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Quasigroup permutation representations

Jonathan D. H. Smith

Abstract

The paper surveys the current state of the theory of permutation representations of
�nite quasigroups. A permutation representation of a quasigroup includes a Markov
chain for each element of the quasigroup, and yields an iterated function system in the
sense of fractal geometry. If the quasigroup is associative, the concept specializes to the
usual notion of a permutation representation of a group, the transition matrices of the
Markov chains becoming permutation matrices in this case. The class of all permutation
representations of a given �xed quasigroup forms a covariety of coalgebras. Burnside's
Lemma extends to quasigroup permutation representations. The theory leads to a new
approach to the study of Lagrangean properties of loops.

1. Introduction
One of the major programs in the study of quasigroups and loops has been
the extension to them of various aspects of the representation theory of
groups. For summaries of character theory, see [11], [19]. For a summary of
module theory, see [18]. The purpose of the present paper is to survey the
current state of the theory of permutation representations of �nite quasi-
groups. The theory began with the papers [20], [21] introducing a concept
of homogeneous space for �nite quasigroups. Given a subquasigroup P of a
�nite quasigroup Q, the elements of the corresponding homogeneous space
P \Q are the orbits on Q of the group of permutations generated by the left
multiplications by elements of P . Each element of Q yields a Markov chain
action on the homogeneous space P \Q as a set of states. The full structure
is an instance of an iterated function system (IFS) in the sense of fractal ge-
ometry [1]. If P is a subgroup of a group Q, then the concept just specializes

2000 Mathematics Subject Classi�cation: 20N05
Keywords: loop, quasigroup, permutation representation, coalgebra, Burnside lemma,
Lagrange property, iterated function system, IFS



116 J. D. H. Smith

to the usual concept of a homogeneous space or transitive permutation rep-
resentation for groups, the transition matrices of the Markov chain actions
becoming deterministic permutation matrices in this case. Now arbitrary
Q-sets for a group Q are just built up by taking disjoint unions of homo-
geneous spaces. Moreover, the class of (�nite) Q-sets is closed under direct
products. The class of all Q-sets admits a syntactical characterization as a
variety of universal algebras, the axioms essentially characterizing a Q-set
(X, Q) as a set X with a group homomorphism from Q to the group X! of
permutations of the set X.

For a quasigroup Q, the situation is not so simple. The �rst step is to
establish a general framework, the concrete category IFSQ of iterated func-
tion systems over the quasigroup Q. An object of this category, a so-called
Q-IFS, is just a set X that is the state space of a family of Markov chain
actions indexed by the underlying set of the quasigroup Q. Each homoge-
neous space P \Q is certainly a Q-IFS in this sense. The category IFSQ has
sums or coproducts given by disjoint unions, and products given by direct
products. The transition matrices in the disjoint union are the direct sums
of the transition matrices of the summands, while the transition matrices
in the direct product are the tensor or Kronecker products of the transition
matrices of the factors. If Q is a group, then the category of Q-sets is a
full subcategory of IFSQ, and one may readily recognize when a Q-IFS is a
Q-set (Proposition 5.3). For a �nite quasigroup Q, each Q-IFS is equivalent
to a certain coalgebra (Theorem 7.4). The class of Q-sets or permutation
representations for Q is then de�ned to be the covariety of coalgebras gen-
erated by the homomorphic images of homogeneous spaces. Each Q-set is a
sum of orbits or images of homogeneous spaces (Theorem 10.2), the number
of orbits being counted by Burnside's Lemma (Theorem 11.2). The paper
concludes with an application of the theory of quasigroup permutation rep-
resentations to the study of Lagrangean properties of loops. For concepts
and conventions of quasigroup theory and universal algebra that are not
otherwise explained here, readers are referred to [23].

2. Relative multiplication groups
Quasigroups are construed as sets (Q, ·, /, \) equipped with three binary
operations of multiplication, right division / and left division \, satisfying
the identities:

(IL) y \ (y · x) = x; (SL) y · (y \ x) = x;

(IR) x = (x · y)/y; (SR) x = (x/y) · y.
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A subset P of a quasigroup Q is a subquasigroup of Q if it is closed under
the three binary operations. More generally, the equational de�nition of
quasigroups means that they form a variety in the sense of universal algebra,
and are thus susceptible to study by the concepts and methods of universal
algebra [23].

For each element q of a quasigroup Q, the right multiplication

R(q) : Q → Q;x 7→ x · q

and left multiplication

L(q) : Q → Q; x 7→ q · x

are elements of the group Q! of bijections from the set Q to itself. For a
subquasigroup P of a quasigroup Q, the relative left multiplication group of
P in Q is the subgroup LMltQ(P ) of Q! generated by

L(P ) = {L(p) : Q → Q | p ∈ P}. (2.1)

Relative right multiplication groups are de�ned similarly. A loop is a (non-
empty) quasigroup Q with an identity element, an element e such that
R(e) = L(e) = 1 in Q!. Loops form the non-empty members of the variety of
quasigroups satisfying the identity x/x = y\y. They may also be construed
as algebras (Q, ·, /, \, e) such that (Q, ·, /, \) is a quasigroup and e is a nullary
operation satisfying the identities e · x = x = x · e.

3. Quasigroup homogeneous spaces
The construction of a quasigroup homogeneous space for a �nite quasigroup
[20] [21] is analogous to the permutation representation of a group Q (with
subgroup P ) on the homogeneous space

P \Q = {Px | x ∈ Q } (3.1)

by the actions

RP\Q(q) : P \Q → P \Q ; Px 7→ Pxq (3.2)

for elements q of Q. Let P be a subquasigroup of a �nite quasigroup Q.
Let L be the relative left multiplication group of P in Q. Let P \Q be the
set of orbits of the permutation group L on the set Q. If Q is a group, and
P is nonempty, then this notation is consistent with (3.1). Let A be the
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incidence matrix of the membership relation between the set Q and the set
P \ Q of subsets of Q. Let A+ be the pseudoinverse of the matrix A, i.e.
the unique matrix A+ satisfying:

(a) AA+A = A

(b) A+AA+ = A+

(c) (A+A)∗ = A+A

(d) (AA+)∗ = AA+

[13]. For each element q of Q, right multiplication in Q by q yields a
permutation of Q. Let RQ(q) be the corresponding permutation matrix.
De�ne a new matrix

RP\Q(q) = A+RQ(q)A . (3.3)
[In the group case, the matrix (3.3) is just the permutation matrix given by
the permutation (3.2).] Then in the homogeneous space of the quasigroup
Q, each quasigroup element q yields a Markov chain on the state space
P \ Q with transition matrix RP\Q(q) given by (3.3). For the intuition
behind (3.3), see the discussion of the example in the following section.
Remark 3.1. The set of convex combinations of the states from P \Q forms
a complete metric space, and the actions (3.3) of the quasigroup elements
form an iterated function system or IFS in the sense of fractal geometry
[1]. For present purposes, this remark is relevant only as motivation for the
nomenclature of Section 5 below.

4. An example
Consider the quasigroup Q whose multiplication table is the following Latin
square:

1 3 2 5 6 4
3 2 1 6 4 5
2 1 3 4 5 6
4 5 6 1 2 3
5 6 4 2 3 1
6 4 5 3 1 2

.

Let P be the singleton subquasigroup {1}. Note that LMltQP is the cyclic
subgroup of Q! generated by (23)(456). Thus

P \Q = {{1}, {2, 3}, {4, 5, 6}},
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yielding

AP =




1 0 0
0 1 0
0 1 0
0 0 1
0 0 1
0 0 1




and A+
P =




1 0 0 0 0 0
0 1

2
1
2 0 0 0

0 0 0 1
3

1
3

1
3


 ,

whence (3.3) gives

RP\Q(5) =




0 0 1
0 0 1
1
3

2
3 0


 . (4.1)

The bottom row of (4.1), determining the image of the orbit {4, 5, 6} under
the action of the quasigroup element 5, may be understood as follows. From
the multiplication table, one has 4 · 5 = 2, 5 · 5 = 3, and 6 · 5 = 1. Thus a
uniformly chosen random element of {4, 5, 6} is multiplied by the quasigroup
element 5 to an element of the orbit {1} with probability 1/3, and to an
element of the orbit {2, 3} with probability 2/3.

5. The IFS category
Let Q be a �nite quasigroup. De�ne a Q-IFS (X,Q) as a �nite set X
together with an action map

R : Q → EndC(CX); q 7→ RX(q) (5.1)

from Q to the set of endomorphisms of the complex vector space with basis
X (identi�ed with their matrices with respect to the basis X), such that each
action matrix RX(q) is stochastic. (Recall that a square complex matrix is
said to be stochastic if its entries are non-negative real numbers, and if each
row sum is 1.)

De�nition 5.2. Let (X, Q) be a Q-IFS. Then for Q non-empty, the Markov
matrix of (X, Q) is the arithmetic mean

M(X,Q) =
1
|Q|

∑

q∈Q

RX(q) (5.2)

of the action matrices of the elements of Q.



120 J. D. H. Smith

Note that the Markov matrix of a Q-IFS is stochastic. If P is a sub-
quasigroup of a �nite non-empty quasigroup Q, then the homogeneous space
P \ Q is a Q-IFS with the action map speci�ed by (3.3). Each row of the
Markov matrix of the Q-IFS P \Q takes the form

(|P1|/|Q|, . . . , |Pr|/|Q|), (5.3)

where P1, . . . , Pr are the orbits of the relative left multiplication group of P
in Q. (Compare [22, Prop. 8.1], where this result was formulated for a loop
Q. The proof given there applies to an arbitrary non-empty quasigroup Q.)

A morphism
φ : (X, Q) → (Y, Q) (5.4)

from a Q-IFS (X,Q) to a Q-IFS (Y, Q) is a function φ : X → Y , whose
graph has incidence matrix F , such that

RX(q)F = FRY (q) (5.5)

for each element q of Q. It is readily checked that the class of morphisms
(5.4), for a �xed quasigroup Q, forms a concrete category IFSQ.
Proposition 5.3. Let Q be a �nite group.

(a) The category of �nite Q-sets forms the full subcategory of IFSQ con-
sisting of those objects for which the action map (5.1) is a monoid
homomorphism.

(b) A Q-IFS (X, Q) is a Q-set if and only if it is isomorphic to a Q-set
(Y, Q) in IFSQ.

Proof. For (a), suppose that the action map (5.1) of a Q-IFS (X, Q) is
a monoid homomorphism. Let A be in the image of (5.1). Then A is a
stochastic matrix with Ar = I for some positive integer r. It follows that A
is a permutation matrix (cf. �XV.7 of [4]). Part (b) follows from part (a):
if the morphism φ : (X,Q) → (Y, Q) is an isomorphism whose graph has
incidence matrix F , then the action map of (X, Q) is the composite of the
action map of (Y, Q) with the monoid isomorphism RY (q) 7→ FRY (q)F−1

given by (5.5).

For a �xed �nite quasigroup Q, the category IFSQ has �nite products
and coproducts. Consider objects (X,Q) and (Y, Q) of IFSQ. Their sum
or disjoint union (X +Y, Q) consists of the disjoint union X +Y of the sets
X and Y together with the action map

q 7→ RX(q)⊕RY (q) (5.6)
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sending each element q of Q to the direct sum of the matrices RX(q) and
RY (q). One obtains an object of IFSQ, since the direct sum of stochastic
matrices is stochastic. The direct product (X × Y, Q) of (X, Q) and (Y, Q)
is the direct product X × Y of the sets X and Y together with the action
map

q 7→ RX(q)⊗RY (q)

sending each element q of Q to the tensor (or Kronecker) product of the
matrices RX(q) and RY (q). Again, one obtains an object of IFSQ, since
the tensor product of stochastic matrices is stochastic. It is straightforward
to check that the disjoint union, equipped with the appropriate insertions,
yields a coproduct in IFSQ, and that the direct product, equipped with the
appropriate projections, yields a product in IFSQ.

6. Coalgebras and covarieties
For a given �nite quasigroup Q, the permutation representations of Q are
axiomatized as a certain covariety of coalgebras. This section thus sum-
marises the basic coalgebraic concepts required. For more details, readers
may consult [7], [8] or [17]. Crudely speaking, coalgebras are just the duals
of algebras: coalgebras in a category C are algebras in the dual category
Cop.

Let F : Set → Set be an endofunctor on the category of sets and
functions. Then an F -coalgebra, or simply a coalgebra if the endofunc-
tor is implicit in the context, is a set X equipped with a function αX or
α : X → XF . This function is known as the structure map of the coalgebra
X. (Of course, for complete precision, one may always denote a coalgebra
by its structure map.) A function f : X → Y between coalgebras is a
homomorphism if fαY = αXfF . A subset S of a coalgebra X is a sub-
coalgebra if it is itself a coalgebra such that the embedding of S in X is a
homomorphism. A coalgebra Y is a homomorphic image of a coalgebra X
if there is a surjective homomorphism f : X → Y .

Let (Xi | i ∈ I) be a family of coalgebras. Then the sum of this family
is the disjoint union of the sets of the family, equipped with a coalgebra
structure map α given as follows. Let ιi : Xi → X insert Xi as a summand
in the disjoint union X of the family. For each i in I, let αi be the structure
map of Xi. Then the restriction of α to the subset Xi of X is given by
αiι

F
i . (More generally, the forgetful functor from coalgebras to sets creates

colimits � cf. Proposition 1.1 of [2].)
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A covariety of coalgebras is a class of coalgebras closed under the op-
erations H of taking homomorphic images, S of taking subalgebras, and Σ
of taking sums. (Note that homomorphic images are dual to subalgebras,
while sums are dual to products.) If K is a class of F -coalgebras, then the
smallest covariety containing K is given by SHΣ(K) (cf. [7, Th. 7.5] or
[8, Th. 3.3]). This result is dual to the well-known characterization of the
variety generated by a class of algebras (cf. e.g. Exercise 2.3A of [23, Ch.
IV] or [16, Prop. 1.5.12]).

7. Actions as coalgebras
For a �nite set Q, the Q-IFS are realised as coalgebras for the Q-th power of
the endofunctor B sending a set to (the underlying set of) the free barycen-
tric algebra it generates. Thus it is �rst necessary to recall some basic facts
about barycentric algebras. For more details, readers may consult [15] or
[16]. Let I◦ denote the open unit interval ]0, 1[. For p in I◦, de�ne p′ = 1−p.

De�nition 7.1. A barycentric algebra A or (A, I◦) is an algebra of type
I◦ × {2}, equipped with a binary operation

p : A×A → A; (x, y) 7→ xy p

for each p in I◦, satisfying the identities

xx p = x (7.1)

of idempotence for each p in I◦, the identities

xy p = yx p′ (7.2)

of skew-commutativity for each p in I◦, and the identities

xy p z q = x yz q/(p′q′)′ (p′q′)′ (7.3)

of skew-associativity for each p, q in I◦. The variety of all barycentric al-
gebras, construed as a category with the homomorphisms as morphisms, is
denoted by B. The corresponding free algebra functor is B : Set → B.

A convex set C forms a barycentric algebra (C, I◦), with xy p = (1 −
p)x+py for x, y in C and p in I◦. A semilattice (S, ·) becomes a barycentric
algebra on setting xy p = x · y for x, y in S and p in I◦.



Quasigroup permutation representations 123

For the following result, see [12], [15, �2.1], [16, �5.8]. The equivalence
of the �nal two structures in the theorem corresponds to the identi�ca-
tion of the barycentric coordinates in a simplex with the weights in �nite
probability distributions.

Theorem 7.2. Let X be a �nite set. The following structures are equiva-
lent:

(a) The free barycentric algebra XB on X;
(b) The simplex spanned by X;
(c) The set of all probability distributions on X.

De�nition 7.3. Let Q be a �nite set. The functor BQ : Set → Set sends
a set X to the set XBQ of functions from Q to the free barycentric algebra
XB over X. For a function f : X → Y , its image under the functor BQ is
the function fBQ : XBQ → Y BQ de�ned by

fBQ : (Q → XB; q 7→ w) 7→ (Q → Y B; q 7→ wfB).

Theorem 7.4. Let Q be a �nite set. Then the category IFSQ is isomorphic
with the category of �nite BQ-coalgebras.

Proof. Given a Q-IFS (X, Q) with action map R as in (5.1), de�ne a BQ-
coalgebra LX : X → XBQ with structure map

LX : X → XBQ;x 7→ (Q → XB; q 7→ xRX(q)). (7.4)

(Note the use of Theorem 7.2 interpreting the vector xRX(q), lying in the
simplex spanned by X, as an element of XB.) Given a Q-IFS morphism
φ : (X,Q) → (Y, Q) as in (5.4), with incidence matrix F , one has

xLX .φBQ : Q → Y B; q 7→ xRX(q)F (7.5)

for each x in X, by De�nition 7.3. On the other hand, one also has

xφLY : Q → Y B; q 7→ xFRY (q). (7.6)

By (5.5), it follows that the maps (7.5) and (7.6) agree. Thus φ : X → Y
is a coalgebra homomorphism. These constructions yield a functor from
IFSQ to the category of �nite BQ-coalgebras.
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Conversely, given a �nite BQ-coalgebra with structure map LX : X →
XBQ, de�ne a Q-IFS (X,Q) with action map

RX : Q → EndC(CX); q 7→ (x 7→ qLX(x)), (7.7)

well-de�ned by Theorem 7.2. Let φ : X → Y be a coalgebra homomorphism
with incidence matrix F . Then the maps (7.5) and (7.6) agree for all x in
the basis X of CX, whence (5.5) holds and φ : (X, Q) → (Y, Q) becomes a
Q-IFS morphism. In this way one obtains mutually inverse functors between
the two categories.

Corollary 7.5. Each homogeneous space over a �nite quasigroup Q yields
a BQ-coalgebra.

Example 7.6. Consider the structure map of the coalgebra corresponding
to the homogeneous space presented in Section 4. In accordance with (4.1),
the image of the state {4, 5, 6} sends the element 5 of Q to the convex
combination weighting the state {1} with 1/3 and the state {2, 3} with 2/3.

Corollary 7.7. Let Q be a �nite group. Then the category of �nite Q-sets
embeds faithfully as a full subcategory of the category of BQ-coalgebras.

Proof. Apply Theorem 7.4 and Proposition 5.3.

8. Irreducibility
De�nition 8.1. Let Q be a �nite set. Let Y be a BQ-coalgebra with
structure map L : Y → Y BQ. For elements y, y′ of Y , the element y′ is
said to be reachable from y in Y if there is an element q of Q such that
y′ appears in the support of the distribution qL(y) on Y . The reachability
graph of Y is the directed graph of the reachability relation on Y . The
coalgebra Y is said to be irreducible if its reachability graph is strongly
connected.

Proposition 8.2. If P \Q is a homogeneous space over a �nite quasigroup
Q, realised as a BQ-coalgebra according to Corollary 7.5, then P \ Q is
irreducible.

Proof. Let H be the relative left multiplication group of P in Q. For an
arbitrary pair x, x′ of elements of Q, consider the corresponding elements
xH and x′H of P \Q. For q = x \ x′ in Q, the element x′H then appears
in the support of qL(xH).
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Corollary 8.3. Let Q be a �nite quasigroup. Suppose that Y is a BQ-
coalgebra that is a homomorphic image of a homogeneous space S over Q.
Then Y is irreducible.

Proof. Since S and Y are �nite, one may use the correspondence of The-
orem 7.4. Let φ : S → Y be the homomorphism, with incidence matrix
F . Consider elements y and y′ of Y . Suppose x and x′ are elements
of S with xφ = y and x′φ = y′. By Proposition 8.2, there is an el-
ement q of Q with x′ in the support of the distribution xRS(q). Then
yRY (q) = xFRY (q) = xRS(q)F , so the support of yRY (q), as the image of
the support of xRS(q) under φ, contains x′φ = y′.

9. Regular representations
For a quasigroup Q, the regular homogeneous space or permutation repre-
sentation is the homogeneous space (Q,Q) or (∅ \ Q,Q). Recall that the
relative left multiplication group of the empty subquasigroup is trivial. If Q
is a loop with identity element e, then the regular homogeneous space may
also be described as ({e} \Q,Q). (This de�nition was used in [22, �7].) A
�nite, non-empty quasigroup Q may be recovered from its regular represen-
tation. For example, the multiplication table of Q may be realised as the
formal sum Σq∈QqR?\Q(q) of multiples of the action matrices of ∅ \Q.

For a group Q, each homogeneous space (P \ Q,Q) is obtained as a
homomorphic image of the regular permutation representation. The follow-
ing considerations show that the corresponding property does not hold for
general quasigroups.

De�nition 9.1. Let Q be a �nite set. A Q-IFS (X, Q) is said to be crisp if,
for each q in Q, the action matrix RX(q) is a 0-1-matrix. A BQ-coalgebra
L : X → XBQ is said to be crisp if its structure map corestricts to L :
X → XQ.

Note that crisp Q-IFS and �nite crisp BQ-coalgebras correspond under
the isomorphism of Theorem 7.4.

Proposition 9.2. Homomorphic images of �nite crisp BQ-coalgebras are
crisp.

Proof. Using Theorem 7.4, it is simpler to work in the category IFSQ. Let
φ : X → Y be a surjective IFSQ-morphism with incidence matrix F and
crisp domain. For an element y of Y , suppose that x is an element of X
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with xφ = y. Then for each element q of Q, one has yRY (q) = xφRY (q) =
xFRY (q) = xRX(q)F , using (5.5) for the last step. Since X is crisp, there
is an element x′ of X with xRX(q) = x′. Then yRY (q) = x′F = y′ for the
element y′ = x′φ of Y . Thus Y is also crisp.

For each �nite quasigroup Q, the regular permutation representation is
crisp. On the other hand, the homogeneous space exhibited in Section is
not crisp. Proposition 9.2 shows that such spaces are not homomorphic
images of the regular representation.

10. The covariety of Q-sets
De�nition 10.1. Let Q be a �nite quasigroup. Then the category Q of
Q-sets or of permutation representations of Q is de�ned to be the covariety
of BQ-coalgebras generated by the (�nite) set of homogeneous spaces over
Q.

For a �nite quasigroup Q, the terms �Q-set� or �permutation represen-
tation of Q� are used for objects of the category of Q-sets, and also for those
Q-IFS which correspond to �nite Q-sets via Theorem 7.4. (For a �nite loop
Q, these terms were used in a di�erent, essentially broader sense � at least
for the �nite case � in [22, Defn. 5.2]. If necessary, one may refer to �loop
Q-sets� in that context, and to �proper Q-sets� or �quasigroup Q-sets� in
the present context.)

Theorem 10.2. For a �nite quasigroup Q, the Q-sets are precisely the
sums of homomorphic images of homogeneous spaces.

Proof. Let H be the set of homogeneous spaces over Q. By [9, Prop. 2.4],
the covariety generated by H is HSΣ(H). By [9, Prop. 2.5], the operators S
and Σ commute. By Proposition 8.2, the homogeneous spaces do not contain
any proper, non-empty subcoalgebras. Thus the covariety generated by H
becomes HΣ(H). By [9, Prop. 2.4(iii)], one has ΣH(H) ⊆ HΣ(H). It thus
remains to be shown that each homomorphic image of a sum of homogeneous
spaces is a sum of homomorphic images of homogeneous spaces.

Let Y be a Q-set, with structure map LY , that is a homomorphic image
of a sum X of homogeneous spaces under a homomorphism φ. It will �rst
be shown that each element y of Y lies in a subcoalgebra Yy of Y that is a
homomorphic image of a homogeneous space. Since y lies in the image Y
of X under φ, there is an element x of X such that xφ = y. Since X is a
sum of homogeneous spaces, the element x lies in such a space S. Consider



Quasigroup permutation representations 127

the restriction of φ to S. Let Yy be the image of this restriction. Then Yy is
a subcoalgebra of Y that is a homomorphic image of a homogeneous space
(cf. [7, Lemma 4.5]).

Now suppose that for elements y and z of Y , the corresponding images
Yy and Yz of homogeneous spaces intersect non-trivially, say with a common
element t. By Corollary 8.3, there is an element q of Q such that z lies in
the support of qLY (t). On the other hand, since t lies in the subcoalgebra
Yy, the support of the distribution qLY (t) lies entirely in Yy. Thus z is an
element of Yy, and for each q in Q, the support of the distribution qLY (z)
lies entirely in Yy. It follows that Yz is entirely contained in Yy. Similarly,
one �nds that Yy is contained in Yz, and so the two images agree. Thus Y
is a sum of such images.

Corollary 10.3. A �nite quasigroup Q has only �nitely many isomorphism
classes of irreducible Q-sets.

Proof. By Theorem 10.2, the irreducible Q-sets are precisely the homomor-
phic images of homogeneous spaces. Since Q is �nite, it has only �nitely
many homogeneous spaces. The (First) Isomorphism Theorem for coalge-
bras (cf. [7, Th. 4.15]) then shows that each of these homogeneous spaces
has only �nitely many isomorphism classes of homomorphic images.

Corollary 10.4. For a �nite group Q, the quasigroup Q-sets coincide with
the group Q-sets.

Proof. For a group Q, each homomorphic image of a homogeneous space is
isomorphic to a homogeneous space, and each group Q-set is isomorphic to
a sum of homogeneous spaces.

In considering the �nal corollary of Theorem 10.2, recall that the inter-
section of a family of subcoalgebras of a coalgebra is not necessarily itself a
subcoalgebra (cf. [7, Cor. 4.9]).

Corollary 10.5. Let y be an element of a Q-set Y over a �nite quasigroup
Q. Then the intersection of the subcoalgebras of Y containing y is itself a
subcoalgebra of Y .

Proof. In the notation of the proof of Theorem 10.2, this intersection is the
subcoalgebra Yy.
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11. Burnside's Lemma
De�nition 11.1. For a Q-set Y over a �nite quasigroup Q, the irreducible
summands of Y given by Theorem 10.2 are called the orbits of Y . For an
element y of Y , the smallest subcoalgebra of Y containing y (guaranteed to
exist by Corollary 10.5) is called the orbit of the element y.

Burnside's Lemma concerns itself with �nite permutation representa-
tions. In the quasigroup case, its formulation (and proof) rely on the iden-
ti�cation given by Theorem 7.4. Recall that the classical Burnside Lemma
for a �nite group Q (cf. e.g. Theorem 3.1.2 in [23, Ch. I]) states that
the number of orbits in a �nite Q-set X is equal to the average number of
points of X �xed by elements q of Q. The number of points �xed by such
an element q is equal to the trace of the permutation matrix of q on X.
In the IFS terminology of �3, this permutation matrix is the action matrix
RX(q) of q on the corresponding Q-IFS (X, Q). Thus the following theorem
does specialise to the classical Burnside Lemma in the associative case.
Theorem 11.2. Burnside's Lemma for quasigroups
Let X be a �nite Q-set over a �nite, non-empty quasigroup Q. Then the
trace of the Markov matrix of X is equal to the number of orbits of X.
Proof. Consider the Q-IFS (X, Q). By Theorem 7.4, Theorem 10.2 and
(5.6), its Markov matrix decomposes as a direct sum of the Markov matrices
of its orbits. Thus it su�ces to show that the trace of the Markov matrix
of a homomorphic image of a homogeneous space is equal to 1.

Consider a Q-set Y = {y1, . . . , ym} which is the image of a homogeneous
space P \Q under a surjective homomorphism φ : P \Q → Y with incidence
matrix F . Let F+ be the pseudoinverse of F . Note that each row sum of
F+ is 1. Suppose that the Markov matrix Π of P \Q is given by (5.3). By
(5.5), one has

RY (q) = F+RP\Q(q)F

for each q in Q. Thus the trace of the Markov matrix of Y is given by

tr(F+ΠF ) =
m∑

i=1

r∑

j=1

r∑

k=1

F+
ij ΠjkFki

= |Q|−1
m∑

i=1

(
r∑

j=1

F+
ij )(

r∑

k=1

|Pk|Fki)

= |Q|−1
r∑

k=1

|Pk| = 1,
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the penultimate equality following since for each 1 ≤ k ≤ r, there is exactly
one index i (corresponding to Pkφ = yi) such that Fki = 1, the other terms
of this type vanishing.

Remark 11.3. Burnside's Lemma may fail for a Q-IFS which does not
correspond to a Q-set. For example, the square P \ Q × P \ Q of the
homogeneous space P \ Q of Section 4 (in the category of Q-IFS) has a
9× 9 Markov matrix of trace 1.875, which is not even integral.

12. Lagrangean properties of loops
For a group Q, Lagrange's Theorem states that the order of a subgroup
always divides the order of Q. For a general loop Q, the order of a subloop
need not divide |Q|. In [14], a subloop P of Q is called �Lagrange-like� in Q if
|P | does divide |Q|. The loop Q is said to satisfy the weak Lagrange property
if each subloop is Lagrange-like. It is said to satisfy the strong Lagrange
property if each of its subloops satis�es the weak Lagrange property. Non-
associative loops satisfying the strong Lagrange property were discussed in
[3], [5], [6]. Recalling that Lagrange's Theorem for a group Q relies on the
uniformity of the sizes of the elements of a homogeneous space P \Q, this
section formulates Lagrangean properties for loops in homogeneous space
terms. Let P be a subloop of a �nite loop Q. The type of the homogeneous
space P \ Q is the partition of |P \ Q| given by the sizes of the orbits of
the relative left multiplication group of P in Q. Note that the type of a
homogeneous space is determined by its Markov matrix, according to (5.3).
The type of a homogeneous space P \Q is said to be uniform if all the parts
of the partition are equal. A subloop P of Q is said to be (right) Lagrangean
in Q if the type of P \ Q is uniform, i.e. if the relative left multiplication
group of P in Q acts semitransitively (in the sense of [10, Defn. II.1.14b]).
Note that a Lagrangean subloop P is Lagrange-like in P�ugfelder's sense,
since P is one of the states of P \ Q. On the other hand, the subloop P
of the loop Q of Example 12.6 below is Lagrange-like in Q, but not right
Lagrangean in Q.

The Lagrangean property is more robust than Lagrange-likeness. It may
happen that a subloop P of a loop Q is Lagrange-like in Q, but not in a
subloop of Q that contains P . For example, suppose that a loop Q has a
subloop P that is not Lagrange-like in Q. Then P ×{e} is Lagrange-like in
the loop Q×P , but not in the subloop Q×{e}. The following proposition
shows that the Lagrangean property does not exhibit such pathology.
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Proposition 12.1. Let P be a Lagrangean subloop in a �nite loop Q. Then
P is Lagrangean in each subloop S of Q that contains P .

Proof. Since P is a subloop of the loop S, the action of the relative left
multiplication group LMltSP of P in S is just a restriction to S of the
action of the relative left multiplication group LMltQP of P in Q. Thus
the uniformity of the sizes of the orbits of LMltQP implies the uniformity
of the sizes of the orbits of LMltSP .

De�nition 12.2. A �nite loop Q is said to satisfy the (right) Lagrange
property if each subloop of Q is (right) Lagrangean in Q.

Example 12.3. The only proper, non-trivial subloop of the loop T with
multiplication table

1 2 3 4 5 6
2 1 6 5 4 3
3 6 5 1 2 4
4 5 1 6 3 2
5 3 4 2 6 1
6 4 2 3 1 5

is the subloop {1, 2}, which is Lagrangean in T . Thus T is a non-associative
loop satisfying the right Lagrange property.

In contrast with the global properties based on Lagrange-likeness, Propo-
sition 12.1 shows that one does not need to make a distinction between
�weak� and �strong� versions of the Lagrangean property of De�nition 12.2.

Corollary 12.4. Suppose that a �nite loop Q satis�es the right Lagrange
property. Then each subloop of Q also satis�es the right Lagrange property.

Proof. Let P be a subloop of a subloop Q′ of Q. Then by Proposition 12.1,
P is Lagrangean in Q′.

Corollary 12.5. If a �nite loop Q satis�es the right Lagrange property,
then it also satis�es the strong Lagrange property.

Proof. Let P be a subloop of a subloop Q′ of Q. By Corollary 12.4, Q′

satis�es the right Lagrange property, so that P is Lagrangean in Q′. It then
follows that P is Lagrange-like in Q′. Thus each subloop Q′ of Q satis�es the
weak Lagrange property, i.e. Q itself satis�es the strong Lagrange property.
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Example 12.6. The converse of Corollary 12.5 is false: the strong Lagrange
property is too weak to imply the right Lagrange property. Consider the
loop Q whose multiplication table is the following Latin square:

1 2 3 4 5 6
2 1 4 5 6 3
3 4 5 6 1 2
4 3 6 1 2 5
5 6 1 2 3 4
6 5 2 3 4 1

.

The proper, non-trivial subquasigroups of Q are P = {1, 2}, P ′ = {1, 4},
and P ′′ = {1, 6}, each Lagrange-like in Q, and without mutual contain-
ments. Thus Q does satisfy the strong Lagrange property. On P \ Q, the
action matrices (3.3) of the elements of P are the identity I2, while the
action matrices of the remaining elements of Q are

A =
[
0 1
1
2

1
2

]
.

The type of P \Q is 2 + 4, so that P is not Lagrangean in Q, and Q does
not satisfy the right Lagrange property.

Corollary 12.4 shows that the right Lagrange property is inherited by
subloops. The property is also inherited by homomorphic images.

Proposition 12.7. Suppose that a �nite loop Q satis�es the right Lagrange
property. Then each homomorphic image of Q also satis�es the right La-
grange property.

Proof. Suppose that Q is a quotient of Q by a projection

Q → Q; q 7→ q. (12.1)

Let P be a subloop of Q whose preimage under (12.1) is the subloop P of
Q. The projection (12.1) induces a group epimorphism

LMltQP → LMltQP ; l 7→ l

acting on the set (2.1) of generators of its domain by L(p) 7→ L(p). Set
L = LMltQP and L = LMltQP . Now for q in Q, one has

qL = qL. (12.2)
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To see this, consider an element ql of the left hand side of (12.2), where the
element l of LMltQP is given by

l = L(p1) . . . L(pr)

with elements p1, . . . , pr of P . Then

ql = qL(p1) . . . L(pr) = qL(p1) . . . L(pr) ∈ qL,

the second equality holding since (12.1) is a loop homomorphism. Con-
versely, the typical element of the right hand side of (12.2) is of the form

qL(p1) . . . L(pr)

with q in Q and elements p1, . . . , pr of P . Such an element may be rewritten
in the form

qL(p1) . . . L(pr),

exhibiting it as an element of the left hand side of (12.2).
Since the homogeneous space P \Q has uniform type, it follows that for

each element q of Q the injection

R(q) : P → qL; p 7→ pq

bijects. In other words, qL = {pq | p ∈ P}. Then by (12.2), one has

qL = qL = {pq | p ∈ P} = {p · q | p ∈ P},
so that each state of P \Q has cardinality |P |. Thus P is Lagrangean in Q,
as required.

In view of Corollary 12.4 and Proposition 12.7, it is natural to pose the
following:
Problem 12.8. Suppose that loops Q1 and Q2 satisfy the right Lagrange
property. Does the product Q1 ×Q2 also satisfy this property?

The asymmetry inherent in De�nition 12.2 means that one should also
consider matters from the other side. Thus a subloop P of a loop Q is said
to be (left) Lagrangean in Q if the relative right multiplication group of
P in Q acts semitransitively. A loop Q is said to satisfy the left Lagrange
property if each subloop P of Q is left Lagrangean in Q. It is said to satisfy
the bilateral Lagrange property if it satis�es both left and right Lagrange
properties. Note that the subloop P of the loop Q of Example 12.6 is left
Lagrangean in Q, although it is not right Lagrangean in Q.

Finally, Chein's paper [3] suggests the following:
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Problem 12.9. Which loops satisfying P�ugfelder's Mk-laws possess the
right, left, or bilateral Lagrange properties?
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