A note on Salem numbers and Golden mean

Qaiser Mushtag and Arshad Mahmood

Abstract

It is known that every Pisot number is a limit of Salem numbers. At present there are 47 known Salem numbers less than 1.3 and the list is known to be complete through degree 40. There is a well known relationship between Coxeter systems, Salem numbers, and Golden mean. In this short note, we have discovered the existence of Golden mean in the action of $PSL_2(Z)$ on $Q(\sqrt{5} \cup \{\infty\})$ and investigated some interesting properties of these.

1. Introduction

An algebraic integer $\lambda > 1$ is a *Pisot number* if its conjugates (other than λ itself) satisfy $|\lambda'| < 1$. Similarly, an algebraic integer $\lambda > 1$ is a *Salem number* if its conjugates (other than λ itself) satisfy $|\lambda'| \leq 1$ and include $\frac{1}{\lambda}$.

It is known that the Pisot numbers form a closed subset $P \subset R$, where R is a field of real numbers, and that every Pisot number is a limit of Salem numbers [4]. The smallest Pisot number λ_P , equivalent to 1.324717, is a root of $x^3-x-1=0$, while the smallest accumulation point in P is the Golden mean, $\lambda_G=\frac{1+\sqrt{5}}{2}$ equivalent to 1.61803. Note that $\lambda_G^2=\frac{3+\sqrt{5}}{2}$ is equivalent to 2.61803...

2. Golden mean

Theorem. In an action of the modular group on $Q(\sqrt{5} \cup \{\infty\})$, λ_G is the fixed point of the commutator of the modular group.

2000 Mathematics Subject Classification: 11E04, 20G15

Keywords: Salem number, Pisot number, Golden mean, modular group, commutator

Proof. It is well known that the modular group $PSL_2(Z)$ is generated by the linear fractional transformations $x: z \mapsto \frac{-1}{z}$ and $y: z \mapsto \frac{z-1}{z}$ which obviously satisfy the relations $x^2 = y^3 = 1$.

$$\begin{array}{lll} \text{Then} & \lambda_{\scriptscriptstyle G} x \, = \, \frac{1-\sqrt{5}}{2}, & \lambda_{\scriptscriptstyle G} xy \, = \, \frac{3+\sqrt{5}}{2}, & \lambda_{\scriptscriptstyle G} xy^2 \, = \, \frac{-1+\sqrt{5}}{2}, \\ \lambda_{\scriptscriptstyle G} xy^2 x \, = \, \frac{-1-\sqrt{5}}{2}, & \lambda_{\scriptscriptstyle G} xy^2 xy^2 \, = \, \frac{3-\sqrt{5}}{2} & \text{and} & \lambda_{\scriptscriptstyle G} xy^2 xy \, = \, \frac{1+\sqrt{5}}{2} \, = \\ \lambda_{\scriptscriptstyle G}. & & \Box \end{array}$$

Corollary 1. $\lambda_G^2 - \lambda_G - 1 = 0$.

$$\begin{array}{ll} \textit{Proof.} & \lambda_G xy^2 xy = (\lambda_G + 1)yxy = \left(\frac{\lambda_G + 1 - 1}{\lambda_G + 1}\right)xy = \frac{\lambda_G + 1 - 1}{\lambda_G + 1} + 1. \\ \text{Therefore} & \lambda_G xy^2 xy = \lambda_G, \quad \text{and so} \quad \frac{\lambda_G + 1 - 1}{\lambda_G + 1} + 1 = \lambda_G \quad \text{yields} \\ \lambda_G^2 - \lambda_G - 1 = 0. & \square \end{array}$$

Corollary 2. Let $\overline{\lambda}_G$ denote the algebraic conjugate of λ_G . Then:

$$(i) \quad \lambda_G x = \overline{\lambda}_G, \quad \lambda_G xy = \lambda_G^2, \quad \lambda_G xy^2 = -\overline{\lambda}_G,$$

$$\begin{array}{ll} (i) & \lambda_G x = \overline{\lambda}_G, & \lambda_G xy = \lambda_G^2, & \lambda_G xy^2 = -\overline{\lambda}_G, \\ (ii) & (\lambda_G xy^2)x = -\lambda_G, & (\lambda_G xy^2)xy = \lambda_G, & (\lambda_G xy^2)xy^2 = (\overline{\lambda}_G)^2. \end{array}$$

Proof. The proof follows directly from Corollary 1.

All Pisot numbers $\lambda, \lambda_G + \epsilon$ are known [1]. The Salem numbers are less well understood. The catalog of 39 Salem numbers given in [1] includes all Salem numbers $\lambda < 1.3$ of degree less than or equal to 20 over the field of rationals. At present there are 47 known Salem numbers $\lambda < 1.3$, and the list of such is known to be complete through degree 40 [2] and [3].

Next we give approximation of the golden mean. The Golden mean λ_G $\frac{1+\sqrt{5}}{2}$ is the quadratic irrationality, which is hardest to approximate by rational numbers, that is, $\lambda_G - \frac{p}{q} \neq 0$, where p and q are co-prime integers. We make $\left|\lambda_G - \frac{p}{q}\right|$ as small as possible for a fixed q, i.e., $\left|\lambda_G - \frac{p}{q}\right| < \varepsilon_q(\lambda_G)$, when $\varepsilon_q(\lambda_G)$ tends to zero as q tends to infinity. Trivially, $\varepsilon_q(\lambda_G) < \frac{1}{2q}$. We can, in fact, for any irrational α , choose a sequence q_1, q_2, \ldots , tending to infinity such that $\varepsilon_{q_i}(\alpha) < \frac{1}{q_i^2}$. For the number $\lambda_G = \frac{1+\sqrt{5}}{2}$,

Received June 10, 2003

we cannot do better than this. If $\beta = \frac{a\alpha + b}{c\alpha + d}$, where $ad - bc = \pm 1$ and a, b, c, d are integers then by Liouvelli's Theorem approximation by rational integers is roughly the same for α as for β . In other words, if α is nearly $\frac{p}{q}$

then
$$\frac{a^{\underline{p}}_q + b}{c^{\underline{p}}_q + d}$$
 is a good approximation to β .

References

- [1] **D. Boyd**: Small Salem Numbers, Duke Math. J. **44** (1977), 315 328.
- [2] **D. Boyd**: Pisot and Salem Numbers in intervals of the real line, Math. Comp. **32** (1978), 1244 – 1260.
- [3] V. Flammang, M. Grandcolas and G. Rhin: Small Salem Numbers, in Number Theory in Progress, Vol.1, de Gruyter, 1999, 165 – 168.
- [4] R. Salem: Algebraic Numbers and Fourier Analysis, Wadsworth 1983.

Qaiser Mushtaq Department of Mathematics Quaid-i-Azam University Islamabad Pakistan

e-mail: qmushtaq@apollo.net.pk

and

Arshad Mahmood Department of Mathematics and Statistics Allama Iqbal Open University Islamabad Pakistan e-mail: mscs@aiou.edu.pk