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Check character systems over quasigroups

and loops

Galina B. Belyavskaya, Vladimir I. Izbash, Victor A. Shcherbacov

Abstract

In this paper we survey the known results concerning check character (or digit) systems
with one check character based on quasigroups (loops, groups). These are codes with
one control symbol detecting errors of specific types.

This survey includes the following sections: 1. Introduction. 2. Check character
systems over groups. 3. Check character systems over quasigroups. 4. Check character
systems over T-quasigroups. 5. Detection sets and detection rate. 6. Equivalence of

check character systems. 7. Check character systems as n-ary operations.

1. Introduction

The aim of the present article is to survey the known results concerning
check character (or digit) systems with one check character based on quasi-
groups (loops, groups).

A check digit system with one check character is an error detecting code
¢ over an alphabet A which arises by appending a check digit (symbol) a,,
to every word ajag...an,_1 € AL

aiag...0p—1 —— 1039 ...0p—10n.

Q:{ Anfl — s A
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The purpose of using such a system is to detect transmission errors
(which can arise once in a code word), in particular, made by human oper-
ators during typing of data.

The examples of check character systems used in practice are the fol-
lowing:

- the European Article Number (EAN) Code,

- the Universal Product Code (UPC),

- the International Standard Book Number (ISNB) Code,

- the system of the serial numbers of German banknotes,

- different bar-codes used in the service of transportation, automation
of various processes and so on.

The control digit of a system based on a quasigroup (system over a
quasigroup) is calculated by distinct check formulas (check equations) using
quasigroup operations.

D. F. Beckley [1] and J. Verhoeff |27] investigated statistically errors
made by human operators. They classified them as single errors (that is er-
rors in only one component of a code word), (adjacent or neighbour) trans-

positions, i.e. errors of the form ...ab... — ... ba ..., jump transpositions
(...abc---— ...cba...), twin errors (...aa--- — ...bb...), jump twin er-
rors (...aca--- — ...bchb...) and phonetic errors (...a0--- — ...la...,

a > 2). Single errors and transpositions are the most prevalent ones.

TABLE 1: ERROR TYPES AND THEIR FREQUENCIES ([23]).

Relative frequency %
Error type
Verhoeff | Beckley
. 79.0
single error oo —...b 36
(60-95)
adjacent transposition | ...ab---— ...ba... 10.2 3
jump transposition c.o.abc---— . cha. .. 0.8
twin error co.aa-c-— 0 bbL 0.6
phonetic error (¢ >2) | ...a0--- — ... 1la... 0.5 6
jump twin error ...aca---— .. beh. .. 0.3
other error 8.6

Phonetic errors depend on the language and we shall not consider them
here.
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The work [27] of J. Verhoeff is the first significant publication that sys-
tematically studies systems for detection of errors made by human oper-
ators. It contains a survey of the decimal codes known in the begin of
1970-th.

A. Ecker and G. Poch in [12] have given a survey of elementary methods
for the construction of check character systems (that is of the methods that
do not use any mathematics other than simple arithmetical computations)
and their analysis from mathematical point of view. In particular, the
group-theoretical background of the known methods was explained and new
codes were presented that stem from the theory of quasigroups. All methods
using the modulo 10 sum can be described in the following way.

Let ajaz...an—1 (n = 3) be a word over the alphabet A = {0,1,...,9}.
The decimal code with one check digit a, € A is defined by permutations
01,02, ...,0n on A together with the check equation

Zéiai =c¢ (mod10), ce€ A
i=1

(usually ¢ = 0), that is

n—1

an =01 (c— Z dia;) (mod 10).
1=1

Note that everywhere we do not use brackets for an application of a map-
ping. For example, we write ab instead of a (b).
So, the IBM code defined by the permutation

5= 0123456789
-\ 0246813579

and the check equation
ap + 0ap—1 + apn—o + dap—3 + -+ = ¢ (mod10), c€ A,

detects all single errors. Transposition errors will not be detected com-
pletely as the transposition 0 and 9 goes undetected. None of the jump
transpositions or jump twin errors are detected. The generalized IBM code
with the check equation

Z(Si_lanﬂ,i = ¢ (mod10), c€ A,

=1
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detects jump transpositions and jump twin errors with the defined accuracy.

In the paper [12] many other known elementary check systems modulo
10, 11 and k£ > 11 are presented with a short discussion concerning each
system. More general group theoretical investigations are also considered
which include all systems modulo different numbers. For that it is sufficient
to take an arbitrary abelian (or non-abelian) group G = G(+) and the
following check equation

Z&iai =cC € G, (1)
=1

where d1,02,...,0, are fixed permutations of G.
So, the Universal Product Code (UPC) is a code with G = Zjp(+),
n = 13, 021 = € = d13 and doja = 3a for i = 1,...,6, ¢ = 0, where ¢

denotes the identity permutation. The check equations of the European
Article Number (EAN) Code and the International Standard Book Number
(ISNB) Code see in the end of the present article.

In Section 5 of [12] the possibility of constructing of check character
systems based on Latin squares (or on quasigroups) is also investigated.
The error detecting capability of such code may be better than of a modulo
m check system.

A Latin square of order n is a square matrix with entries of n distinct
elements each occurring exactly once in each row and column ([10]).

A quasigroup Q(-) is a binary operation (-) defined on the set @ such
that for any two elements a,b € @) each of the equations a-z=b,y-a=1b
has exactly one solution [10].

A loop is a quasigroup with the identity element e (z-e =¢e-x = x for
all z € Q).

For example, the operation

a-b= (ha+kb+1) (modn)

where h,k,l are fixed integers from Z,, = {0,1,...,n — 1} with h and k
relative prime to n defines a quasigroup on the set Z,.

It is easy to verify that the multiplication table of a finite quasigroup
is a Latin square. Conversely, a Latin square may be interpreted as a
quasigroup.

H. P. Gumm [15] considers a check character system as an n-ary opera-
tion with the properties permitting to detect all single errors and all transpo-
sition errors. Later M. Damm in [8] and G. L. Mullen with V. Shcherbacov
in [18] continued this approach and studied the considered systems related
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to m-ary operations (quasigroups). The work [8] of M. Damm contents as
well a good survey of check character systems over groups and groups which
are able to detect all transpositions (and all single errors).

Choosing Q(-) as a finite set endowed with an binary algebraic struc-
ture (a groupoid) one can take the following general check formulas for
calculation of the control symbol a,:

ap = (...((01a1 - 62a2) - d3as3) ...) - dp_1an-1 (2)
or
(...((61a1 - 62a2) - 03a3)...) - Opay, = ¢ (3)
for fixed permutations §; of ), ¢ = 1,2,...,n and a fixed element ¢ of Q.

It is easy to see that a (finite) check character system with check for-
mula (2) or (3) detects all single errors if and only if Q(-) is a quasigroup.
The other errors will be detected if and only if this quasigroup has specific
properties.

Often a permutation d; in (2), (3) is chosen such that & = 61,
1 =1,...,n, for a fixed permutation ¢ of ). In this case we obtain the
following check formulas respectively:

Ay = ( .. ((a1 . (5&2) . 52a3) .. ) . (5”720%_1 (4)
and
(...((ay - das) - 6%az)...) - 6" ta, = c. (5)

In the following sections we shall survey the check character systems
over groups, quasigroups, loops, T-quasigroups, the check character systems
considered as n-ary quasigroups, equivalences of check character systems.

The main attention will be focussed on check character systems over
quasigroups and loops.

2. Check character systems over groups

Let G(= G(-) be a group with the identity e. Then the most general check
equation is the equation (1) (usually ¢ = e) and the formula (5) has the
form

aj - das - 6%as---- 6" ta, =e. (6)
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In [27] and [12] the conditions on a permutation d; (or ¢) are given that
make it possible to detect errors of different types. The error detection
conditions for abelian groups (see Table 2) can be expressed by certain
concepts that are recalled below. These conditions get more complicated
when G is assumed to be non-abelian (see Table 3).

Before recall required concepts.

Definition 2.1 [10]. A complete mapping of a quasigroup (a group) is a
bijective mapping ©z — 0z of @ onto @ such that the mapping + — nz
defined by nz = x - fx is again a bijective mapping of Q) onto Q.

Definition 2.2 [11|. A permutation « of a group G(+) is called an ortho-

morphism if ©* — ax = [x where [ is a permutation of G and —x is the
opposite element for x in the group.

Definition 2.3 [23]. A permutation § of G(-) is called anti-symmetric in a
group (in a quasigroup) G if it fulfills the condition x - dy # y - = for all
z,y€e G, xFuy.

In this paper are always composed from the right to the left.

TABLE 2: CONDITIONS FOR ERROR DETECTION BY (1) (BY (6)), n >4
WITH A FINITE ABELIAN GROUP

Error type Conditions for all ¢
single error d; (0) permutation
adjacent transposition 0i+10; ! (0) orthomorphism
jump transposition di+26; 1 (%) orthomorphism
twin error 8i+10; 1 () complete mapping
jump twin error 0i4+20; ! (6?) complete mapping

TABLE 3: CONDITIONS FOR ERROR DETECTION BY (1), n >4
WITH A FINITE NON-ABELIAN GROUP

Error type Conditions for all %, z,y,z

single error 0; permutation

adjacent transposition | 0;410; L anti-symmetric permutation

jump transposition Ty 5i+25;12 *z-y- 5i+26i_1m, T F 2z

twin error 6i+15;1 complete mapping

jump twin error T-y- 5i+25;1m *z-y- 5i+25;12, T #z
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As it was pointed the transpositions are the most prevalent errors and
their detection is connected with anti-symmetric mappings (see Table 3),
so in the works [8], [9] of M. Damm and in the articles [13], [16], [17], [21],
[22], [23], [24], [25] and [26] much attention is given to research of groups
with anti-symmetric mappings. A survey of anti-symmetric mappings in
different groups can be found in the article [23] of R. H. Schulz.

For the completeness we shall give the main results on the groups hav-
ing anti-symmetric mappings in the order of their publication. Note that
the results for abelian groups often follow as corollaries of known results
concerning complete mappings.

- Abelian groups of order m = 2n with n odd do not admit anti-
symmetric mappings |23].

- The cyclic group G admits an anti-symmetric mapping if and only if
|G| is odd [23].

- All groups of odd order admit an anti-symmetric mappings [13].

- For m > 2 the symmetric group S,, and the alternating group A,,
have anti-symmetric mappings [13].

- Every finite simple group except Z2 has an anti-symmetric mapping
[13].

- Every non-trivial finite p-group which is not a cyclic 2-group has anti-
symmetric mappings [13].

- Every finite nilpotent group with a trivial or the non-cyclic Sylow
2-subgroup has an anti-symmetric mapping [13].

Taking into account these results J. A. Gallian and M. D. Mullin made
the following

Conjecture 2.4 [13]|. All non-abelian groups have anti-symmetric map-
Pings.
This conjecture has been confirmed by S. Heiss at first for soluble groups

in [16], later for each non-abelian group.

Theorem 2.5 [17]. Ewvery non-abelian group admits an anti-symmetric
mapping.

J. Verhoeff [27] has pointed out a number of anti-symmetric mappings
of the dihedral groups Ds and D,,, m > 5. We remember that the dihedral
group Dy, is a group of order 2m of such form

Dy ={d,s|d" =e=5s* ds=sd ).
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Note that within the group theory the dihedral group with 2m elements
is usually denoted by Day,.

Other anti-symmetric mappings of the dihedral groups were found in
[15], [12], [13]. All these mappings give a possibility to obtain check char-
acter systems detecting all transpositions.

M. Damm proved the following important theorem.

Theorem 2.6 [8]. For m > 3 odd there does not exist a check digit system
over Dy, which detects all jump transpositions or all twin errors or all jump
twin errors.

In [26] (see also |24]) all anti-symmetric mappings, automorphisms and
anti-automorphisms of the dicyclic groups Q2 (it is the quaternion group)
and @3 of order 8 and 12, respectively, were obtained by computer search.
These groups are

Qo= {(a,b | a*=e, b*=d% ab=ba"t)

and
Qz=(a,b | a®=e, B*=da® ab=ba"lt).

Recall that an automorphism a of a group with the identity e is called
regular if ax # x for each x # e (such permutation « is called a fixed point
free permutation).

Anti-symmetric automorphisms and anti-automorphisms of groups were
considered by R. H. Schulz in [22], [23] and M. Damm in [8]. So, the
following statement is proved.

Proposition 2.7 [23|. An automorphism & of a finite group G with the
identity e is anti-symmetric if and only if § does not fix any conjugacy
class of G\{e}. When G is abelian, then this is the case if and only if the
automorphism § is regular.

Due to the works [27], 7], [12] necessary and sufficient conditions on
a permutation (or on an automorphism) ¢ for detection each of five error
types by a check digit system over a group G with check formula (6), n > 4
can be given in the following Table 4, where Si (AutG) denotes the set of
all permutations (or the automorphism group, respectively) of G.
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TABLE 4: ERROR DETECTION OF SYSTEMS OVER GROUPS WITH (6),
n >4

Conditions on 4, for all z,y,z € G

Error type
0 € Sa 0 € AutG, x # e
single errors none none
transpositions x-0yFy-ox,rF#y dx # y twy

jump transpositions | xy - 0%z # zy - 0%x, x # 2 8z £y oy

twin errors x-0rFEy- -0y, rFy dx Ayl ly

jump twin errors | xy - 0%x £ 2y - 62z, x # 2 | SCx Ay laly

Definition 2.8 [7|. Let G be a finite group. An automorphism ¢ of G is
called good provided dz is not conjugate to x or ~! and 6%z is not conjugate
tox or 7! for all z € G, x # e, where ! is the inverse element for .

Proposition 2.9 [7|. A good automorphism is anti-symmetric and detects
all single errors, transpositions, jump transpositions, twin errors and jump
twin errors.

In [7] it is shown that there are many groups possessing a good auto-
morphism.

The class of groups having anti-symmetric mappings is extension closed
according to

Theorem 2.10 [13]. If G is a group with a normal subgroup H and there
exist anti-symmetric mappings ¢ on H and ¢ on G/H, then there exists an
anti-symmetric mapping v on G.

3. Check character systems over quasigroups
and loops

In this section we shall mainly survey new results concerning check character
systems over quasigroups with check formulas (4) or (5) which are able to
detect single errors, transpositions, jump transpositions, twin errors and
jump twin errors in all digits of a code word (including the control digit).
Consider the following conditions which hold for all a,b,c,d € @ in a
quasigroup Q(-), § € Sg:
(1)  b-dc#c-db, if b#c;
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a=d-5"2b and b=d-6"2a) = (a=0);
dc-8%b # be-6%d, if b#d;
5) (ad - c) - 6%b # (ab - c) - §d, if b# d;
(d=(a-0"3b)-c and b= (a-6"3d) c) = (b=d);
b-db+#c-dcif b#c;
ab - 6b # ac-dc if b#c;
v3) (a=d-da and b=d-ob)= (b=a);
be-6%b # dc - 6%d, if b# d;
(ab-c)-0%b# (ad-c)-6%d, if b#d;
03) (d=(a-6"3d)-¢c and b= (a-0"3b)-c)= (b=d).
The main theorem of [4] that points necessary and sufficient conditions
for detection of considered five error types by a check character system over

a quasigroup with the check formula (4) or (5), n > 4 it is convenient to
give in Table 5.

TABLE 5: ERROR DETECTION OF SYSTEMS OVER QUASIGROUPS

Conditions on 0 € Sg, n >4
Error type
Check formula (4) | Check formula (5)

single errors none none
transpositions (1), (a2) and (a3) (1) and (a2)
jump transpositions | (81), (82) and (83) (81) and (B2)
twin errors (71), (72) and (3) (71) and (72)
jump twin errors | (01), (02) and (o3) (01) and (02)

It is clear from this table why formula (5) should be preferred. Note
that the conditions for formula (5) do not depend on the size of n.

The conditions for transpositions, and jump transpositions with the
check formula (4) were established earlier by R. H. Schulz in [20].

If a quasigroup Q(-) is a group and the check formula (5) is used, then
the conditions (o), (81), (1) and (1) are both necessary and sufficiently,
as they coincide with the conditions of Table 4, respectively.

If Q(+) is a quasigroup with the left identity e (ex = z for all x € Q) or a
loop (ex = xe = x for all z € @), then such conditions are correspondingly
(az), (B2), (72) and (d2) [4].

Let Loz = ax,R,x = za for all x € @ in a quasigroup Q(-). The
following statement is a corollary of the conditions from Table 5.
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Proposition 3.1 [4]. Let Q(-) be a finite quasigroup. Then

~ condition (y1) holds if and only if the permutation 0 is a complete
mapping;

— condition (y2) holds if and only if the permutation 6L; ' is a complete
mapping for all a € Q;

— condition (01) holds if and only if the permutation 6> R_ ! is a complete

mapping for all ¢ € Q;

~ condition (02) holds if and only if the permutation L R is a
complete mapping for all a,c € Q.

In Corollary 3.2 below we shall observe that each conditions (y2), (1)
and (o2) can be associated with the notion of orthogonal Latin squares.
That makes these conditions, in certain sense, "strong".

Two Latin squares Li = ||aj;|| and Lo = ||b;;|| on m symbols are said to
be orthogonal if every ordered pair of symbols occurs exactly once among
the m? pairs (a;j, bij), i,j = 1,2,...,m [10].

A pair of orthogonal quasigroups corresponds to a pair of orthogonal
Latin squares and conversely.

Two quasigroups Q(:) and Q(o) are called orthogonal if the system of

equations
T-y=a
zoy=>

has an unique solution for all a,b € Q.

Corollary 3.2 [4]. If a finite quasigroup Q(-) satisfies the conditions o
((o1) or (02)), then it has an orthogonal mate (pair).

We can say more when Q(-) is a loop and ¢ is the identity permutation.

Recall that a Moufang loop is a loop which satisfies the Moufang identity
(z2-1) -3 = 2(x - ya) (see [2], [10]).

Proposition 3.3 [4]. If Q(-) is a loop, 6 =€, n >4, then
— properties (1) and (1) do not hold;
~ from (o2) it follows (v2);

—in a Moufang loop (in particular, in a group) conditions (1), (72),
(01) and (02) are equivalent.
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Corollary 3.4 [4].

— It is impossible using a loop to detect all transpositions (jump transpo-
sitions, twin errors or jump twin errors) if check formula (4) is applied
with § =&, n > 4.

— A finite Moufang loop (a finite group) with check formula (5), § = ¢,
n > 4 does not detect all transpositions and jump transpositions, but
detects all twin errors and all jump twin errors if and only if b*> # d?
for all b # d (that is the identity permutation is a complete mapping).

— A check character system using a Moufang loop (a group) of odd order
and check formula (5) with 6 = e, n > 4 detects all twin errors and
all jump twin errors.

— A check character system using an abelian group and coding formula
(5) with 6 =&, n > 4 detects all twin errors and all jump twin errors
if and only if the group has odd order.

These results show that check character systems over loops (groups)
with formula (4) or (5) with 6 =€, n > 4 cannot detect all transpositions
and jump transpositions. In this case it is possible to use formula (4) or (5)
with § # ¢ for a quasigroup or it is possible to use formula (1) for a group.

4. Check character systems over T-quasigroups

There is another way to use groups for construction of check digit systems
detecting these errors as well. Namely, instead of a group Q(o) it is possible
to take a quasigroup Q(-) which is isotopic to this group:

z-y=n""(azofy)

where «, 3,7 are permutations of Q [10, 2|. Such an idea is used in this
section.

A quasigroup Q(-) is called a T-quasigroup if there exist an abelian group
Q(+) with automorphisms ¢ and 3 and a fixed element g € @ such that
x-y=pxr+1y+gforal x,y € Q [19].

The concept of a T-quasigroup is a particular case of the concept of
a quasigroup which is isotopic to an abelian group and it generalizes the
concept of a medial quasigroup (see, for example, [2]).
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Denote by Ort Q(+) the set of all orthomorphisms of a group Q(+).
Necessary and sufficient conditions for error detection of systems with for-
mula (4) or (5), n > 4 are presented in Table 6 ( see Theorems 1 and 3 of [5],

respectively), where Iz = —z. The respective permutations that appear in
Table 6 must be in Ort Q(+).

TABLE 6: ERROR DETECTION OF SYSTEMS OVER T-QUASIGROUPS
ry=9pr+yPy+g

Conditions on § permutations of Ort Q(+)

Error type
Check formula (4) Check formula (5)
single errors none none
-1 —1,-1
transpositions Yo, Yo, Yo, oot
Iw5n72
2,.-2 s2 1, 2
jump transpositions YOTPT, PO P22, o2
prén—S
-1 —1, -1
twin errors Ipoe™, oy o™, I~ Iyt
o
2 -2 2,,—1 2
jump twin errors Ia%e™, Ipo g™, Ip62p=2, Tps*yptp2
(pw(snfii

In the both cases of the check formulas the conditions do not depend
on the element g € @ and in the case of formula (5) the conditions do not
depend on length n > 4 of a code word.

Corollary 4.1 [5]. If in Table 6 § is an automorphism of the abelian group
Q(+), then all described errors are detected if and only if the respective
permutations are regular automorphisms.

In [5] the conditions are also given when §d = I, &, ¢ or L. If § = ¢,
we obtain the conditions of Table 7.

According to Proposition 2 of [5] direct product of T-quasigroups de-
tecting all errors of some type detects also all errors of the same type if
formula (4) (or (5)) with § =€, n > 4 is used.

In [5] a number of T-quasigroups is given satisfying all conditions from
Table 6 (Table 7) if formula (4) (or (5)) is used with § = € and consequently,
check character systems over such T-quasigroups with § = ¢ are able to
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detect all of the five error types in contrast to check character systems over
loops or groups (see Corollary 3.4).

TABLE 7: ERROR DETECTION OF SYSTEMS OVER T-QUASIGROUPS
ry=pr+yy+g

Error type Conditions on ¢, if 6 =¢e,n >4 in (5)
single errors none
transpositions o, @y~ are regular
jump transpositions 02, ©*p~! are regular
twin errors Io', Ipyp~! are regular
jump twin errors 1%, Ip?y~! are regular

5. Detection sets and detection rate
of check digit systems

For any check character system over a quasigroup it is possible to define
a detection set and a detection rate (percentage) of errors of each type.
In Table 2 of [23] (see also [27] and [14]) a rate of detection for a check
character system over a group of order ¢ with check formula (6), n > 4
is pointed out. This information we give in Table 8, where detection sets
M, Mjr, Mg, Mg of transpositions, twin errors and jump twin errors
respectively are defined in the following way:

My = {(a,b) € Q*|a-0b+#b-da, a# b},
M = {(a,b,c) € Q*|ab- 6% # cb- 6%a, a # ¢},
Mrg = {(a,b) € Q*|a-da #b- b, a # b},
Mg = {(a,b,¢) € Q*|ab- §%a # cb- 6%c, a # c}.

Note that these sets are considered as detection sets of the respec-
tive errors, since if (a,b) € Mr (or (a,b) € Mrg), then the transposition
...ab---— ... ba... (or the twin error ...aa--- — ...bb..., respectively)
will be detected.

If (a,b,c) € Mjr (or (a,b,c) € Mjrg), then the jump transposition

...abc--- — ...cha... (or the jump error ...aba--- — ...cbc..., respec-
tively) will be defined.
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The maximal number of the pairs (a,b) with a # b (the triples (a,b,c)
with a # ¢ ) in a group of order ¢ is q(q — 1) (or ¢>(q — 1), respectively), so
we obtain a percentage (or a rate) of detection from Table 8 (compare with
Table 4).

TABLE &: DETECTION OF ERRORS BY CHECK CHARACTER SYSTEMS
OVER GROUPS OF ORDER ¢

Error type Detection set | Percentage of detection
transpositions Mr |Mrl/q(q —1)
jump transpositions M;r \MjT’/QQ(q —1)
twin errors Mrg |Mrg|/q(qg—1)
jump twin errors Mirg \Mjrel/¢* (¢ — 1)

Let S(Q(:), 9) denote a check character system over a quasigroup of
order ¢ with the check formula (5), n > 4. For such a system detection sets
M%, M ]‘ST, M%E and MfTE are more complicated and are defined in the
following way [6]:

MY =UPUVY,

where
US = {(bc) € Q*|b-bc#c- b, b#ch,
VP = {(a,b,c) € Q*| ab-dc # ac- b, b # c};
M;;T = Ug U V267
where
U ={(b,c,d) € Q® | be-6%d # de- 6%b, b+ d},
Vs = {(a,b,c,d) € Q*| (ab- c) - 6°d # (ad - ¢)6°b, b # d};
M =UjUVy,
where

US ={(b,c) € Q*|b-0b# c-dc, b#c},
V9 ={(a,b,c) € Q*|ab-db+# ac-dc, b# c};
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5 5 16
Mipp =U; UV,

where
U = {(b,c,d) € Q| be-6%b # de - 6%d, b # d},
VP = {(a,b,c,d) € Q*| (ab-¢c) - 6%b # (ad - ¢)6°d, b # d}.

The set Ui‘s , 1t =1,2,3,4, points out the corresponding detected errors
in the first digits of code words, while the set VZ-‘S, 1 =1,2,3,4, defines the
detected errors in the rest positions beginning with the second position.

Generally, the sets Ui‘5 and Vi‘S are dependent, moreover, for quasigroups
with the left identity e the set V;® completely defines the set U? (by a = e)
1=1,2,3,4.

Now we note that

max(|U/|) = q(q — 1), max(|V;’|) =¢*(¢—1) for i=1,3

and
max(]Ui‘s\) = ¢*(q — 1), max(]Vi‘s]) = q3(q —1) for i=2,4,
S0
max(|U?| + V7)) = q(¢*> —1) for i=1,3
and

max(|U?| + [VP]) = ¢*(¢* — 1) for i=24.

Taking into account the above-mentioned we shall obtain Table 9 and
Table 10 which contain estimations of percentage (i.e. the rate) 70 of detec-
tion errors for a system S(Q(-), d) over a quasigroup Q(-), over a quasigroup
with the left identity or over a loop, respectively [6].

TABLE 9: DETECTION OF ERRORS BY SYSTEMS OVER QUASIGROUPS OF

ORDER ¢
Error types Detection set Percentage of detection
transpositions M =U2uV? | <UD+ VP /a(g® — 1)

jump transpositions | M9, =USUVY | rd < (US| + Vi) /4 (¢*> — 1)

twin errors Mg =U0VY | v < (US| +|VP])/a(¢® — 1)

jump twin errors | My =U2 UVY | r§ < (US| + |VP))/d?(¢* — 1)
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TABLE 10: DETECTION OF ERRORS BY SYSTEMS OVER QUASIGROUPS
WITH THE LEFT IDENTITY OR OVER LOOPS OF ORDER ¢

Error type Detection set | Percentage of detection
transpositions MY =V ) =V?/¢*(q - 1)
jump transpositions MﬁT =V S =V3l/¢*(q— 1)
twin errors MYy =VJ rd = VPl/¢*(¢ - 1)
jump twin errors Moy =V} =V} (q— 1)

If Q(-) is a group of order ¢, then |V;| = ¢|U;| and we obtain from
Table 10 the detection rates of Table 8.

6. Equivalence of check character systems

The concepts of detection sets and detection rate allow to consider equiva-
lence relations between check character systems over the same quasigroup
(loop or group) as systems with the same detection rate of the same error
type by means of a classification of permutations 9.

In [27] J. Verhoeff suggested some transformations preserving detection
rate using automorphisms and translations of a group. These ideas were
used by M. Damm in [8] and R. H. Schulz in [23, 24, 25].

The concept of automorphism equivalent permutations d; and J2 for a
group of |23] one can carry over a quasigroup.

Definition 6.1 [6]. A permutation 6z is called automorphism equivalent to
a permutation 61 (62 ~ 01) for a quasigroup Q(-) if there exists an automor-
phism a of Q(+) such that dy = ada™!.

The following proposition for quasigroups repeats Proposition 6.6 of [23]
for a groups.

Proposition 6.2 [6]. Automorphism equivalence is an equivalence relation
(that is reflexive, symmetric and transitive).

If 61 and 62 are automorphism equivalent for a quasigroup Q(-), then
the systems S(Q(-),01) and S(Q(-),d2) detect the same percentage of trans-
positions (jump transpositions, twin errors, jump twin errors).

According to computations by S. Giese [14] there are 1706 equivalence
classes of anti-symmetric mappings (these detect all transpositions) with
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respect to automorphism equivalence in the dihedral group Ds of order 10.
S. Giese distinguished 6 types of classes according to the detection rate of
other errors in this group and defined detection rate of all 5 error types
weighted with their relative frequencies. Unweighted error detection rate in
D5 depends on length n of code words (see Table 8 of [23]).

There exist exactly 1152 anti-symmetric mappings in the quaternion
group, which constitute 48 equivalence classes of size 24 each with respect
to automorphism equivalence [26, 24, 25|. In these articles it is pointed out
that the dicyclic group @3 has 1.403.136 anti-symmetric mappings. They
form 3.456 equivalence classes with respect to automorphism equivalence.
Types of check digit systems over the groups Q)2 and ()3 and their detection
rates are presented as well in these articles.

Definition 6.3 [23]. Permutations ¢; and dy are called weak equivalent

for a group G(-) if there exist elements a,b € G and an automorphism
a € Aut G(-) such that

09 = RaoflélaLb, a,beaq,

where Ryx = za, L,z = ax for all =z € G.

For a loop the notion of weak equivalence was generalized in [6].
Recall that the left, right, middle nuclei of a loop Q(-) are respectively
the sets [2]:

N={a€eQ|lax-y=a-zy for all x,y € Q},
N, ={a€eQlx-ya=2xy-a forall z,y € Q},
Np={a€Q|lzxa-y=x-ay forall z,y € Q}.

The nucleus N of a loop is the intersection of the left, right and middle

nuclei:
N = N;N N, N Np,.

In a group Q(-) the nucleus N coincides with Q.

Definition 6.4 [6]. A permutation d2 of a set @ is called weakly equivalent
to a permutation 61 (62 ~ 61) for a loop Q(-) if there exist an automorphism
a of the loop and elements p,q € N such that

(52 = Rpadla_qu,

where Ry,x = xp, Lyx = qv, N is the nucleus of the loop.
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The following statement is generalization for loops of Proposition 6.2 of
[23] (see also [8], [27]) for groups.

Proposition 6.5 [6].
a) Weak equivalence is an equivalence relation for a loop.

b) If 61 ~ 8, then systems S(Q(-),61) and S(Q(-),d2) over a loop Q(-)
detect the same percentage of transpositions (twin errors).

c) If, in addition, 01 is an automorphism of the loop Q(-), then these
systems detect the same percentage of transpositions (jump transposi-
tions, twin errors and jump twin errors).

Corollary 6.6 [6]. If Q(-) is a loop (a group), N is ils nucleus, p,q € N
(or p,q € Q, respectively), then

a) systems S(Q(-),e) and S(Q(-), RyLq) detect the same percentage of
transpositions (jump transpositions, twin errors and jump twin errors);

b) systems S(Q(-), RpLy) over a loop can not detect all transpositions
(all jump transpositions).

Corollary 6.7 [6]. A system S(Q(-), RpLy) over a Moufang loop of odd
order with nucleus N, p,q € N detects all twin errors and all jump twin
ETTOTS.

In [6] there can be found an example of an eight-element loop together
with weak equivalent permutations of this loop that are related to check
character systems which have the equal detection percentage of the same
errors.

7. Check character systems as n-ary operations

It is possible to consider a code Q" — Q"' : ajas...a, — ajas. .. GnOnt1
with one control symbol a1 as an n-ary operation f, setting

flar, ag, ..., ap) = apt1.

Such approach to check character systems detecting all single errors
and all adjacent transpositions was used by H. P. Gumm in [15] and later
by M. Damm in [8]. G. L. Mullen and V. Shcherbacov [18] considered
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check character systems with n-ary quasigroup operation detecting (jump)
transpositions and (jump) twin errors not only in adjacent positions.

Definition 7.1 [3]. A non-empty set @) with n-ary operation f such that in
the equation f(x1, z2, ..., Tn) = Tpt+1 any n elements of z1, xg, ..., Ty,
Zn+1 define the last one uniquely is called an n-ary quasigroup (or an n-
quasigroup) Q(f).

Definition 7.2 [8]. Let g : D"*!' — D, where D = {0, 1, ..., m — 1},
c € D, be a mapping. The set

P, .= {(dn, dy-1, ..., do) € D" | g(dy, ..., do) = ¢}

is called an implicit check system over base m if
1. g(dy, ..., di, ..., do) = g(dy, ..., d}, ..., dy) = c implies d; = d/.
2. g(dn, ey di, di—h coey do) :g(dn, coey di—h di, ey do) =C
implies d; = d;_1.
3. for all d,, ..., di € D there exists dy € D such that

g(dn, ceey dl, d()) = C.

Definition 7.3 [8]. Let D ={0,1,...,m —1} and let f: D" — D be a
mapping. The set

P]/f:{(dnv"'7d0)€Dn+1|f(dn7"'7d1):d0}

is called an explicit check system over base m if
1. f(dn, PN di, ey dl) = f(dn, ceey di,’ ey dl) implies dl = di/'
2. f(dn, ey di, di—l, ey dl) = f(dn, ey di_l, dz', ey d1> implies
d;i =di_1.
3. f(dn, ey dg, dg) == d17 where f(dn, ey dl) == dg implies d1 == do.

Both these check systems detect all single errors and adjacent transposi-
tions including the control symbol. The operation f from Definition 7.3 is a
finite n-ary quasigroup (see property 1) with additional properties 2 and 3.
M. Damm proved the following general result concerning the existence of
implicit (explicit) check systems (see [15] as well).

Theorem 7.4 [8|. For each base m > 2 and alln > 2 there exists a mapping
f: D™ — D (respectively D" — D) such that Ps (Py,.) defines a check
system.
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A connection between an implicit check system and some explicit check
system over base m is established in [8] when an n-ary ((n+1)-ary) operation
f (g) is a composition of binary quasigroups.

Theorem 7.5 [8].

1. For each explicit check system Py where f is a composition of n — 1
binary quasigroups *;, that is

f(dn, dnfl, ey dl) = ( . ((dn *n dnfl) *n—1 dn,Q) *n—92 .. ) *9 dl

there exists a quasigroup *1 and an element ¢ € D such that the
equivalence

f(dn, ...,dl):d0<:>g(dn, ...,do):C
holds for g(dy, ..., do) = f(dn, ..., d1) *1 do.

2. For every implicit check system P(g,c) where g is a composition of n
quasigroups *;:

g(dn, PN dg) = ( . ((dn *n dnfl) *n—1 dn72) *p—2 ... ) *1 do
there exists a quasigroup x4 such that the equivalence
f(dn, e d1>:d0<:>g(dn, e do):C

holds for f = ((...((dn *n dn—1) *n—1 dn—2) *n—2 ...) *3 d2) %5 d.

Definition 7.6 [8]. An n-ary quasigroup Q(f) is called anti-symmetric if

f(xn7‘°'7$i7 xi—lv"'axl):f(xna"‘7$i—17xi)"~7xl)

implies x; = x;—_1.

The following statement is often useful.

Lemma 7.7 [8]. If Q(f) is an anti-symmetric n-quasigroup and @, ¥ are

permutations of Q, then Q(f) where

Flan, oy @) =7 f(pan, 91, ..., p21)

15 an anti-symmetric n-quasigroup.
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From Theorem 7.4 it follows
Corollary 7.8 [15]. For each n > 2 and all m > 2 there exists an anti-

symmetric n-quasigroup of base m.

Let

f(xna Tp—1y -« 1}1) =Ty f(x()a L1y «-ny 'rnfl) = Tn-

It is valid the following
Theorem 7.9 [8].

1. Every n-quasigroup detects all single errors. If g is an anti-symmetric
n-quasigroup, then P, . is an implicit check system for any c € D.

2. P]’c is an explicit check system if and only if P]’; is an explicit check
system.

3. PJQ is an explicit check system if and only if f andf are anti-symmetric
N-quasigroups.

Implicit check systems with the check formula

9(Xny Tty ooy 20) = (oo ((Tn *p Tpe1) *n—1 Tp—2) ... ) k120 =¢, (7)

where *;, 4 =1, 2, ..., n, is a binary quasigroup, occupy a special position
among the check systems researched by M. Damm.

Theorem 7.10 [8]. (n+ 1)-Ary quasigroup Q(g), where

9@, ooy 20) = (o (@ %y Tpe1) *p—1 -+ ) *1 T

18 anti-symmetric if and only if *, is anti-symmetric and each row of the
quasigroup *;11 is an anti-symmetric mapping of *;, i =1,2,..., (n —1).

Theorem 7.11 [8|. Every quasigroup *; in a check system with the formula
(7) has an anti-symmetric mapping. If such system detects all twin errors,
then each quasigroup has a complete mapping. If it defines all jump twin
errors, then every quasigroup, except *y, has a complete mapping.

Theorem 7.12 [8]. Let Q(*;) be a quasigroup in a check system with the
check formula (7) which detects all twin errors. Then the quasigroup Q(%;),
i=1,2,...,n—1, is orthogonal to the quasigroup %, defined by

/
T, Y =2<—=2%41Y=2=T.
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Definition 7.13 [8]. A binary quasigroup Q(x) is called total anti-symmetric
if it is anti-symmetric (z * y = y * x implies © = y) and the equality
(cxz)*xy=(cxy)*zimpliesz =y for all ¢, z, y € Q.

M. Damm in [8] has pointed out that a check system with the check
formula

(oo ((zp *xp_1) *Tp_2)...)*xx0 =d,

where * is a binary quasigroup, defines (implicit) check system if and only
if % is a total anti-symmetric quasigroup. He also gives an algorithm of
computer construction of total anti-symmetric binary quasigroups. For the
following check formula

1 n—2
Tp—1 %@ “Tp_o*x -k r]*xg =0,

(inn % Spn—
where Q(x) is the dihedral group D3 (D4 or Ds), M. Damm in [8] using
computer found total anti-symmetric permutations with good possibilities
to detect errors of all five types.

G. L. Mullen and V. Shcherbacov [18] continued research of check char-
acter systems as m-ary operations, considering a code ajag...a, —
ai1as ...apan41 over a finite alphabet Q) as an n-ary operation f, setting

f(a1, az, ..., an) = Qp+1-

Such code they call an n-ary code (Q, f). If f is an n-ary quasigroup
operation, then this code is called an n-quasigroup code.

An n-ary code detects all single errors if and only if it is an n-quasigroup
code.

In [18] it is shown that all n-ary quasigroup codes (Q, f) over the same
alphabet @ (|Q| = ¢) (arity n is fixed) have in some sense equal possibilities
to detect all possible types of errors.

More refined m-ary quasigroup codes which are able to detect trans-
positions and twin errors (not necessary in adjacent positions) are being
researched.

Let 7}, where m < n, denote the sequence Ty, Tm+1, ..., Tn, and
I,n={1,2,...,n}, let Q(f) be an n-ary quasigroup: f(z}) = p41.

Changing in f(z}) elements xg,, Tk, ..., Tk, respectively for some
fixed elements aq, ag, ..., a, we obtain a new (n — m)-ary quasigroup op-
eration which is called a retract of the quasigroup Q(f) [3].
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Definition 7.14 [18]. A retract of a form f (aﬁ_l, z;, a TR Titk, aZ_kH)

i+1
i—1 _itk—1
i G G
ements of Q, i€ 1, n—k, k€1, n—1is called an (i, i + k) binary retract

of the quasigroup Q(f).
Definition 7.15 [18]. A binary anti-symmetric quasigroup Q(-) is called

totally anti-commutative if © - = y -y implies x = y for all z,y € @
(compare with the Definition 7.13).

of an n-ary quasigroup Q(f) where a are some fixed el-

The following theorem determines properties of n-ary quasigroup codes
which are able to detect all (not necessarily neighbour) transpositions and
twin errors in the information symbols of a code word.

Theorem 7.16. An (n — 1)-ary quasigroup code (Q, f), n > 3 with check
equation f(z}™') = x, detects each transposition and twin error on the
places (i, i+ k), 1€ l,n—k—1,k € 1,n—2 if and only if all (i, 1+ k)
binary retracts of the n-ary quasigroup Q(f) are totally anti-commutative.

Remark. Note that for the check formula g(z}) = ¢, where ¢ is a fixed
element, analogous properties in general case are sufficient but not necessary
as it is pointed in Theorem 2 of [18]. However, it is valid when ¢ is an n-ary
abelian group isotope (see Theorems 7.20 and 7.22).

Definition 7.17 [18]. An n-ary quasigroup Q(g) of the form

Vg(xla T2y - vy ZL‘n) =71%1 +Y2x2 + -+ YnTn

where Q(+) is a group, V1, V2, .., Vn are permutations of @ is called an
n-ary group isotope.

Definition 7.18 [18]. An n-quasigroup Q(g) of the form

n
g(z1, 2, ..., Ty) = 1T + QoTo + -+ Ty +a = E o;T; + a,
i=1
where Q(+) is an abelian group, aj, ag, ..., a, are automorphisms of the

group Q(+), a is a fixed element of @, is called an n-T-quasigroup.
Proposition 7.19 [18]. In an n-ary group isotope Q(g) of the form

g(xl, T2y v ny J,’n) =7T1 +V2T2 + -+ VnTn

a) all (i, 1+1) (i € 1, n — 1) binary retracts are totally anti-commutative
quasigroups if and only if all binary quasigroups of the form
YiTi + Yig1Zi+1 are totally anti-commutative;
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b) all (i,i+ k) (i € 1, n—k, k € 1, n— 1) binary retracts are totally
anti-commutative quasigroups if and only if all binary quasigroups of
the form v;x; +t + VippTivr for all fized element t, are totally anti-
commutative.

Theorem 7.20 [18]. A code Q(g), where g is an abelian group isotope,
n

with the check equation > vix; = 0, where 0 is the zero of the abelian group
i=1

Q(+), detects any transposition and twin error on the places (i, 1 + 1),

iel,n—1, (G, i+2),7€1,n—2if and only if all binary quasigroups

of the form 7vix; + vViy1xi+1 and of the form v;x; + VivoTito are totally

anti-commutative.

Proposition 7.21 [18]. A binary T-quasigroup Q(-) of the form z -y =

ax + By + a is totally anti-commutative if and only if the mappings o — 3
and o+ [ are automorphisms of the group Q(+).

Theorem 7.22 [18]. A code (Q, g), where g is an n-T-quasigroup, with the
check equation

g(x1,22,. .., 2n) = 121 + Q2 + -+ - + apxy, =0
detects

a) any transposition error on the place (i,i+1), 1 € 1, n—1 (i.e. any
transposition) if and only if the mapping o; — a1 1s an automorphism
of the group Q(+);

b) any transposition error on the place (i,i+2), i € 1, n—2 (i.e. any
Jump transposition) if and only if the mapping a; — ciy2 s an auto-
morphism of Q(+);

c) any twin error on the place (i, i+ 1), i € 1, n— 1 if and only if the
mapping «; + ;1 is an automorphism of Q(+);

d) any twin error on the place (i,i+ 2), i € 1, n—2 (i.e. any jump
twin error) if and only if the mapping a; + a2 is an automorphism

of Q(+).

We note that the check formula of Theorem 7.22 is the check formula (1)
where the permutations a1, ae,...,q, are automorphisms of the abelian

group Q(+).
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G. L. Mullen and V. Shcherbacov use Theorem 7.22 for construction a
number of examples of codes based on n-T-quasigroups which detect all five
types of the considered errors. They also give modifications of the ISBN-
code and the EAN-code with better possibilities than the known codes.

In the ISBN-code (Z11, g), n = 10 the check formula

121422943 w3+4-24+5-25+6-26+7- 2748 28+9-x9+10-219 = 0 (mod 11)

is changed for

1-x14+3-x9+5-x3+7-24+9-25+10-26+8 - x7+6-x8+4-29+2-2190 = 0 (mod 11).
The last check formula allows to detect single errors and all error types

of Theorem 7.22.
In the EAN-code (Z10, g), n = 13, instead of the check formula

1+ 3rs+ 23+ 34+ x5+ 326 + 27+ 38+ T9+ 310+ 11 +3x12+ 213 =0
the formula
r1+3x9+9r3+Tr4+ 25+ 326+ 927+ Txg+ 29+ 3210+ 9211+ 72x12+213 =0

is proposed which has the better capability then the first one.
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