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A note on Salem numbers and Golden mean

Qaiser Mushtaq and Arshad Mahmood

Abstract

It is known that every Pisot number is a limit of Salem numbers. At present there
are 47 known Salem numbers less than 1.3 and the list is known to be complete through
degree 40. There is a well known relationship between Coxeter systems, Salem numbers,
and Golden mean. In this short note, we have discovered the existence of Golden mean
in the action of PSL2(Z) on Q(

√
5 ∪ {∞} and investigated some interesting properties

of these.

1. Introduction

An algebraic integer λ > 1 is a Pisot number if its conjugates (other than
λ itself) satisfy |λ′| < 1. Similarly, an algebraic integer λ > 1 is a Salem
number if its conjugates (other than λ itself) satisfy |λ′| 6 1 and include 1

λ .
It is known that the Pisot numbers form a closed subset P ⊂ R, where

R is a field of real numbers, and that every Pisot number is a limit of Salem
numbers [4]. The smallest Pisot number λP , equivalent to 1.324717, is a
root of x3 − x − 1 = 0, while the smallest accumulation point in P is the

Golden mean, λG =
1 +

√
5

2
equivalent to 1.61803. Note that λ2

G
=

3 +
√

5
2

is equivalent to 2.61803...

2. Golden mean

Theorem. In an action of the modular group on Q(
√

5 ∪ {∞}, λG is the
fixed point of the commutator of the modular group.
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Proof. It is well known that the modular group PSL2(Z) is generated by

the linear fractional transformations x : z 7→ −1
z

and y : z 7→ z − 1
z

which

obviously satisfy the relations x2 = y3 = 1.

Then λGx =
1−√5

2
, λGxy =

3 +
√

5
2

, λGxy2 =
−1 +

√
5

2
,

λGxy2x =
−1−√5

2
, λGxy2xy2 =

3−√5
2

and λGxy2xy =
1 +

√
5

2
=

λG .

Corollary 1. λ2
G
− λG − 1 = 0.

Proof. λGxy2xy = (λG + 1)yxy =
(

λG + 1− 1
λG + 1

)
xy =

λG + 1− 1
λG + 1

+ 1.

Therefore λGxy2xy = λG , and so
λG + 1− 1

λG + 1
+ 1 = λG yields

λ2
G
− λG − 1 = 0.

Corollary 2. Let λG denote the algebraic conjugate of λG. Then:
(i) λGx = λG , λGxy = λ2

G
, λGxy2 = −λG ,

(ii) (λGxy2)x = −λG , (λGxy2)xy = λG , (λGxy2)xy2 = (λG) 2.

Proof. The proof follows directly from Corollary 1.

All Pisot numbers λ, λG + ε are known [1]. The Salem numbers are less
well understood. The catalog of 39 Salem numbers given in [1] includes all
Salem numbers λ < 1.3 of degree less than or equal to 20 over the field of
rationals. At present there are 47 known Salem numbers λ < 1.3, and the
list of such is known to be complete through degree 40 [2] and [3].

Next we give approximation of the golden mean. The Golden mean λG =
1 +

√
5

2
is the quadratic irrationality, which is hardest to approximate by

rational numbers, that is, λG −
p

q
6= 0, where p and q are co-prime integers.

We make
∣∣∣∣λG −

p

q

∣∣∣∣ as small as possible for a fixed q, i.e.,
∣∣∣∣λG −

p

q

∣∣∣∣ < εq(λG),

when εq(λG) tends to zero as q tends to infinity. Trivially, εq(λG) <
1
2q

.

We can, in fact, for any irrational α, choose a sequence q1, q2, . . . , qn, . . .

tending to infinity such that εqi(α) <
1
q2
i

. For the number λG =
1 +

√
5

2
,
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we cannot do better than this. If β =
aα + b

cα + d
, where ad − bc = ±1 and

a, b, c, d are integers then by Liouvelli’s Theorem approximation by rational
integers is roughly the same for α as for β. In other words, if α is nearly

p

q

then
ap

q + b

cp
q + d

is a good approximation to β.
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