is a p-ideal,
it follows that = € J. Note that x € [z],), and thus = € [z],) N J, that
is, [x],) N J # 0. Therefore x € p(I)~(J). This completes the proof. [
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