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A note on the Akivis algebra
of a smooth hyporeductive loop

A. Nourou Issa

Abstract

Using the fundamental tensors of a smooth loop and the di�erential geometric character-
ization of smooth hyporeductive loops, the Akivis operations of a local smooth hypore-
ductive loop are expressed through the two binary and the one ternary operations of the
hyporeductive triple algebra (h.t.a.) associated with the given hyporeductive loop. Those
Akivis operations are also given in terms of Lie brackets of a Lie algebra of vector �elds
with the hyporeductive decomposition which generalizes the reductive decomposition of
Lie algebras. A nontrivial real two-dimensional h.t.a. is presented.

1. Introduction
A quasigroup is a set Q with a binary operation of multiplication denoted
by ◦ or juxtaposition such that the knowledge of any two of x, y, z in the
equation x ◦ y = z uniquely speci�es the third. A loop is a quasigroup
(Q, ◦) with a two-sided identity e. In the case when Q is a neighborhood
of the �xed point e in a smooth (real �nite-dimensional) manifold and the
operation ◦ is a smooth function Q × Q → Q, then (Q, ◦) is called a local
smooth loop.

As for Lie groups, an in�nitesimal theory for smooth quasigroups is
considered by M. A. Akivis (see [1], [2], [3]). If (Q, ◦) is a smooth loop then
in a su�ciently small neighborhood of e, the binary operation ◦ has the
following Taylor expansion [1]:

(x ◦ y)i = xi + yi + τ i
jkx

jyk + µi
jklx

jxkyl + νi
jklx

jykyl + ...
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where the quantities µi
jkl and νi

jkl have the properties µi
jkl = µi

kjl and
νi

jkl = νi
jlk. The so-called fundamental tensors αi

jk, βi
ljk of the given smooth

loop (Q, ◦, e) are de�ned as follows:

αi
jk =

1
2

(
τ i
jk − τ i

kj

)
, βi

ljk = 2µi
jkl − 2νi

jkl + αs
jkα

i
sl − αi

jsα
s
kl .

The commutator and the associator at the identity e of (Q, ◦, e) are
expressed in terms of the fundamental tensors αi

jk and βi
ljk as follows:

(x ◦ y)i − (y ◦ x)i = 2αi
jkx

iyk + o(ρ2),

[(x ◦ y) ◦ z]i − [x ◦ (y ◦ z)]i = βi
ljkx

lyjzk + o(ρ3),

where ρ = max(|xi|, |yi|).
Therefore the tensor αi

jk (respectively βi
ljk) characterizes the principal

part of the deviation degree from commutativity (respectively associativ-
ity) of the loop (Q, ◦, e). It should be noted that these expressions of the
commutator and the associator hold in any smooth loop (more precisely,
in a su�ciently small neighborhood of any element of that loop) and the
tensors αi

jk and βi
ljk are de�ned at any point of the manifold Q (cf. [1]).

For αi
jk = 0 and βi

ljk = 0, the loop (Q, ◦, e) becomes locally an abelian
group and for βi

ljk = 0 it is a local Lie group.
Using the fundamental tensors, the tangent space TeQ may be provided

with a structure of a binary-ternary algebra (the tangent algebra of the
smooth loop ) if de�ne

(X ¦ Y )i = 2αi
jkX

jY k , [X, Y, Z]i = βi
ljkX

lY jZk , (1)

for all X,Y, Z ∈ TeQ. It is shown [2] that ¦ and [−,−,−] satisfy the
following identities

X ¦X = 0, (2)

[X,X, X] = 0, (3)

σ{XY ¦ Z} = σ{[X, Y, Z]} − σ{[Y, X, Z]}, (4)

where σ denotes the cyclic sum with respect to X,Y, Z and juxtaposition is
used to reduce the number of brackets, that is XY ¦ Z means (X ¦ Y ) ¦ Z.
Following [4], a (real �nite-dimensional) vector space is called an Akivis
algebra if it carries a bilinear operation ¦ and a trilinear operation [−,−,−]
satisfying the identities (2) − (4). The identity (4) is known as the Akivis
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identity. Hereafter we shall refer to the operations ¦ and [−,−,−] as de�ned
in (1) as to the Akivis operations.

We will be interested in the situation when a smooth loop (Q, ◦, e) is
related to an a�ne connection space (Q,∇). In [8], [11] a construction of
a loop centered at a �xed point e of (Q,∇) is given. Such a loop is called
the geodesic loop of (Q,∇) at the point e (it turns out that e is the two-
sided identity element of that loop). Moreover the geodesic loop operation
◦ is supplemented by an unary multiplication (t, x) 7→ tx of any element x
∈ (Q, ◦, e) by a real scalar t, giving rise to the concept of a geodesic odule
(see [11]). The identity

((t + u)x) ◦ y = tx ◦ (ux ◦ y) (5)

is called the left monoalternative property, where t and u are real numbers;
likewise is de�ned the right monoalternative property. The right monoal-
ternative property plays a key role in the di�erential geometric theory of
some classes of loops. It turns out that (see [3]) for a geodesic loop (Q, ◦, e)
of an a�ne connection space (Q,∇), its fundamental tensors are expressed
in terms of the torsion and curvature of the space (Q,∇) as follows:

αi
jk = − 1

2
T i

jk(e), βi
ljk =

1
2

(
Ri

l,jk −∇kT
i
lj

)
(e) . (6)

Accordingly the Akivis operations of (Q, ◦, e) are also expressed in terms of
the torsion and curvature of (Q,∇).

For the general theory of speci�c classes of smooth loops it is sometimes
convenient to give the explicit form of their Akivis operations. This is easy,
according to (6), whenever a suitable di�erential geometric theory is built
for a given class of smooth loops. The tangent algebra to a smooth Bol
loop is called a Bol algebra (see [10], [15]) while the tangent algebra to a
smooth homogeneous loop is called a Lie triple algebra (see [9], [12]). One
observes that a Bol algebra (resp. a Lie triple algebra) is an Akivis algebra
of a smooth Bol loop (resp. a smooth homogeneous loop) with additional
conditions.

In [5] the Lie triple algebra of a smooth homogeneous loop was related
to its Akivis algebra. It is our purpose in this note to do the same for
hyporeductive loops since they are a generalization both of Bol loops and
homogeneous loops ([13], [14]). Here the approach is geometric in the sense
of (6) (see Section 2) and algebraic meaning that the Akivis operations of
a smooth hyporeductive loop are expressed in terms of the Lie brackets
of a Lie algebra satisfying some speci�c conditions (see Section 3). We
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wonder whether the method of the algebraic calculus of formal power series,
developed in [5] for the case of smooth homogeneous loops, could be applied
to smooth hyporeductive loops.

2. Tangent algebras to smooth hyporeductive loops:
hyporeductive triple algebras (h.t.a.)

A loop (Q, ◦, e) is said left hypospecial if there exists b(x, y) ∈ Q with x, y ∈
Q such that b(x, e) = e = b(e, x) and the mapping φ(x, y) = Lb(x,y)lx,y has
the property

φLzφ
−1 = L(φz)/b(x,y)

where Luv = u ◦ v, lu,v = L−1
u◦vLuLv and / denotes the right division in

(Q, ◦, e). A left hyporeductive loop is a left hypospecial loop with the left
monoalternative property (5). Similarly is de�ned a right hyporeductive
loop. An in�nitesimal theory for smooth hyporeductive loops is initiated
by L.V. Sabinin in [13], [14], where he constructed a tangent algebra for such
loops that is called a hyporeductive algebra. It should be noted that there is
a one-to-one correspondance between hyporeductive algebras and smooth
hyporeductive loops. In [6] (see also [7]) a di�erential geometric study for
smooth hyporeductive loops is suggested. In particular it is shown that a
smooth hyporeductive loop (Q, ◦, e) can locally be seen as an a�ne con-
nection space (Q,∇) with zero curvature satisfying the following structure
equations

dωi =
1
2

T i
jk ωj ∧ ωk, (7)

dT i
jk =

(
T i

ls(T
s
jk + as

jk)− ri
l,jk

)
ωl, (8)

where as
jk and ri

l,jk are constants and ai
jk = −ai

kj , ri
l,jk = −ri

l,kj . More-
over, the geodesic loop at a �xed point of an a�ne connection space with
structure equations (7), (8) is a (right) hyporeductive loop. Using the known
di�erential geometric techniques we obtained [6] that the integrability cri-
teria of (7), (8) constitute the determining identities of a hyporeductive
algebra if we set

(X.Y )i = ai
jkX

jY k , (X ∗ Y )i = (−T i
jk(e)− ai

jk)X
jY k ,

< Z; X, Y >i = −ri
l,jkX

jY kZk , (9)

for X,Y, Z ∈ TeQ. The operations ∗ , . and < −;−,− > are linked by a
certain set of identities ([6], [7], [14]). They are as follows:
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σ { ξ . (η . ζ)− < ξ; η, ζ > } = 0 ,

σ { ζ ∗ (ξ . η) } = 0 ,

σ {< θ; ζ, ξ . η > } = 0 ,

κ. < ζ; ξ, η > −ζ. < κ; ξ, η > + < ζ.κ; ξ, η >=
=< ξ∗η; ζ, κ > − < ζ∗κ; ξ, η > +ζ∗ < κ; ξ, η > −κ∗ < ζ; ξ, η > +
+(ξ ∗ η) ∗ (ζ ∗ κ) + (ξ ∗ η).(ζ ∗ κ) ,

χ.(κ. < ζ; ξ, η > −ζ. < κ; ξ, η > + < ζ.κ; ξ, η >) +
+ << χ; ξ, η >; ζ, κ > − << χ; ζ, κ >; ξ, η > +
+ < χ; ζ,< κ; ξ, η >> − < χ; κ,< ζ; ξ, η >>= 0 ,

χ ∗ (κ . < ζ; ξ, η > −ζ . < κ; ξ, η > + < ζ . κ; ξ, η >) = 0 ,

< θ; χ, κ . < ζ; ξ, η > −ζ . < κ; ξ, η > + < ζ . κ; ξ, η >> = 0 ,

κ . < ζ; ξ, η > −ζ . < κ; ξ, η > + < ζ . κ; ξ, η > +
+ η . < ξ; ζ, κ > −ξ . < η; ζ, κ > + < ξ . η; ζ, κ >= 0 ,

ζ∗ < κ; ξ, η > −κ∗ < ζ; ξ, η > +ξ∗ < η; ζ, κ > +η∗ < ξ; ζ, κ >= 0 ,

Σ{< (< ξ . η; ζ, κ > +η . < ξ; ζ, κ > −ξ . < η; ζ, κ >);λ, µ > +
+ < λ.µ; < η; ζ, κ >, ξ > +µ . < λ;< η; ζ, κ >, ξ > −
−λ . < µ; < η; ζ, κ >, ξ > −(< λ.µ;< ξ; ζ, κ >, η > +
+µ . < λ; < ξ; ζ, κ >, η > −λ < µ; < ξ; ζ, κ >, η >) } = 0 ,

Σ{ (< µ; < η; ζ, κ >, ξ > − < µ;< ξ; ζ, κ >, η >) ∗ λ+
+(< λ; < ξ; ζ, κ >, η > − < λ; < η; ζ, κ >, ξ >) ∗ µ} = 0 ,

Σ{< θ; (< µ; < η; ζ, κ >, ξ > − < µ; < ξ; ζ, κ >, η >), λ > +
+ < θ; (< λ; < ξ; ζ, κ >, η > − < λ; < η; ζ, κ >, ξ >), µ > } = 0 ,

where σ denotes the cyclic sum with respect to ξ, η, ζ and Σ the one with
respect to pairs (ξ, η), (ζ, κ), (λ, µ). Any (real �nite-dimensional) vector
space with two anticommutative bilinear operations and one trilinear, skew-
symmetric with respect to the two last variables, operation satisfying those
identities is called an abstract hyporeductive triple algebra (h.t.a. for short).
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It is worthy of note that such identities are obtained [14] if work out
the Jacobi identities of the Lie algebra of vector �elds enveloping the given
hyporeductive algebra and satisfying some speci�c conditions.

We give an example of a nontrivial real 2-dimensional h.t.a.

Example. Let m be a 2-dimensional algebra over the �eld of real numbers
with basis {u, v}. De�ne on m the following operations:

u ∗ v = u, u.v = v, < u; u, v >= v, < v; u, v >= 0

with the symmetries u ∗ u = 0 = u.u, < t;u, u >= 0, where t = u or
v. Then it could be checked that m is a nontrivial h.t.a. that is not a Bol
algebra nor a Lie triple algebra.

We have the following theorem whose proof is somewhat elementary in
view of structure equations (7), (8) above.

Theorem 1. Let (Q, ◦, e) be a given smooth local hyporeductive loop and
(TeQ, ., ∗, < −;−,− >) be the corresponding (up to an isomorphism) h.t.a.
Then the Akivis operations ¦ and [−,−,−] of (Q, ◦, e) are linked with ., ∗,
< −;−,− > as follows:

(i) X ¦ Y = X.Y + X ∗ Y ,
(ii) [X, Y, Z] = − 1

2
(

< Z; X, Y > +Z ¦ (X ∗ Y )
)

for all X, Y, Z ∈ TeQ.

Proof. Let (X ∗ Y )i = bi
jkX

jY k, that is bi
jk = −T i

jk(e) − ai
jk. Then from

(1), (6) and (9) we get (i).
Next, from (8) we know that −ri

l,jk = (∇lT
i
jk + T i

lsb
s
jk)(e). Therefore,

since < Z;X,Y >i= −ri
l,jkX

jY kZ l = ((∇lT
i
jk + T i

lsb
s
jk)(e))X

jY kZ l, from
(1), (6) we get (ii) (recall that Ri

l,jk = 0).

Remark 1. (a) Using (i) the Akivis operation [X,Y, Z] in (ii) can also be
expressed by ¦ and . as follows:

(iii) [X, Y, Z] = − 1
2
(

< Z; X, Y > +Z ¦ (X ¦ Y )− Z ¦ (X.Y )) .
(b) From (i) and (ii) we see that if X.Y = 0 for all X, Y ∈ TeQ, then
X ¦ Y = X ∗ Y and [X,Y, Z] = (−1/2)(< Z; X, Y > +Z ¦ (X ¦ Y )) and we
are in the situation of Bol algebras (see [10], [15]). Likewise for X∗Y = 0 for
all X, Y ∈ TeQ we get X ¦ Y = X.Y and [X, Y, Z] = (−1/2) < Z; X, Y >
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and we have the case of Lie triple algebras [5].

With the remarks above one could think of the operation . (resp. ∗)
as of a deviation degree of a h.t.a. from a Bol algebra (resp. a Lie triple
algebra). Although the transformations are somewhat tedious and lengthy,
one could write down the determining identities of a h.t.a. in terms of the
Akivis operations ¦, [−,−,−] and the operation . (or ∗).

3. An alternative approach
Let m be a (real �nite-dimensional) vector space of covariantly constant
vector �elds of an a�ne connection space with zero curvature (Q,∇) and
e ∈ Q a �xed point. Let g be the Lie algebra of vector �elds generated
by m and such that g = m + [m,m] (here [m,m] denotes the subset of g
generated by all [X,Y ] with X,Y ∈ m) and let h be the subalgebra of g
de�ned by h = {X ∈ g : X(e) = o}. Then

g = m +̇ h (10)

(direct sum of vector spaces; see [16]). Additionally let assume that there
exists in g a subspace n such that

g = m +̇ n (direct sum of subspaces), (11)

[n,m] ⊂ m. (12)
A pair (g, h) with the decomposition (10) such that (11), (12) hold is said
hyporeductive ([13], [14]).

Proposition 2. The hyporeductive pair (g, h) with conditions (10) − (12)
induces on m a structure of a h.t.a.

Proof. If X, Y ∈ m then [X, Y ] ∈ g and the decomposition (11) induces a
binary operation, say ., on m

Xi.Xj = [Xi, Xj ]nm (13)

(here and in the sequel [X, Y ]wv denotes the projection on v parallely w),
where Xs (s = 1, ..., l, l = dim m) constitute a basis of m. We denote by
D(Xi, Xj) = [Xi, Xj ] − Xi.Xj (i 6= j) the basis elements of n. Further,
using (10) and (12), we de�ne on m a binary operation

Xi ∗Xj = [Xi, Xj ]hm −Xi.Xj (14)
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and a ternary operation

< Xk;Xi, Xj >= −[Xk, D(Xi, Xj)]. (15)

Now using the procedure described in [13], [14] one could write down the
Jacobi identities in g with respect to the set {Xα, D(Xβ, Xγ)} of basis
elements. This in turn leads to the set of determining identities of a h.t.a.
so that (m, ., ∗, < −;−,− >) becomes a h.t.a. of vector �elds.

Above we considered m as the linear space of covariantly constant vec-
tor �elds on an a�ne connection manifold (Q,∇) with zero curvature; this
is intended for a relation with local smooth loops with the right monoal-
ternative property and, further, with local smooth hyporeductive loops.
Speci�cally we mean the following. If e is a �xed point on (Q,∇), then
m may be identi�ed with the tangent space TeQ and therefore, in the case
when m is a h.t.a., TeQ is a h.t.a. Moreover, since (Q,∇) has zero curva-
ture, the geodesic loop (Q, ., e) of (Q,∇) centered at the point e has the
right monoalternative property [15] and, if TeQ is a h.t.a., (Q, ., e) has the
(right) hypospecial property ([6], [7]). Thus we get a (right) hyporeduc-
tive geodesic loop (Q, ., e) with TeQ as its tangent algebra. But then from
(6), (8), (9), (13), (14) and (15) we see that its Akivis operations have the
following expressions through the Lie brackets of g:

X ¦ Y = [X, Y ]hm , (16)

[X, Y, Z] =
1
2
(
[Z, [X, Y ]mn ]− [Z, [X, Y ]hm ]hm + [Z, [X,Y ]nm ]hm

)
. (17)

Thus we have the following

Theorem 3. Let g be a real �nite-dimensional Lie algebra generated by
a subspace of vector �elds and let (g, h) be the hyporeductive pair with the
hyporeductive decomposition (10)− (12). Then the Akivis operations of the
local smooth hyporeductive loop corresponding (up to an isomorphism) to
the h.t.a. in g are expressed as in (16), (17).

One observes that we have worked with an h.t.a. of covariantly constant
vector �elds in a smooth a�ne connection space with zero curvature. But
one can also start from a structure of abstract h.t.a. given on the tangent
space W to a �xed point e of that connection space and then extend this
structure to the one of a h.t.a. of covariantly constant vector �elds V
through the identi�cation of W with V = {Xξ : Xξ(e) = ξ ∈ W}.
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We conclude with the following remarks in full analogy with the ones
we done in Section 2.

Remark 2. (a) We get the Bol theory ([10], [15]) if n = [m,m], i.e.
[X,Y ]nm = 0 in which case we have g = m +̇ h, and [[m,m],m] ⊂ m so that
(17) reads

[X, Y, Z] = 1
2
(
[Z, [X, Y ]]− [Z, [X, Y ]hm ]hm

)

((16) remains the same).
(b) The hyporeductive pair (g, h) (see (10)− (12)) becomes reductive when
n coincides with h, i.e. g = m +̇ h and [h,m] ⊂ m. Therefore the Akivis
operation (17) reduces to the following

[X,Y, Z] = 1
2 [Z, [X, Y ]mh ]

(again (16) remains the same) and one observes that we get precisely the
Akivis operations of the local smooth loop associated with the correspond-
ing reductive decomposition ([5]).

Acknowledgment. The present work was carried out at the Abdus Salam
International Centre for Theoretical Physics within the Associate Scheme
framework. The author wishes to thank this Centre for hospitality and
stimulating research environment. The �nancial support of the Sweedish
Agency for Research and Cooperation is gratefully appreciated.

References
[1] M. A. Akivis: Local di�erentiable quasigroups and 3-webs of multidi-

mensional surfaces, (Russian), In: Studies in the theory of quasigroups
and loops, �tiinµa, Kishinev 1973, 3− 12.

[2] M. A. Akivis: Local algebras of a multidimensional 3-web, Siberian
Math. J. 17 (1976), 3− 8.

[3] M. A. Akivis: Geodesic loops and local triple systems in a space with
a�ne connection, Siberian Math. J. 19 (1978), 171− 178.

[4] K. H. Hofmann and K. Strambach: Lie's fundamental theorems
for local analytic loops, Paci�c J. Math. 123 (1986), 301− 327.

[5] K. H. Hofmann and K. Strambach: The Akivis algebra of a ho-
mogeneous loop, Mathematika 33 (1986), 87− 95.



64 A. N. Issa

[6] A. N. Issa: Geometry of smooth hyporeductive loops, (Russian), Ph.D.
Thesis, Friendship Univ., Moscow 1992.

[7] A. N. Issa: Notes on the geometry of smooth hyporeductive loops,
Algebras Groups Geom. 12 (1995), 223− 246.

[8] M. Kikkawa: On local loops in a�ne manifolds, J. Sci. Hiroshima
Univ. ser. A-1 28 (1964), 199− 207.

[9] M. Kikkawa: Geometry of homogeneous Lie loops, Hiroshima Math.
J. 5 (1975), 141− 179.

[10] P. O. Miheev: Geometry of smooth Bol loops, (Russian), Ph.D. The-
sis, Friendship Univ., Moscow 1986.

[11] L. V. Sabinin: Odules as a new approach to a geometry with connec-
tion, Soviet Math. Dokl. 18 (1977), 515− 518.

[12] L. V. Sabinin: Methods of nonassociative algebras in di�erential ge-
ometry, (Russian), Suppl. to the russian transl. of: S. Kobayashi and
K. Nomizu: Foundations of di�erential geometry vol. 1, Interscience,
New York 1963

[13] L. V. Sabinin: On smooth hyporeductive loops, Soviet Math. Dokl.
42 (1991), 524− 526.

[14] L. V. Sabinin: The theory of smooth hyporeductive and pseudoreduc-
tive loops, Algebras Groups Geom. 13 (1996), 1− 24.

[15] L. V. Sabinin and P. O. Miheev: On the geometry of smooth
Bol loops, (Russian), in: Webs and quasigroups, Kalinin. Gos. Univ.,
Kalinin 1984, 144− 154.

[16] L. V. Sabinin and P. O. Mikheev: On the in�nitesimal theory of
local analytic loops, Soviet Math. Dokl. 36 (1988), 545− 548.

Département de Mathématiques, FAST Received May 31, 2002
Université d'Abomey-Calavi
01 BP 4521, Cotonou 01
Bénin

and

The Abdus Salam International Centre for Theoretical Physics
Strada Costiera 11, 34014 Trieste, Italy


