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Check character systems over quasigroups
and loops

Galina B. Belyavskaya, Vladimir I. Izbash, Victor A. Shcherbacov

Abstract

In this paper we survey the known results concerning check character (or digit) systems
with one check character based on quasigroups (loops, groups). These are codes with
one control symbol detecting errors of speci�c types.

This survey includes the following sections: 1. Introduction. 2. Check character
systems over groups. 3. Check character systems over quasigroups. 4. Check character
systems over T-quasigroups. 5. Detection sets and detection rate. 6. Equivalence of
check character systems. 7. Check character systems as n-ary operations.

1. Introduction
The aim of the present article is to survey the known results concerning
check character (or digit) systems with one check character based on quasi-
groups (loops, groups).

A check digit system with one check character is an error detecting code
C over an alphabet A which arises by appending a check digit (symbol) an

to every word a1a2 . . . an−1 ∈ An−1 :

C :
{

An−1 −→ An

a1a2 . . . an−1 7−→ a1a2 . . . an−1an.
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The purpose of using such a system is to detect transmission errors
(which can arise once in a code word), in particular, made by human oper-
ators during typing of data.

The examples of check character systems used in practice are the fol-
lowing:

- the European Article Number (EAN) Code,
- the Universal Product Code (UPC),
- the International Standard Book Number (ISNB) Code,
- the system of the serial numbers of German banknotes,
- di�erent bar-codes used in the service of transportation, automation

of various processes and so on.
The control digit of a system based on a quasigroup (system over a

quasigroup) is calculated by distinct check formulas (check equations) using
quasigroup operations.

D. F. Beckley [1] and J. Verhoe� [27] investigated statistically errors
made by human operators. They classi�ed them as single errors (that is er-
rors in only one component of a code word), (adjacent or neighbour) trans-
positions, i.e. errors of the form . . . ab . . . −→ . . . ba . . . , jump transpositions
(. . . abc · · · → . . . cba . . . ), twin errors (. . . aa · · · → . . . bb . . . ), jump twin er-
rors (. . . aca · · · → . . . bcb . . . ) and phonetic errors (. . . a0 · · · → . . . 1a . . . ,
a > 2). Single errors and transpositions are the most prevalent ones.

Table 1: Error types and their frequencies ([23]).

Error type
Relative frequency %

Verhoe� Beckley

single error . . . a · · · → . . . b . . .
79.0

86
(60-95)

adjacent transposition . . . ab · · · → . . . ba . . . 10.2 8
jump transposition . . . abc · · · → . . . cba . . . 0.8

twin error . . . aa · · · → . . . bb . . . 0.6
phonetic error (a > 2) . . . a0 · · · → . . . 1a . . . 0.5 6

jump twin error . . . aca · · · → . . . bcb . . . 0.3
other error 8.6

Phonetic errors depend on the language and we shall not consider them
here.
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The work [27] of J. Verhoe� is the �rst signi�cant publication that sys-
tematically studies systems for detection of errors made by human oper-
ators. It contains a survey of the decimal codes known in the begin of
1970-th.

A. Ecker and G. Poch in [12] have given a survey of elementary methods
for the construction of check character systems (that is of the methods that
do not use any mathematics other than simple arithmetical computations)
and their analysis from mathematical point of view. In particular, the
group-theoretical background of the known methods was explained and new
codes were presented that stem from the theory of quasigroups. All methods
using the modulo 10 sum can be described in the following way.

Let a1a2 . . . an−1 (n > 3) be a word over the alphabet A = {0, 1, . . . , 9}.
The decimal code with one check digit an ∈ A is de�ned by permutations
δ1, δ2, . . . , δn on A together with the check equation

n∑

i=1

δiai ≡ c (mod 10), c ∈ A

(usually c = 0), that is

an = δ−1
n (c−

n−1∑

i=1

δiai) (mod 10).

Note that everywhere we do not use brackets for an application of a map-
ping. For example, we write αb instead of α (b).

So, the IBM code de�ned by the permutation

δ =
(

0 1 2 3 4 5 6 7 8 9
0 2 4 6 8 1 3 5 7 9

)

and the check equation

an + δan−1 + an−2 + δan−3 + · · · ≡ c (mod10), c ∈ A,

detects all single errors. Transposition errors will not be detected com-
pletely as the transposition 0 and 9 goes undetected. None of the jump
transpositions or jump twin errors are detected. The generalized IBM code
with the check equation

n∑

i=1

δi−1an+1−i ≡ c (mod10), c ∈ A,
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detects jump transpositions and jump twin errors with the de�ned accuracy.
In the paper [12] many other known elementary check systems modulo

10, 11 and k > 11 are presented with a short discussion concerning each
system. More general group theoretical investigations are also considered
which include all systems modulo di�erent numbers. For that it is su�cient
to take an arbitrary abelian (or non-abelian) group G = G(+) and the
following check equation

n∑

i=1

δiai = c ∈ G, (1)

where δ1, δ2, . . . , δn are �xed permutations of G.
So, the Universal Product Code (UPC) is a code with G = Z10(+),

n = 13, δ2i−1 = ε = δ13 and δ2ia = 3a for i = 1, . . . , 6, c = 0, where ε
denotes the identity permutation. The check equations of the European
Article Number (EAN) Code and the International Standard Book Number
(ISNB) Code see in the end of the present article.

In Section 5 of [12] the possibility of constructing of check character
systems based on Latin squares (or on quasigroups) is also investigated.
The error detecting capability of such code may be better than of a modulo
m check system.

A Latin square of order n is a square matrix with entries of n distinct
elements each occurring exactly once in each row and column ([10]).

A quasigroup Q(·) is a binary operation (·) de�ned on the set Q such
that for any two elements a, b ∈ Q each of the equations a · x = b, y · a = b
has exactly one solution [10].

A loop is a quasigroup with the identity element e (x · e = e · x = x for
all x ∈ Q).

For example, the operation

a · b = (ha + kb + l) (modn)

where h, k, l are �xed integers from Zn = {0, 1, . . . , n − 1} with h and k
relative prime to n de�nes a quasigroup on the set Zn.

It is easy to verify that the multiplication table of a �nite quasigroup
is a Latin square. Conversely, a Latin square may be interpreted as a
quasigroup.

H. P. Gumm [15] considers a check character system as an n-ary opera-
tion with the properties permitting to detect all single errors and all transpo-
sition errors. Later M. Damm in [8] and G. L. Mullen with V. Shcherbacov
in [18] continued this approach and studied the considered systems related
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to n-ary operations (quasigroups). The work [8] of M. Damm contents as
well a good survey of check character systems over groups and groups which
are able to detect all transpositions (and all single errors).

Choosing Q(·) as a �nite set endowed with an binary algebraic struc-
ture (a groupoid) one can take the following general check formulas for
calculation of the control symbol an:

an = (. . . ((δ1a1 · δ2a2) · δ3a3) . . . ) · δn−1an−1 (2)

or

(. . . ((δ1a1 · δ2a2) · δ3a3) . . . ) · δnan = c (3)

for �xed permutations δi of Q, i = 1, 2, . . . , n and a �xed element c of Q.
It is easy to see that a (�nite) check character system with check for-

mula (2) or (3) detects all single errors if and only if Q(·) is a quasigroup.
The other errors will be detected if and only if this quasigroup has speci�c
properties.

Often a permutation δi in (2), (3) is chosen such that δi = δi−1,
i = 1, . . . , n, for a �xed permutation δ of Q. In this case we obtain the
following check formulas respectively:

an = (. . . ((a1 · δa2) · δ2a3) . . . ) · δn−2an−1 (4)

and

(. . . ((a1 · δa2) · δ2a3) . . . ) · δn−1an = c. (5)

In the following sections we shall survey the check character systems
over groups, quasigroups, loops, T-quasigroups, the check character systems
considered as n-ary quasigroups, equivalences of check character systems.

The main attention will be focussed on check character systems over
quasigroups and loops.

2. Check character systems over groups
Let G(= G(·) be a group with the identity e. Then the most general check
equation is the equation (1) (usually c = e) and the formula (5) has the
form

a1 · δa2 · δ2a3 · · · · δn−1an = e. (6)
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In [27] and [12] the conditions on a permutation δi (or δ) are given that
make it possible to detect errors of di�erent types. The error detection
conditions for abelian groups (see Table 2) can be expressed by certain
concepts that are recalled below. These conditions get more complicated
when G is assumed to be non-abelian (see Table 3).

Before recall required concepts.
De�nition 2.1 [10]. A complete mapping of a quasigroup (a group) is a
bijective mapping x → θx of Q onto Q such that the mapping x → ηx
de�ned by ηx = x · θx is again a bijective mapping of Q onto Q.
De�nition 2.2 [11]. A permutation α of a group G(+) is called an ortho-
morphism if x − αx = βx where β is a permutation of G and −x is the
opposite element for x in the group.
De�nition 2.3 [23]. A permutation δ of G(·) is called anti-symmetric in a
group (in a quasigroup) G if it ful�lls the condition x · δy 6= y · δx for all
x, y ∈ G, x 6= y.

In this paper are always composed from the right to the left.

Table 2: Conditions for error detection by (1) (by (6)), n > 4
with a finite abelian group

Error type Conditions for all i

single error δi (δ) permutation
adjacent transposition δi+1δ

−1
i (δ) orthomorphism

jump transposition δi+2δ
−1
i (δ2) orthomorphism

twin error δi+1δ
−1
i (δ) complete mapping

jump twin error δi+2δ
−1
i (δ2) complete mapping

Table 3: Conditions for error detection by (1), n > 4
with a finite non-abelian group

Error type Conditions for all i, x, y, z

single error δi permutation
adjacent transposition δi+1δ

−1
i anti-symmetric permutation

jump transposition x · y · δi+2δ
−1
i z 6= z · y · δi+2δ

−1
i x, x 6= z

twin error δi+1δ
−1
i complete mapping

jump twin error x · y · δi+2δ
−1
i x 6= z · y · δi+2δ

−1
i z, x 6= z
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As it was pointed the transpositions are the most prevalent errors and
their detection is connected with anti-symmetric mappings (see Table 3),
so in the works [8], [9] of M. Damm and in the articles [13], [16], [17], [21],
[22], [23], [24], [25] and [26] much attention is given to research of groups
with anti-symmetric mappings. A survey of anti-symmetric mappings in
di�erent groups can be found in the article [23] of R. H. Schulz.

For the completeness we shall give the main results on the groups hav-
ing anti-symmetric mappings in the order of their publication. Note that
the results for abelian groups often follow as corollaries of known results
concerning complete mappings.

- Abelian groups of order m = 2n with n odd do not admit anti-
symmetric mappings [23].

- The cyclic group G admits an anti-symmetric mapping if and only if
|G| is odd [23].

- All groups of odd order admit an anti-symmetric mappings [13].
- For m > 2 the symmetric group Sm and the alternating group Am

have anti-symmetric mappings [13].
- Every �nite simple group except Z2 has an anti-symmetric mapping

[13].
- Every non-trivial �nite p-group which is not a cyclic 2-group has anti-

symmetric mappings [13].
- Every �nite nilpotent group with a trivial or the non-cyclic Sylow

2-subgroup has an anti-symmetric mapping [13].

Taking into account these results J. A. Gallian and M. D. Mullin made
the following

Conjecture 2.4 [13]. All non-abelian groups have anti-symmetric map-
pings.

This conjecture has been con�rmed by S. Heiss at �rst for soluble groups
in [16], later for each non-abelian group.

Theorem 2.5 [17]. Every non-abelian group admits an anti-symmetric
mapping.

J. Verhoe� [27] has pointed out a number of anti-symmetric mappings
of the dihedral groups D5 and Dm, m > 5. We remember that the dihedral
group Dm is a group of order 2m of such form

Dm = 〈d, s | dm = e = s2, ds = sd−1 〉.
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Note that within the group theory the dihedral group with 2m elements
is usually denoted by D2m.

Other anti-symmetric mappings of the dihedral groups were found in
[15], [12], [13]. All these mappings give a possibility to obtain check char-
acter systems detecting all transpositions.

M. Damm proved the following important theorem.
Theorem 2.6 [8]. For m > 3 odd there does not exist a check digit system
over Dm which detects all jump transpositions or all twin errors or all jump
twin errors.

In [26] (see also [24]) all anti-symmetric mappings, automorphisms and
anti-automorphisms of the dicyclic groups Q2 (it is the quaternion group)
and Q3 of order 8 and 12, respectively, were obtained by computer search.
These groups are

Q2 = 〈a, b | a4 = e, b2 = a2, ab = ba−1 〉

and
Q3 = 〈a, b | a6 = e, b2 = a3, ab = ba−1 〉.

Recall that an automorphism α of a group with the identity e is called
regular if αx 6= x for each x 6= e (such permutation α is called a �xed point
free permutation).

Anti-symmetric automorphisms and anti-automorphisms of groups were
considered by R. H. Schulz in [22], [23] and M. Damm in [8]. So, the
following statement is proved.
Proposition 2.7 [23]. An automorphism δ of a �nite group G with the
identity e is anti-symmetric if and only if δ does not �x any conjugacy
class of G\{e}. When G is abelian, then this is the case if and only if the
automorphism δ is regular.

Due to the works [27], [7], [12] necessary and su�cient conditions on
a permutation (or on an automorphism) δ for detection each of �ve error
types by a check digit system over a group G with check formula (6), n > 4
can be given in the following Table 4, where SG (AutG) denotes the set of
all permutations (or the automorphism group, respectively) of G.
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Table 4: Error detection of systems over groups with (6),
n > 4

Error type Conditions on δ, for all x, y, z ∈ G

δ ∈ SG δ ∈ AutG, x 6= e

single errors none none
transpositions x · δy 6= y · δx, x 6= y δx 6= y−1xy

jump transpositions xy · δ2z 6= zy · δ2x, x 6= z δ2x 6= y−1xy

twin errors x · δx 6= y · δy, x 6= y δx 6= y−1x−1y

jump twin errors xy · δ2x 6= zy · δ2z, x 6= z δ2x 6= y−1x−1y

De�nition 2.8 [7]. Let G be a �nite group. An automorphism δ of G is
called good provided δx is not conjugate to x or x−1 and δ2x is not conjugate
to x or x−1 for all x ∈ G, x 6= e, where x−1 is the inverse element for x.
Proposition 2.9 [7]. A good automorphism is anti-symmetric and detects
all single errors, transpositions, jump transpositions, twin errors and jump
twin errors.

In [7] it is shown that there are many groups possessing a good auto-
morphism.

The class of groups having anti-symmetric mappings is extension closed
according to
Theorem 2.10 [13]. If G is a group with a normal subgroup H and there
exist anti-symmetric mappings ϕ on H and ψ on G/H, then there exists an
anti-symmetric mapping γ on G.

3. Check character systems over quasigroups
and loops

In this section we shall mainly survey new results concerning check character
systems over quasigroups with check formulas (4) or (5) which are able to
detect single errors, transpositions, jump transpositions, twin errors and
jump twin errors in all digits of a code word (including the control digit).

Consider the following conditions which hold for all a, b, c, d ∈ Q in a
quasigroup Q(·), δ ∈ SQ:

(α1) b · δc 6= c · δb, if b 6= c;
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(α2) ab · δc 6= ac · δb, if b 6= c;
(α3) (a = d · δn−2b and b = d · δn−2a) ⇒ (a = b);
(β1) dc · δ2b 6= bc · δ2d, if b 6= d;
(β2) (ad · c) · δ2b 6= (ab · c) · δ2d, if b 6= d;
(β3) (d = (a · δn−3b) · c and b = (a · δn−3d) · c) ⇒ (b = d);
(γ1) b · δb 6= c · δc if b 6= c;
(γ2) ab · δb 6= ac · δc if b 6= c;
(γ3) (a = d · δa and b = d · δb) ⇒ (b = a);
(σ1) bc · δ2b 6= dc · δ2d, if b 6= d;
(σ2) (ab · c) · δ2b 6= (ad · c) · δ2d, if b 6= d;
(σ3) (d = (a · δn−3d) · c and b = (a · δn−3b) · c) ⇒ (b = d).
The main theorem of [4] that points necessary and su�cient conditions

for detection of considered �ve error types by a check character system over
a quasigroup with the check formula (4) or (5), n > 4 it is convenient to
give in Table 5.

Table 5: Error detection of systems over quasigroups

Error type
Conditions on δ ∈ SQ, n > 4

Check formula (4) Check formula (5)
single errors none none
transpositions (α1), (α2) and (α3) (α1) and (α2)

jump transpositions (β1), (β2) and (β3) (β1) and (β2)
twin errors (γ1), (γ2) and (γ3) (γ1) and (γ2)

jump twin errors (σ1), (σ2) and (σ3) (σ1) and (σ2)

It is clear from this table why formula (5) should be preferred. Note
that the conditions for formula (5) do not depend on the size of n.

The conditions for transpositions, and jump transpositions with the
check formula (4) were established earlier by R. H. Schulz in [20].

If a quasigroup Q(·) is a group and the check formula (5) is used, then
the conditions (α1), (β1), (γ1) and (δ1) are both necessary and su�ciently,
as they coincide with the conditions of Table 4, respectively.

If Q(·) is a quasigroup with the left identity e (ex = x for all x ∈ Q) or a
loop (ex = xe = x for all x ∈ Q), then such conditions are correspondingly
(α2), (β2), (γ2) and (δ2) [4].

Let Lax = ax,Rax = xa for all x ∈ Q in a quasigroup Q(·). The
following statement is a corollary of the conditions from Table 5.
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Proposition 3.1 [4]. Let Q(·) be a �nite quasigroup. Then

� condition (γ1) holds if and only if the permutation δ is a complete
mapping;

� condition (γ2) holds if and only if the permutation δL−1
a is a complete

mapping for all a ∈ Q;

� condition (σ1) holds if and only if the permutation δ2R−1
c is a complete

mapping for all c ∈ Q;

� condition (σ2) holds if and only if the permutation δ2L−1
a R−1

c is a
complete mapping for all a, c ∈ Q.

In Corollary 3.2 below we shall observe that each conditions (γ2), (σ1)
and (σ2) can be associated with the notion of orthogonal Latin squares.
That makes these conditions, in certain sense, "strong".

Two Latin squares L1 = ||aij || and L2 = ||bij || on m symbols are said to
be orthogonal if every ordered pair of symbols occurs exactly once among
the m2 pairs (aij , bij), i, j = 1, 2, . . . , m [10].

A pair of orthogonal quasigroups corresponds to a pair of orthogonal
Latin squares and conversely.

Two quasigroups Q(·) and Q(◦) are called orthogonal if the system of
equations {

x · y = a
x ◦ y = b

has an unique solution for all a, b ∈ Q.
Corollary 3.2 [4]. If a �nite quasigroup Q(·) satis�es the conditions γ2

((σ1 ) or (σ2)), then it has an orthogonal mate (pair).
We can say more when Q(·) is a loop and δ is the identity permutation.
Recall that a Moufang loop is a loop which satis�es the Moufang identity

(zx · y) · x = z(x · yx) (see [2], [10]).
Proposition 3.3 [4]. If Q(·) is a loop, δ = ε, n > 4, then

� properties (α1) and (β1) do not hold;

� from (σ2) it follows (γ2);

� in a Moufang loop (in particular, in a group) conditions (γ1), (γ2),
(σ1) and (σ2) are equivalent.
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Corollary 3.4 [4].

� It is impossible using a loop to detect all transpositions (jump transpo-
sitions, twin errors or jump twin errors) if check formula (4) is applied
with δ = ε, n > 4.

� A �nite Moufang loop (a �nite group) with check formula (5), δ = ε,
n > 4 does not detect all transpositions and jump transpositions, but
detects all twin errors and all jump twin errors if and only if b2 6= d2

for all b 6= d (that is the identity permutation is a complete mapping).

� A check character system using a Moufang loop (a group) of odd order
and check formula (5) with δ = ε, n > 4 detects all twin errors and
all jump twin errors.

� A check character system using an abelian group and coding formula
(5) with δ = ε, n > 4 detects all twin errors and all jump twin errors
if and only if the group has odd order.

These results show that check character systems over loops (groups)
with formula (4) or (5) with δ = ε, n > 4 cannot detect all transpositions
and jump transpositions. In this case it is possible to use formula (4) or (5)
with δ 6= ε for a quasigroup or it is possible to use formula (1) for a group.

4. Check character systems over T-quasigroups
There is another way to use groups for construction of check digit systems
detecting these errors as well. Namely, instead of a group Q(◦) it is possible
to take a quasigroup Q(·) which is isotopic to this group:

x · y = γ−1(αx ◦ βy)

where α, β, γ are permutations of Q [10, 2]. Such an idea is used in this
section.

A quasigroup Q(·) is called a T -quasigroup if there exist an abelian group
Q(+) with automorphisms ϕ and ψ and a �xed element g ∈ Q such that
x · y = ϕx + ψy + g for all x, y ∈ Q [19].

The concept of a T-quasigroup is a particular case of the concept of
a quasigroup which is isotopic to an abelian group and it generalizes the
concept of a medial quasigroup (see, for example, [2]).
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Denote by OrtQ(+) the set of all orthomorphisms of a group Q(+).
Necessary and su�cient conditions for error detection of systems with for-
mula (4) or (5), n > 4 are presented in Table 6 ( see Theorems 1 and 3 of [5],
respectively), where Ix = −x. The respective permutations that appear in
Table 6 must be in OrtQ(+).

Table 6: Error detection of systems over T-quasigroups
x · y = ϕx + ψy + g

Error type Conditions on δ permutations of OrtQ(+)

Check formula (4) Check formula (5)
single errors none none

transpositions ψδϕ−1, ψδψ−1ϕ−1,
ψδϕ−1, ψδψ−1ϕ−1

Iψδn−2

jump transpositions ψδ2ϕ−2, ψδ2ψ−1ϕ−2,
ψδ2ϕ−2, ψδ2ψ−1ϕ−2

Iϕψδn−3

twin errors Iψδϕ−1, Iψδψ−1ϕ−1,
Iψδϕ−1, Iψδψ−1ϕ−1

ψδ

jump twin errors Iψδ2ϕ−2, Iψδ2ψ−1ϕ−2,
Iψδ2ϕ−2, Iψδ2ψ−1ϕ−2

ϕψδn−3

In the both cases of the check formulas the conditions do not depend
on the element g ∈ Q and in the case of formula (5) the conditions do not
depend on length n > 4 of a code word.
Corollary 4.1 [5]. If in Table 6 δ is an automorphism of the abelian group
Q(+), then all described errors are detected if and only if the respective
permutations are regular automorphisms.

In [5] the conditions are also given when δ = I, ε, ϕ or ψ−1. If δ = ε,
we obtain the conditions of Table 7.

According to Proposition 2 of [5] direct product of T -quasigroups de-
tecting all errors of some type detects also all errors of the same type if
formula (4) (or (5)) with δ = ε, n > 4 is used.

In [5] a number of T -quasigroups is given satisfying all conditions from
Table 6 (Table 7) if formula (4) (or (5)) is used with δ = ε and consequently,
check character systems over such T -quasigroups with δ = ε are able to
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detect all of the �ve error types in contrast to check character systems over
loops or groups (see Corollary 3.4).

Table 7: Error detection of systems over T-quasigroups
x · y = ϕx + ψy + g

Error type Conditions on ϕ, ψ if δ = ε, n > 4 in (5)
single errors none
transpositions ϕ, ϕψ−1 are regular

jump transpositions ϕ2, ϕ2ψ−1 are regular
twin errors Iϕ1, Iϕψ−1 are regular

jump twin errors Iϕ2, Iϕ2ψ−1 are regular

5. Detection sets and detection rate
of check digit systems

For any check character system over a quasigroup it is possible to de�ne
a detection set and a detection rate (percentage) of errors of each type.
In Table 2 of [23] (see also [27] and [14]) a rate of detection for a check
character system over a group of order q with check formula (6), n > 4
is pointed out. This information we give in Table 8, where detection sets
MT , MjT , MTE , MjTE of transpositions, twin errors and jump twin errors
respectively are de�ned in the following way:

MT = {(a, b) ∈ Q2 | a · δb 6= b · δa, a 6= b},

MjT = {(a, b, c) ∈ Q3 | ab · δ2c 6= cb · δ2a, a 6= c},
MTE = {(a, b) ∈ Q2 | a · δa 6= b · δb, a 6= b},

MjTE = {(a, b, c) ∈ Q3 | ab · δ2a 6= cb · δ2c, a 6= c}.
Note that these sets are considered as detection sets of the respec-

tive errors, since if (a, b) ∈ MT (or (a, b) ∈ MTE), then the transposition
. . . ab · · · → . . . ba . . . (or the twin error . . . aa · · · → . . . bb . . . , respectively)
will be detected.

If (a, b, c) ∈ MjT (or (a, b, c) ∈ MjTE), then the jump transposition
. . . abc · · · → . . . cba . . . (or the jump error . . . aba · · · → . . . cbc . . . , respec-
tively) will be de�ned.
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The maximal number of the pairs (a, b) with a 6= b (the triples (a, b, c)
with a 6= c ) in a group of order q is q(q− 1) (or q2(q− 1), respectively), so
we obtain a percentage (or a rate) of detection from Table 8 (compare with
Table 4).

Table 8: Detection of errors by check character systems
over groups of order q

Error type Detection set Percentage of detection
transpositions MT |MT |/q(q − 1)

jump transpositions MjT |MjT |/q2(q − 1)

twin errors MTE |MTE |/q(q − 1)

jump twin errors MjTE |MjTE |/q2(q − 1)

Let S(Q(·), δ) denote a check character system over a quasigroup of
order q with the check formula (5), n > 4. For such a system detection sets
M δ

T , M δ
jT , M δ

TE and M δ
jTE are more complicated and are de�ned in the

following way [6]:

M δ
T = U δ

1 ∪ V δ
1 ,

where
U δ

1 = {(b, c) ∈ Q2 | b · δc 6= c · δb, b 6= c},
V δ

1 = {(a, b, c) ∈ Q3 | ab · δc 6= ac · δb, b 6= c};

M δ
jT = U δ

2 ∪ V δ
2 ,

where
U δ

2 = {(b, c, d) ∈ Q3 | bc · δ2d 6= dc · δ2b, b 6= d},
V δ

2 = {(a, b, c, d) ∈ Q4 | (ab · c) · δ2d 6= (ad · c)δ2b, b 6= d};

M δ
TE = U δ

3 ∪ V δ
3 ,

where
U δ

3 = {(b, c) ∈ Q2 | b · δb 6= c · δc, b 6= c},
V δ

3 = {(a, b, c) ∈ Q3 | ab · δb 6= ac · δc, b 6= c};
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M δ
jTE = U δ

4 ∪ V δ
4 ,

where
U δ

4 = {(b, c, d) ∈ Q3 | bc · δ2b 6= dc · δ2d, b 6= d},
V δ

4 = {(a, b, c, d) ∈ Q4 | (ab · c) · δ2b 6= (ad · c)δ2d, b 6= d}.
The set U δ

i , i = 1, 2, 3, 4, points out the corresponding detected errors
in the �rst digits of code words, while the set V δ

i , i = 1, 2, 3, 4, de�nes the
detected errors in the rest positions beginning with the second position.

Generally, the sets U δ
i and V δ

i are dependent, moreover, for quasigroups
with the left identity e the set V δ

i completely de�nes the set U δ
i (by a = e)

i = 1, 2, 3, 4.
Now we note that

max(|U δ
i |) = q(q − 1), max(|V δ

i |) = q2(q − 1) for i = 1, 3

and

max(|U δ
i |) = q2(q − 1), max(|V δ

i |) = q3(q − 1) for i = 2, 4,

so
max(|U δ

i |+ |V δ
i |) = q(q2 − 1) for i = 1, 3

and
max(|U δ

i |+ |V δ
i |) = q2(q2 − 1) for i = 2, 4.

Taking into account the above-mentioned we shall obtain Table 9 and
Table 10 which contain estimations of percentage (i.e. the rate) rδ of detec-
tion errors for a system S(Q(·), δ) over a quasigroup Q(·), over a quasigroup
with the left identity or over a loop, respectively [6].

Table 9: Detection of errors by systems over quasigroups of
order q

Error types Detection set Percentage of detection
transpositions M δ

T = U δ
1 ∪ V δ

1 rδ
1 6 (|U δ

1 |+ |V δ
1 |)/q(q2 − 1)

jump transpositions M δ
JT = U δ

2 ∪ V δ
2 rδ

2 6 (|U δ
2 |+ |V δ

2 |)/q2(q2 − 1)

twin errors M δ
TE = U δ

3 ∪ V δ
3 rδ

3 6 (|U δ
3 |+ |V δ

3 |)/q(q2 − 1)

jump twin errors M δ
JTE = U δ

4 ∪ V δ
4 rδ

4 6 (|U δ
4 |+ |V δ

4 |)/q2(q2 − 1)
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Table 10: Detection of errors by systems over quasigroups
with the left identity or over loops of order q

Error type Detection set Percentage of detection
transpositions M δ

T = V δ
1 rδ

1 = |V δ
1 |/q2(q − 1)

jump transpositions M δ
JT = V δ

2 rδ
2 = |V δ

2 |/q3(q − 1)

twin errors M δ
TE = V δ

3 rδ
3 = |V δ

3 |/q2(q − 1)

jump twin errors M δ
JTE = V δ

4 rδ
4 = |V δ

4 |/q3(q − 1)

If Q(·) is a group of order q, then |Vi| = q|Ui| and we obtain from
Table 10 the detection rates of Table 8.

6. Equivalence of check character systems
The concepts of detection sets and detection rate allow to consider equiva-
lence relations between check character systems over the same quasigroup
(loop or group) as systems with the same detection rate of the same error
type by means of a classi�cation of permutations δ.

In [27] J. Verhoe� suggested some transformations preserving detection
rate using automorphisms and translations of a group. These ideas were
used by M. Damm in [8] and R. H. Schulz in [23, 24, 25].

The concept of automorphism equivalent permutations δ1 and δ2 for a
group of [23] one can carry over a quasigroup.
De�nition 6.1 [6]. A permutation δ2 is called automorphism equivalent to
a permutation δ1 (δ2 ∼ δ1) for a quasigroup Q(·) if there exists an automor-
phism α of Q(·) such that δ2 = αδ1α

−1.
The following proposition for quasigroups repeats Proposition 6.6 of [23]

for a groups.
Proposition 6.2 [6]. Automorphism equivalence is an equivalence relation
(that is re�exive, symmetric and transitive).

If δ1 and δ2 are automorphism equivalent for a quasigroup Q(·), then
the systems S(Q(·), δ1) and S(Q(·), δ2) detect the same percentage of trans-
positions (jump transpositions, twin errors, jump twin errors).

According to computations by S. Giese [14] there are 1706 equivalence
classes of anti-symmetric mappings (these detect all transpositions) with
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respect to automorphism equivalence in the dihedral group D5 of order 10.
S. Giese distinguished 6 types of classes according to the detection rate of
other errors in this group and de�ned detection rate of all 5 error types
weighted with their relative frequencies. Unweighted error detection rate in
D5 depends on length n of code words (see Table 8 of [23]).

There exist exactly 1152 anti-symmetric mappings in the quaternion
group, which constitute 48 equivalence classes of size 24 each with respect
to automorphism equivalence [26, 24, 25]. In these articles it is pointed out
that the dicyclic group Q3 has 1.403.136 anti-symmetric mappings. They
form 3.456 equivalence classes with respect to automorphism equivalence.
Types of check digit systems over the groups Q2 and Q3 and their detection
rates are presented as well in these articles.

De�nition 6.3 [23]. Permutations δ1 and δ2 are called weak equivalent
for a group G(·) if there exist elements a, b ∈ G and an automorphism
α ∈ AutG(·) such that

δ2 = Raα
−1δ1αLb, a, b ∈ G,

where Rax = xa, Lax = ax for all x ∈ G.

For a loop the notion of weak equivalence was generalized in [6].
Recall that the left, right, middle nuclei of a loop Q(·) are respectively

the sets [2]:

Nl = {a ∈ Q| ax · y = a · xy for all x, y ∈ Q},
Nr = {a ∈ Q|x · ya = xy · a for all x, y ∈ Q},
Nm = {a ∈ Q|xa · y = x · ay for all x, y ∈ Q}.

The nucleus N of a loop is the intersection of the left, right and middle
nuclei:

N = Nl ∩Nr ∩Nm.

In a group Q(·) the nucleus N coincides with Q.

De�nition 6.4 [6]. A permutation δ2 of a set Q is called weakly equivalent
to a permutation δ1 (δ2

w∼ δ1) for a loop Q(·) if there exist an automorphism
α of the loop and elements p, q ∈ N such that

δ2 = Rpαδ1α
−1Lq,

where Rpx = xp, Lqx = qx, N is the nucleus of the loop.
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The following statement is generalization for loops of Proposition 6.2 of
[23] (see also [8], [27]) for groups.
Proposition 6.5 [6].

a) Weak equivalence is an equivalence relation for a loop.

b) If δ1
w∼ δ2, then systems S(Q(·), δ1) and S(Q(·), δ2) over a loop Q(·)

detect the same percentage of transpositions (twin errors).

c) If, in addition, δ1 is an automorphism of the loop Q(·), then these
systems detect the same percentage of transpositions (jump transposi-
tions, twin errors and jump twin errors).

Corollary 6.6 [6]. If Q(·) is a loop (a group), N is its nucleus, p, q ∈ N
(or p, q ∈ Q, respectively), then

a) systems S(Q(·), ε) and S(Q(·), RpLq) detect the same percentage of
transpositions (jump transpositions, twin errors and jump twin errors);

b) systems S(Q(·), RpLq) over a loop can not detect all transpositions
(all jump transpositions).

Corollary 6.7 [6]. A system S(Q(·), RpLq) over a Moufang loop of odd
order with nucleus N, p, q ∈ N detects all twin errors and all jump twin
errors.

In [6] there can be found an example of an eight-element loop together
with weak equivalent permutations of this loop that are related to check
character systems which have the equal detection percentage of the same
errors.

7. Check character systems as n-ary operations
It is possible to consider a code Qn → Qn+1 : a1a2 . . . an → a1a2 . . . anan+1

with one control symbol an+1 as an n-ary operation f , setting

f(a1, a2, . . . , an) = an+1.

Such approach to check character systems detecting all single errors
and all adjacent transpositions was used by H. P. Gumm in [15] and later
by M. Damm in [8]. G. L. Mullen and V. Shcherbacov [18] considered
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check character systems with n-ary quasigroup operation detecting (jump)
transpositions and (jump) twin errors not only in adjacent positions.

De�nition 7.1 [3]. A non-empty set Q with n-ary operation f such that in
the equation f(x1, x2, . . . , xn) = xn+1 any n elements of x1, x2, . . . , xn,
xn+1 de�ne the last one uniquely is called an n-ary quasigroup (or an n-
quasigroup) Q(f).

De�nition 7.2 [8]. Let g : Dn+1 → D, where D = {0, 1, . . . , m − 1},
c ∈ D, be a mapping. The set

Pg, c = {(dn, dn−1, . . . , d0) ∈ Dn+1 | g(dn, . . . , d0) = c}

is called an implicit check system over base m if
1. g(dn, . . . , di, . . . , d0) = g(dn, . . . , d ′i , . . . , d0) = c implies di = d ′i .
2. g(dn, . . . , di, di−1, . . . , d0) = g(dn, . . . , di−1, di, . . . , d0) = c

implies di = di−1.
3. for all dn, . . . , d1 ∈ D there exists d0 ∈ D such that

g(dn, . . . , d1, d0) = c.

De�nition 7.3 [8]. Let D = {0, 1, . . . , m − 1} and let f : Dn → D be a
mapping. The set

P ′
f = {(dn, . . . , d0) ∈ Dn+1 | f(dn, . . . , d1) = d0}

is called an explicit check system over base m if
1. f(dn, . . . , di, . . . , d1) = f(dn, . . . , d ′i , . . . , d1) implies di = d ′i .
2. f(dn, . . . , di, di−1, . . . , d1) = f(dn, . . . , di−1, di, . . . , d1) implies

di = di−1.
3. f(dn, . . . , d2, d0) = d1, where f(dn, . . . , d1) = d0 implies d1 = d0.

Both these check systems detect all single errors and adjacent transposi-
tions including the control symbol. The operation f from De�nition 7.3 is a
�nite n-ary quasigroup (see property 1) with additional properties 2 and 3.
M. Damm proved the following general result concerning the existence of
implicit (explicit) check systems (see [15] as well).

Theorem 7.4 [8]. For each base m > 2 and all n > 2 there exists a mapping
f : Dn → D (respectively Dn+1 → D) such that Pf (Pg, c) de�nes a check
system.
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A connection between an implicit check system and some explicit check
system over base m is established in [8] when an n-ary ((n+1)-ary) operation
f (g) is a composition of binary quasigroups.
Theorem 7.5 [8].

1. For each explicit check system Pf where f is a composition of n − 1
binary quasigroups ∗i , that is

f(dn, dn−1, . . . , d1) = (. . . ((dn ∗n dn−1) ∗n−1 dn−2) ∗n−2 . . . ) ∗2 d1

there exists a quasigroup ∗1 and an element c ∈ D such that the
equivalence

f(dn, . . . , d1) = d0 ⇐⇒ g(dn, . . . , d0) = c

holds for g(dn, . . . , d0) = f(dn, . . . , d1) ∗1 d0.

2. For every implicit check system P (g, c) where g is a composition of n
quasigroups ∗i:

g(dn, . . . , d0) = (. . . ((dn ∗n dn−1) ∗n−1 dn−2) ∗n−2 . . . ) ∗1 d0

there exists a quasigroup ∗′2 such that the equivalence

f(dn, . . . , d1) = d0 ⇐⇒ g(dn, . . . , d0) = c

holds for f = ((. . . ((dn ∗n dn−1) ∗n−1 dn−2) ∗n−2 . . . ) ∗3 d2) ∗′2 d1.

De�nition 7.6 [8]. An n-ary quasigroup Q(f) is called anti-symmetric if

f(xn, . . . , xi, xi−1, . . . , x1) = f(xn, . . . , xi−1, xi, . . . , x1)

implies xi = xi−1.

The following statement is often useful.
Lemma 7.7 [8]. If Q(f) is an anti-symmetric n-quasigroup and ϕ, ψ are
permutations of Q, then Q(f̄) where

f̄(xn, . . . , x1) = ψ−1f(ϕxn, ϕxn−1, . . . , ϕx1)

is an anti-symmetric n-quasigroup.
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From Theorem 7.4 it follows
Corollary 7.8 [15]. For each n > 2 and all m > 2 there exists an anti-
symmetric n-quasigroup of base m.

Let

f̂(xn, xn−1, . . . , x1) = x0 ⇐⇒ f(x0, x1, . . . , xn−1) = xn.

It is valid the following
Theorem 7.9 [8].

1. Every n-quasigroup detects all single errors. If g is an anti-symmetric
n-quasigroup, then Pg, c is an implicit check system for any c ∈ D.

2. P ′
f is an explicit check system if and only if P ′

f̂
is an explicit check

system.

3. P ′
f is an explicit check system if and only if f and f̂ are anti-symmetric

n-quasigroups.

Implicit check systems with the check formula

g(xn, xn−1, . . . , x0) = (. . . ((xn ∗n xn−1) ∗n−1 xn−2) . . . ) ∗1 x0 = c, (7)

where ∗i, i = 1, 2, . . . , n, is a binary quasigroup, occupy a special position
among the check systems researched by M. Damm.
Theorem 7.10 [8]. (n + 1)-Ary quasigroup Q(g), where

g(xn, . . . , x0) = (. . . (xn ∗n xn−1) ∗n−1 . . . ) ∗1 x0

is anti-symmetric if and only if ∗n is anti-symmetric and each row of the
quasigroup ∗i+1 is an anti-symmetric mapping of ∗i, i = 1, 2, . . . , (n− 1).
Theorem 7.11 [8]. Every quasigroup ∗i in a check system with the formula
(7) has an anti-symmetric mapping. If such system detects all twin errors,
then each quasigroup has a complete mapping. If it de�nes all jump twin
errors, then every quasigroup, except ∗n, has a complete mapping.

Theorem 7.12 [8]. Let Q(∗i) be a quasigroup in a check system with the
check formula (7) which detects all twin errors. Then the quasigroup Q(∗i),
i = 1, 2, . . . , n− 1, is orthogonal to the quasigroup ∗′i de�ned by

x ∗′i y = z ⇐⇒ z ∗i+1 y = x.
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De�nition 7.13 [8]. A binary quasigroup Q(∗) is called total anti-symmetric
if it is anti-symmetric (x ∗ y = y ∗ x implies x = y) and the equality
(c ∗ x) ∗ y = (c ∗ y) ∗ x implies x = y for all c, x, y ∈ Q.

M. Damm in [8] has pointed out that a check system with the check
formula

(. . . ((xn ∗ xn−1) ∗ xn−2) . . . ) ∗ x0 = d,

where ∗ is a binary quasigroup, de�nes (implicit) check system if and only
if ∗ is a total anti-symmetric quasigroup. He also gives an algorithm of
computer construction of total anti-symmetric binary quasigroups. For the
following check formula

ϕnxn ∗ ϕn−1xn−1 ∗ ϕn−2xn−2 ∗ · · · ∗ ϕx1 ∗ x0 = 0,

where Q(∗) is the dihedral group D3 (D4 or D5), M. Damm in [8] using
computer found total anti-symmetric permutations with good possibilities
to detect errors of all �ve types.

G. L. Mullen and V. Shcherbacov [18] continued research of check char-
acter systems as n-ary operations, considering a code a1a2 . . . an −→
a1a2 . . . anan+1 over a �nite alphabet Q as an n-ary operation f, setting

f(a1, a2, . . . , an) = an+1.

Such code they call an n-ary code (Q, f). If f is an n-ary quasigroup
operation, then this code is called an n-quasigroup code.

An n-ary code detects all single errors if and only if it is an n-quasigroup
code.

In [18] it is shown that all n-ary quasigroup codes (Q, f) over the same
alphabet Q (|Q| = q) (arity n is �xed) have in some sense equal possibilities
to detect all possible types of errors.

More re�ned n-ary quasigroup codes which are able to detect trans-
positions and twin errors (not necessary in adjacent positions) are being
researched.

Let xn
m, where m 6 n, denote the sequence xm, xm+1, . . . , xn, and

1, n = {1, 2, . . . , n}, let Q(f) be an n-ary quasigroup: f(xn
1 ) = xn+1.

Changing in f(xn
1 ) elements xk1 , xk2 , . . . , xkm respectively for some

�xed elements a1, a2, . . . , am we obtain a new (n−m)-ary quasigroup op-
eration which is called a retract of the quasigroup Q(f) [3].
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De�nition 7.14 [18]. A retract of a form f
(
ai−1

i , xi, ai+k−1
i+1 , xi+k, an

i+k+1

)

of an n-ary quasigroup Q(f) where ai−1
i , ai+k−1

i+1 , an
i+k+1 are some �xed el-

ements of Q, i ∈ 1, n− k, k ∈ 1, n− 1 is called an (i, i + k) binary retract
of the quasigroup Q(f).
De�nition 7.15 [18]. A binary anti-symmetric quasigroup Q(·) is called
totally anti-commutative if x · x = y · y implies x = y for all x, y ∈ Q
(compare with the De�nition 7.13).

The following theorem determines properties of n-ary quasigroup codes
which are able to detect all (not necessarily neighbour) transpositions and
twin errors in the information symbols of a code word.
Theorem 7.16. An (n − 1)-ary quasigroup code (Q, f), n > 3 with check
equation f(xn−1

1 ) = xn detects each transposition and twin error on the
places (i, i + k), i ∈ 1, n− k − 1, k ∈ 1, n− 2 if and only if all (i, i + k)
binary retracts of the n-ary quasigroup Q(f) are totally anti-commutative.
Remark. Note that for the check formula g(xn

1 ) = c, where c is a �xed
element, analogous properties in general case are su�cient but not necessary
as it is pointed in Theorem 2 of [18]. However, it is valid when g is an n-ary
abelian group isotope (see Theorems 7.20 and 7.22).
De�nition 7.17 [18]. An n-ary quasigroup Q(g) of the form

γg(x1, x2, . . . , xn) = γ1x1 + γ2x2 + · · ·+ γnxn

where Q(+) is a group, γ1, γ2, . . . , γn are permutations of Q is called an
n-ary group isotope.
De�nition 7.18 [18]. An n-quasigroup Q(g) of the form

g(x1, x2, . . . , xn) = α1x1 + α2x2 + · · ·+ αnxn + a =
n∑

i=1

αixi + a,

where Q(+) is an abelian group, α1, α2, . . . , αn are automorphisms of the
group Q(+), a is a �xed element of Q, is called an n-T-quasigroup.
Proposition 7.19 [18]. In an n-ary group isotope Q(g) of the form

g(x1, x2, . . . , xn) = γ1x1 + γ2x2 + · · ·+ γnxn

a) all (i, i+1) (i ∈ 1, n− 1) binary retracts are totally anti-commutative
quasigroups if and only if all binary quasigroups of the form
γixi + γi+1xi+1 are totally anti-commutative;
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b) all (i, i + k) (i ∈ 1, n− k, k ∈ 1, n− 1) binary retracts are totally
anti-commutative quasigroups if and only if all binary quasigroups of
the form γixi + t + γi+kxi+k for all �xed element t, are totally anti-
commutative.

Theorem 7.20 [18]. A code Q(g), where g is an abelian group isotope,
with the check equation

n∑
i=1

γixi = 0, where 0 is the zero of the abelian group
Q(+), detects any transposition and twin error on the places (i, i + 1),
i ∈ 1, n− 1, (i, i + 2), i ∈ 1, n− 2 if and only if all binary quasigroups
of the form γixi + γi+1xi+1 and of the form γixi + γi+2xi+2 are totally
anti-commutative.
Proposition 7.21 [18]. A binary T-quasigroup Q(·) of the form x · y =
αx + βy + a is totally anti-commutative if and only if the mappings α− β
and α + β are automorphisms of the group Q(+).
Theorem 7.22 [18]. A code (Q, g), where g is an n-T-quasigroup, with the
check equation

g(x1, x2, . . . , xn) = α1x1 + α2x2 + · · ·+ αnxn = 0

detects

a) any transposition error on the place (i, i + 1), i ∈ 1, n− 1 (i.e. any
transposition) if and only if the mapping αi−αi+1 is an automorphism
of the group Q(+);

b) any transposition error on the place (i, i + 2), i ∈ 1, n− 2 (i.e. any
jump transposition) if and only if the mapping αi − αi+2 is an auto-
morphism of Q(+);

c) any twin error on the place (i, i + 1), i ∈ 1, n− 1 if and only if the
mapping αi + αi+1 is an automorphism of Q(+);

d) any twin error on the place (i, i + 2), i ∈ 1, n− 2 (i.e. any jump
twin error) if and only if the mapping αi + αi+2 is an automorphism
of Q(+).

We note that the check formula of Theorem 7.22 is the check formula (1)
where the permutations α1, α2, . . . , αn are automorphisms of the abelian
group Q(+).
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G. L. Mullen and V. Shcherbacov use Theorem 7.22 for construction a
number of examples of codes based on n-T-quasigroups which detect all �ve
types of the considered errors. They also give modi�cations of the ISBN-
code and the EAN-code with better possibilities than the known codes.

In the ISBN-code (Z11, g), n = 10 the check formula

1·x1+2·x2+3·x3+4·x4+5·x5+6·x6+7·x7+8·x8+9·x9+10·x10 ≡ 0 (mod 11)

is changed for

1·x1+3·x2+5·x3+7·x4+9·x5+10·x6+8·x7+6·x8+4·x9+2·x10 ≡ 0 (mod 11).

The last check formula allows to detect single errors and all error types
of Theorem 7.22.

In the EAN-code (Z10, g), n = 13, instead of the check formula

x1 +3x2 +x3 +3x4 +x5 +3x6 +x7 +3x8 +x9 +3x10 +x11 +3x12 +x13 = 0

the formula

x1+3x2+9x3+7x4+x5+3x6+9x7+7x8+x9+3x10+9x11+7x12+x13 = 0

is proposed which has the better capability then the �rst one.
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