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Extensions of Latin subsquares and local
embeddability of groups and group algebras

Milo² Ziman

Abstract

We will show that any �self-adjoint� Latin subsquare with constant diagonal can be
extended to a Latin square with the same property. As a consequence, every loop with
inverses satisfying the identity (xy)−1 = y−1x−1 (an IAA loop for short) is locally embed-
dable into �nite IAA loops, and its loop algebra is locally embeddable into loop algebras
of �nite IAA loops. The IAA property enables to extend this result to loop algebras with
the natural involution arising from the inverse map on the loop. In particular, this is
true for groups and their group algebras.

1. Introduction
This paper arises from the study of groups locally embeddable into �nite
groups (LEF groups) and algebras locally embeddable into �nite dimen-
sional algebras (LEF algebras). Both notions were introduced and investi-
gated by Gordon and Vershik in [8]. A relation between local embeddability
of a group and its group algebra was established by the present author in
[12], solving a problem formulated in [8].

A more general notion of approximability of topological groups by �nite
ones was introduced by E. Gordon in connection with his study of approxi-
mation of operators in spaces of functions on topological groups (cf. [6, 7]).
However, not all topological groups are approximable by �nite ones, in par-
ticular, by far not all (discrete) groups are LEF. This raises the issue of
approximation of groups by some �nite grupoids, retaining as much of the
group structure as possible. L. Glebsky and E. Gordon, in [5], proved that
the approximability of locally compact groups by �nite semigroups is equiv-
alent to their approximability by �nite groups. This indicates that in order
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to extend the class of LEF groups one has to sacri�ce the associativity of
the binary operation. In the mentioned paper the study of approximability
of groups by �nite quasigroups was commenced.

We will show that every group is even locally embeddable into �nite
loops with inverses satisfying the identity (xy)−1 = y−1x−1, which we call
IAA loops for short. The last property enables to extend the above men-
tioned result from [12] to group algebras with involution. In fact, we will
be working within a slightly more general scope. Given an IAA loop L and
a �eld K with an involutive automorphism, we will prove that L is locally
embeddable into �nite IAA loops, and its loop algebra KL, with the natu-
ral involution arising from the inverse map on L, is locally embeddable into
loop algebras of �nite loops with natural involution.

The proof utilizes the well known relation between quasigroups and
Latin squares. Its key ingredient is a kind of embedding theorem for Latin
subsquares (Theorem 2.4). It gives some su�cient conditions guaranteeing
the extendability of a Latin subsquare, symmetric with respect to some
involutive permutation of the set of its elements and with constant diagonal,
to a Latin square with the same property.

2. α-symmetric Latin squares
A p × q matrix R = (rij) with elements from a set A is called a Latin
rectangle of size p × q over A if every element of A occurs at most once
in each row as well as in each column. If p = q then the Latin rectangle
is called a Latin subsquare of order p. If p = q equals the number n of
elements of the �nite set A then the Latin rectangle is called a Latin square
of order n over A.

De�nition 2.1. Let α : A → A be an involutive permutation of the set A,
i.e., α2 = id. A Latin (sub)square R = (rij) over A is called α-symmetric if
α(rij) = rji for all i, j.

Obviously, if (rij) is an α-symmetric Latin (sub)square then α(rii) = rii,
in other words, all the diagonal elements are �xed by α.

We will make use of the following results. The number of occurrences
of an element a ∈ A in a Latin rectangle R will be denoted by NR(a).

Lemma 2.2. [11, Ch. 6, Theorem 2.2] A Latin rectangle R of size p × q
over an n element set A can be extended to a Latin square of over A if and
only if NR(a) ≥ p + q − n for all a ∈ A.
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Lemma 2.3. [4, Corollary II.10.9] Let m ≤ n, U = {U1, U2, . . . , Un} and
V = {V1, V2, . . . , Vm} be two collections having systems of distinct represen-
tatives (SDR). Then some SDRs Û of U and V̂ of V, satisfying V̂ ⊆ Û ,
exist if and only if

∣∣U ′∣∣ +
∣∣V ′∣∣ ≤ m +

∣∣∣
⋃
U ′ ∩

⋃
V ′

∣∣∣

for all U ′ ⊆ U and V ′ ⊆ V.

The next theorem is a partial case, for α = id, of Cruse theorem on
extensions of commutative Latin squares�cf. [3, Theorem 1] or [9, Theo-
rem 4.1]. The other way round, it can be regarded as a generalization of the
special case (rii = 1) of the quoted result from commutative Latin squares
to the α-symmetric ones.

Theorem 2.4. Let n be even, α be an involutive permutation of the set
A = {1, . . . , n} with α(1) = 1, and R = (rij) be an α-symmetric Latin
subsquare over A of order m < n such that rii = 1 for all i ≤ m. Then R
can be extended to an α-symmetric Latin square S = (sij) over A satisfying
sii = 1 for all i ≤ n if and only if NR(k) ≥ 2m− n for all k ∈ A.

Proof. Obviously, the inequality is necessary by Lemma 2.2. In the reversed
direction we will proceed by induction, showing that the Latin subsquare
R satisfying the assumptions can be extended to an α-symmetric Latin
subsquare R̃ = (rij) of order m + 1 over A such that NR̃(k) ≥ 2(m + 1)−n

for all k ∈ A and rii = 1 for all i ≤ m + 1 (the elements of the extension R̃
will be still denoted by rij). This way R can be extended to an α-symmetric
Latin square S of order n with the desired property, in n−m steps.

The case m = n− 1 is trivial. So we can assume m < n− 1.
Let Ui (i = 1, 2, . . .m) be the set of elements of A, not occuring in the

ith row of R, and U = {U1, U2, . . . , Um}. Set

V0 = {{k}; NR(k) = 2m− n},
V1 = {{k, α(k)}; NR(k) = 2m− n + 1},
V = V0 ∪ V1.

Now it su�ces to show that there exist SDRs Û = {u1, u2, . . . , un} of U and
V̂ of V such that V̂ ⊆ Û . Indeed, adding (u1, u2, . . . , um)T to R as a new
last column and (α(u1), α(u2), . . . , α(um), 1) as a new last row, we get the
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following matrix of order of order m + 1:

R̃ =




r11 r12 · · · r1m u1

r21 r22 · · · r2m u2
... ... · · · ... ...

rm1 rm2 · · · rmm um

α(u1) α(u2) · · · α(um) 1




.

As ui is a representative of the set Ui, it does not occur in the ith row of R,
hence by the α-symmetry α(ui) does not occur in its ith column. Thus R̃
is a Latin subsquare over A. The α-symmetry and rii = 1 for all i ≤ m + 1
are clear from the construction.

The inequality NR̃(k) ≥ 2(m + 1)− n is automatically satis�ed for the
elements of Ar

⋃V. The same will be veri�ed for the elements of
⋃V0 and⋃V1 separately.

The α-symmetry of R implies NR(k) = NR(α(k)) for all k ∈ A. Then

α(k) ∈ V0 ⇔ k ∈ V0.

As
⋃V0 ⊆ V̂ ⊆ Û , we have {k, α(k)} ⊆ Û ∩ α(Û), consequently NR̃(k) =

NR(k) + 2 = 2m− n + 2 for all k ∈ ⋃V0.
If {k, α(k)} ∈ V1 then eighter k ∈ V̂ or α(k) ∈ V̂ . In any case

{k, α(k)} ⊆ Û ∪ α(Û), hence NR̃(k) ≥ NR(k) + 1 ≥ 2m − n + 2 for all
k ∈ ⋃V1.

Finally, it remains to prove the existence of suitable SDRs Û and V̂ . To
this end we use Lemma 2.3, thus we have to verify its assumptions.

We show |V| ≤ |U| = m �rst. Assume that |V| = m + x, where x ≥ 1 is
an integer.

If α(k) = k and k 6= 1 then, by α-symmetry, NR(k) is even. As n is
even, too, N(k) 6= 2m−n+1. The last inequality is true for k = 1, as well,
because NR(1) = m 6= 2m−n + 1. (Recall that m < n− 1.) Hence |V | = 2
for all V ∈ V1. Then the number of �elds of the Latin subsquare R which
can be �lled by elements of A is at most

M = |V0|(2m− n) + 2|V1|(2m− n + 1) + (n− 2|V1| − |V0|)m.

Then |V1| = m + x− y, where y = |V0|. Thus

M = M(x, y)
= y(2m− n) + 2(m + x− y)(2m− n + 1) + (n− 2(m + x− y)− y)m
= (n−m− 2)y − 2(n−m− 1)x + m(2m− n + 2)
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can be regarded as a function of the arguments x and y, decreasing in x and
nondecreasing in y. As y takes the values from the set {0, 1, . . . , m + x},
only,

M(x, m + x) = (m− n)x + m2

is the maximal value of M(x, y) for a �xed x. This is still a decreasing
function of x, hence its maximum is

M(1,m + 1) = m− n + m2 < m2.

In other words, not all �elds of R can be �lled by elements of A. Thus the
assumption |V| > |U| leads to a contradiction, and we have |V| ≤ |U|.

As V1 ∩ V2 = ∅ for any distinct V1, V2 ∈ V, the collection V has some
SDR. The existence of an SDR for U follows from Lemma 2.2.

It remains to show the inequality
∣∣U ′∣∣ +

∣∣V ′∣∣ ≤ m +
∣∣∣
⋃
U ′ ∩

⋃
V ′

∣∣∣ (1)

for all U ′ ⊆ U and V ′ ⊆ V. Take some �xed U ′, V ′, and consider the bipartite
graph Γ =

( ⋃V ′,U ′, E)
with the edge set E =

{
(v, U) ∈ ⋃V ′×U ; v ∈ U

}
.

One can readily see that the degrees of its vertices satisfy the following
conditions:

deg(v) = n−m, v ∈ ⋃V ′0;
deg(v) = n−m− 1, v ∈ ⋃V ′1;
deg(U) ≤ n−m, U ∈ U ,

where V ′i = V ∩ Vi for i = 0, 1. Denoting

p =
∣∣∣
⋃
V ′0 ∩

⋃
U ′

∣∣∣ , q =
∣∣∣
⋃
V ′1 ∩

⋃
U ′

∣∣∣ ,

we have |⋃U ′ ∩⋃V ′| = p + q. Now, one can give an upper bound for the
number of edges ending in U r U ′:
(∣∣∣

⋃
V ′0

∣∣∣− p
)

(n−m) +
(∣∣∣

⋃
V ′1

∣∣∣− q
)

(n−m− 1) ≤ (
m− ∣∣U ′∣∣) (n−m).

Realizing |⋃V ′0| = |V ′0| and |
⋃V ′1| = 2|V ′1|, the last inequality can be writ-

ten in the following form
(∣∣V ′0

∣∣− p
)
(n−m) +

(
2

∣∣V ′1
∣∣− q

)
(n−m− 1) ≤ (

m−
∣∣U ′

∣∣) (n−m).

An elementary computation shows that this one is equivalent to
∣∣V ′0

∣∣ +
∣∣V ′1

∣∣ + |U| ≤ m + p +
n−m− 1

n−m
q − n−m− 2

n−m

∣∣V ′1
∣∣ .
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As |V ′0| + |V ′1| = |V ′|, n−m−1
n−m < 1 and n−m−2

n−m |V ′1| ≥ 0, the last inequality
implies (1).

Hence, by Lemma 2.3, there exist SDRs Û of U and V̂ of V such that
V̂ ⊆ Û .

The idea of the presented proof of Theorem 2.4, based on Lemma 2.3
and the proof of the above mentioned Cruse Theorem [3], was suggested by
the referee. The core of author's original, and considerably longer, proof
consisted of an algorithm written in a computer-like language. Its entry
was an arbitrary extension of the original Latin subsquare R to a Latin
square R′ over A, existing by the virtue of Lemma 2.2. The algorithm
transformed the (m + 1) × (m + 1) upper left corner of R′ into a Latin
subsquare R̃ extending R, still satisfying the assumptions of the theorem.
Having checked the extendability of R̃, the desired Latin square S could
have been obtained by repeating the algorithm n−m times, again.

3. IAA loops and groups
A quasigroup is a grupoid Q satisfying both the left and the right cancella-
tion law, i.e.,

(xy1 = xy2 ∨ y1x = y2x) ⇒ y1 = y2

for all x, y1, y2 ∈ Q. A quasigroup with a unit 1 (which is necessarily
unique) is called a loop. If a loop L possess two-sided inverses then, due to
the cancellation, they are uniquely determined, so that the notation x−1 is
unambiguous.

De�nition 3.1. A loop L with (two-sided) inverses has the inverse anti-
automorphism property if the mapping x 7→ x−1 is an antiautomorphism of
(L, ·), i.e.,

(xy)−1 = y−1x−1, (2)

for every x, y ∈ L.

A loop with the inverse antiautomorphism property is brie�y called an
IAA loop. Obviously, every group is an IAA loop. On the other hand,
an IAA loop does not necessarily satisfy the conditions x−1(xy) = y and
(xy)y−1 = x.

The following de�nition goes back to Mal'tsev [10], where it can be
found in a more general universal-algebraic setting.
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De�nition 3.2. Let Q be a grupoid and F be some class of grupoids.
Then Q is said to be locally embeddable into the class F if for any �nite set
M ⊆ Q there is an F ∈ F and an injective map ϕ : (M ∪M2) → F such
that ϕ(xy) = ϕ(x)ϕ(y) for every x, y ∈ M .

In this section we will prove that every IAA loop, in particular every
group, is locally embeddable into the class of �nite IAA loops. To this end
we will exploit the representation of quasigroups by Latin squares: Enu-
merating the elements of a �nite quasigroup Q, its multiplication table can
readily be turned into a Latin square over Q. Fixing an element 1 of a
quasigroup Q and changing the order of some rows and columns, if nec-
essary, we can transform its Latin square into the multiplication table of
some loop with the unit 1. Expressed in the quasigroups terminology: Every
quasigroup is isotopic to a loop (cf. [1]).

For technical convenience we will formulate the results on embeddability
of IAA loops, announced in the introduction within a more general frame-
work of �partial IAA loops with a root�.

De�nition 3.3. A structure
(
L,
√

L, ·), where · is a partial binary operation
on L and

√
L ⊆ L, is said to be a partial IAA loop with the root

√
L if

(a) The operation · satis�es the cancellation law, whenever de�ned.
(b) There exists an element 1 ∈ √L such that x · 1 = 1 · x = x for all
x ∈ L.

(c) The product xy is de�ned for all x, y ∈ √L and L =
(√

L
)2, i.e.,

each z ∈ L has the form z = xy for some x, y ∈ √L.
(d) For every x ∈ L there exists an x−1 ∈ L such that xx−1 = x−1x = 1.
(e) If xy is de�ned then so is y−1x−1 and (xy)−1 = y−1x−1.

Theorem 3.4. Let
(
L,
√

L, ·) be a partial IAA loop with a �nite root
√

L.
Then there exists a �nite IAA loop F and an injective map ϕ : L → F such
that ϕ(1) = 1 and ϕ(xy) = ϕ(x)ϕ(y) for all x, y ∈ √L.

In other words, every �nite root of a partial IAA loop can be extended
to a �nite IAA loop. It can be easily seen that such a partial embedding ϕ
satis�es the condition ϕ(x−1) = ϕ(x)−1, as well.

Proof. Denote the elements of L by 1, 2, . . . , m′ (with 1 denoting the unit).
We can assume

√
L = {1, 2, . . .m} for some m ≤ m′. For i, j = 1, 2, . . . , m
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we put rij = k if and only if i · j = k. Choose an even n ≥ max(2m, m′)
and de�ne a permutation α of A = {1, 2, . . . , n} as follows:

α(k) =

{
k−1, if k ≤ m′;
k, if k > m′.

Without loss of generality we can assume that R = (rij) is an α-
symmetric Latin subsquare over A of order m satisfying the assumptions of
Theorem 2.4 (if not, we can always achieve this by changing the order of
some rows in R).

Hence there is an α-symmetric Latin square S = (sij) over A of order
n, extending R such that sii = 1 for all i ≤ n.

De�ne a binary operation · on the set F = A by putting p · q = k if and
only if p = si1, q = s1j , k = sij for some (uniquely determined) i, j ≤ n.
This de�nition is independent of the order of rows and columns in S. The
fact that (F, ·) is a loop with unit 1 could be visualized by interchanging
the order of some rows an columns in S yielding the multiplication table of
F . Moreover we have k−1 = α(k) for each k ∈ F . So it su�ces to verify
the IAA property, i.e.,

α(pq) = α(q)α(p)

for all p, q ∈ F .
Let p = si1 and q = s1j . Then pq = sij . By the α-symmetry of S we

have α(pq) = sji, α(q) = s1i and α(p) = sj1. Hence α(q)α(p) = sji = α(pq).
Now it is enough to take for ϕ : L → F the identity map.

Corollary 3.5. Every IAA loop, in particular, every group, is locally em-
beddable into the class of �nite IAA loops.

Proof. Given an IAA loop L and a �nite M ⊆ L, put M̄ = M ∪M−1∪{1}.
Then (M̄ ∪ M̄2, M̄ , ·) is the partial IAA loop with the root M̄ .

Applying a standard model-theoretic compactness argument to the last
corollary we get (see, e.g., [2])

Corollary 3.6. Every IAA loop, in particular, every group, can be embedded
into an ultraproduct of a system of �nite IAA loops.



Latin squares and local embeddability of groups 123

4. Quasialgebras and loop algebras
A linear space A over a �eld K with a bilinear (not necessarily associative)
binary operation · will be called a quasialgebra over K. We avoid the wide
spread term non-associative algebra, as the operation · may (but need not)
be associative. A quasialgebra with a unit element 1 is called unitary.

The de�nition of a quasigroup algebra KQ of a quasigroup Q over K is
analogous to that of a group algebra: It is the linear space over K formed
by formal linear combinations

∑
x∈Q axx of elements of Q with just �nitely

many nonzero coe�cients ax ∈ K. Their product is de�ned by the usual
convolution formula

( ∑

x∈Q

axx
)
·
( ∑

y∈Q

byy
)

=
∑

x,y∈Q

(axby)xy =
∑

z∈Q

∑
xy=z

axbyz.

A quasigroup algebra of a loop L will be called a loop algebra; it is obviously
unitary, with the unit 1 ∈ L.

Given an involutive automorphism a 7→ ā of the �eld K, a unary oper-
ation ∗ on a quasialgebra A is called an involution if for all u, v ∈ A and
a, b ∈ K we have

(a) (au + bv)∗ = āu∗ + b̄v∗;
(b) (u∗)∗ = u;
(c) (uv)∗ = v∗u∗.

In what follows K will be some �eld with an involutive automorphism
a 7→ ā, and we will be dealing just with quasialgebras over K.

The following observation can be veri�ed by some straightforward com-
putations.

Proposition 4.1. Let L be an IAA loop. Then

(i) the operation
(∑

x∈L axx
)∗

=
∑

x∈L āxx−1 is an involution on KL;

(ii) xx∗ = x∗x = 1 for all x ∈ L.

The above de�ned operation u 7→ u∗ will be referred to as the natural
involution of the loop algebra KL.

The notion of local embeddability from De�nition 3.2 can be modi�ed
to quasialgebras (with involution) as follows:
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De�nition 4.2. Let A be a quasialgebra with involution and H be some
class of quasialgebras with involution. Then A is said to be locally embed-
dable into the class H if for any �nite set M ⊆ A there is an H ∈ H and
an injective linear map ψ : span (M ∪M∗ ∪M2) → H such that for every
u, v ∈ M we have

(a) ψ(uv) = ψ(u)ψ(v);
(b) ψ(u∗) = ψ(u)∗.

Theorem 4.3. Let A = KL be the loop algebra of an IAA loop L, endowed
with the natural involution. Then KL is locally embeddable into the class
of loop algebras of �nite IAA loops, with natural involution.

Proof. Let M ⊆ A be �nite. Then there is a �nite set M0 ⊆ L such that
M ⊆ span (M0) and M0 = M0

−1. By Corollary 3.5, there is an injective
map ϕ : M0 ∪M2

0 → F into some �nite IAA loop F .
Let H = KF be the loop algebra of F . As M0 ∪M2

0 ⊆ L, it is linearly
independent in H. Hence the map ϕ can be extended to an injective linear
map λ : span(M0 ∪ M2

0 ) → H. Now it su�ces to take the restriction ψ
of λ to span (M ∪M∗ ∪M2) ⊆ span(M0 ∪M2

0 ). Then one can readily see
that ψ : span (M ∪M∗ ∪M2) → H is an injective linear map, satisfying the
conditions (a) and (b) of De�nition 4.2.

Corollary 4.4. Let A = KG be the group algebra of a group G, endowed
with the natural involution. Then KG is locally embeddable into the class
of loop algebras with natural involution of �nite IAA loops.

Similarly as in Corollary 3.6 one can obtain from Theorem 4.3

Corollary 4.5. Every loop algebra of an IAA loop, in particular, every
group algebra, can be embedded into an ultraproduct of a system of loop
algebras of �nite IAA loops with natural involution.

The question whether Theorem 4.3 can be extended beyond the class of
loop algebras of IAA loops remains open. Let us close with the following
conjecture.

Conjecture. Let A be a unitary quasialgebra with involution which is span-
ned by a set U(A) = {u ∈ A; u∗u = uu∗ = 1}. Then A is locally embeddable
into the class of �nite dimensional quasialgebras with involution.

Obviously, if the set U(A) ⊆ A is closed under multiplication then it
forms an IAA loop with the inverse x−1 = x∗. It is not clear if the above
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conjecture is true under this additional assumption. If A is an algebra
(i.e., it is associative) then U(A) is a group. Even this special case of our
conjecture remains open.
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