
Quasigroups and Related Systems 11 (2004), 25− 38

Quasi p-ideals of quasi BCI-algebras

Wiesław A. Dudek and Young Bae Jun

Abstract

As a continuation of our previous study of fuzzy subquasigroups and fuzzy ideals
of BCI-algebras, the notion of a quasi p-ideal is introduced. Characterizations of quasi
p-ideals of the set of all fuzzy points in BCI-algebras are obtained. Next, using special
chains of reals we determine the number of non-equivalent fuzzy p-ideals of some types
of BCI-algebras (especially BCI-algebras which are quasigroups) and give the method
of computation of fuzzy p-ideals.

1. Introduction

The fundamental concept of a fuzzy set, introduced by Zadeh [10] in 1965,
provides a natural generalization for treating mathematically the fuzzy phe-
nomena which exist pervasively in our real world and for building new
branches of fuzzy mathematics. In the area of fuzzy BCK/BCI-algebra,
several researches have been carried out since 1991. The connection be-
tween some BCI-algebras, quasigroups and commutative groups motivated
us to study connections between fuzzy ideals of BCI-algebras and fuzzy
subgroups of the corresponding groups (see for example [2] and [3]).

On the other hand, in [7], Lele et al. used the notion of fuzzy point
to study some properties of BCK-algebras. Jun and Lele [5] used the
notion of fuzzy points for establishing quasi ideal. As a continuation of
[5] and our previous study, in this paper, we introduce the notion of quasi
p-ideal in the set of all fuzzy points of a fixed BCI-algebra, and give some
characterizations of this ideal.

Next, using special sequences of real numbers, we determine the number
of non-equivalent fuzzy p-ideals of some types of BCI-algebras (especially
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these BCI-algebras which are quasigroups) and give the method of compu-
tation of such fuzzy p-ideals.

2. Preliminaries

An algebra (X, ∗, 0) of type (2, 0) is said to be a BCI-algebra if for all
x, y, z ∈ X it satisfies:

(1) ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0,
(2) (x ∗ (x ∗ y)) ∗ y = 0,
(3) x ∗ x = 0,
(4) x ∗ y = 0 and y ∗ x = 0 imply x = y.

A non-empty subset A of a BCI-algebra X is called an ideal of X if
• 0 ∈ A,
• x ∗ y ∈ A and y ∈ A imply x ∈ A.

A non-empty subset A of a BCI-algebra X is called a p-ideal of X if
• 0 ∈ A,
• (x ∗ z) ∗ (y ∗ z) ∈ A and y ∈ A imply x ∈ A.

A p-ideal is an ideal. The converse is not true [6], but every ideal is a
subset of some p-ideal (see [11]). In BCI-algebras which are quasigroups,
i.e. in BCI-algebras isotopic to commutative groups (see [1]), these ideals
coincide. Such quasigroups are medial and a finite subset of such BCI-
algebra is an ideal if and only if it is a subgroup of the corresponding group.
For infinite ideals it is not true.

A fuzzy set µ in a BCI-algebra X is called a fuzzy ideal of X if for all
x, y ∈ X we have

• µ(0) > µ(x),
• µ(x) > min{µ(x ∗ y), µ(y)}.

A fuzzy set µ in a BCI-algebra X is called a fuzzy p-ideal of X if for all
x, y, z ∈ X we have

• µ(0) > µ(x),
• µ(x) > min{µ((x ∗ z) ∗ (y ∗ z)), µ(y)}.

Any fuzzy p-ideal is a fuzzy ideal. The converse does not hold in general
[6]. But basing on the results obtained in [1] it is not difficult to see that in
a BCI-quasigroup a fuzzy set µ is a fuzzy ideal if and only if it is a fuzzy
p-ideal.

A fuzzy set µ in a set X is called a fuzzy point if it takes the value 0 for
all y ∈ X except one, say, x ∈ X. If its value at x is α ∈ (0, 1] we denote
this fuzzy point by xα, where the point x is called its support.
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Let FP (X) denote the set of all fuzzy points in X and define a binary
operation ¯ on FP (X) by

xα ¯ yβ = (x ∗ y)min{α, β} ,

where ∗ is a binary operation on X. If (X, ∗) is a quasigroup, then (FP (X),¯)
is not a quasigroup in general.

If (X, ∗, 0) is a BCI-algebra, then

(p1) ((xα ¯ yβ)¯ (xα ¯ zγ))¯ (zγ ¯ yβ) = 0min{α, β, γ },
(p2) (xα ¯ (xα ¯ yβ))¯ yβ = 0min{α, β },
(p3) xα ¯ xα = 0α,

for all xα, yβ, zγ ∈ FP (X). But the following does not hold:

(p4) xα ¯ yβ = yβ ¯ xα = 0min{α,β} imply xα = yβ .

Hence we know (see [5]) that FP (X) may not be a BCI-algebra, and
so we call FP (X) the quasi BCI-algebra.

3. Quasi p-ideals

For a fuzzy set µ in a BCI-algebra X we define the set FP (µ) of all fuzzy
points in X covered by µ to be the set

FP (µ) = {xq ∈ FP (X) | q 6 µ(x), 0 < q 6 1}.

Example 3.1. Let X = {0, a, b, c, d} be a BCI-algebra with the following
Cayley table:

∗ 0 a b c d

0 0 0 d c b
a a 0 d c b
b b b 0 d c
c c c b 0 d
d d d c b 0

For a fuzzy set µ in X defined by µ(0) = 1, µ(a) = 0.6 and µ(b) =
µ(c) = µ(d) = 0.3, we have

FP (µ) = {0α, aβ, bγ , cδ, dσ|α ∈ (0, 1], β ∈ (0, 0.6], γ, δ, σ ∈ (0, 0.3]}.
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Definition 3.2. For a fuzzy set µ in a BCI-algebra X, the set FP (µ) of
all fuzzy points in X covered by µ is called a quasi p-ideal of FP (X) if for
all δ ∈ Im(µ) and xα, yβ, zγ ∈ FP (X):

(i) 0δ ∈ FP (µ)
(ii) (xα ¯ zγ)¯ (yβ ¯ zγ), yβ ∈ FP (µ) =⇒ xmin{α,β,γ} ∈ FP (µ).

It is not difficult to see that in the above example FP (µ) is a quasi
p-ideal of FP (X).

Note that in [5] and [7] Jun and Lele et al. described ideals of FP (X)
of the second type which are called quasi ideals.

Definition 3.3. A subset FP (µ) of FP (X) is called a quasi ideal of
FP (X) if 0α ∈ FP (µ) for all α ∈ Im(µ) and

(iii) xα ¯ yβ, yβ ∈ FP (µ) =⇒ xmin{α,β} ∈ FP (µ)

for all xα, yβ ∈ FP (X).

Proposition 3.4. Every quasi p-ideal of FP (X) is also a quasi ideal.

Proof. Let xα, yβ ∈ FP (X) be such that xα¯yβ ∈ FP (µ) and yβ ∈ FP (µ).
Then (xα ¯ yβ) ¯ (yβ ¯ yβ) = xα ¯ yβ ∈ FP (µ) and yβ ∈ FP (µ). Since
FP (µ) is a quasi p-ideal of FP (X), it follows that xmin{α,β} ∈ FP (µ).
Hence FP (µ) is a quasi ideal of FP (X).

The converse of Proposition 3.4 may not be true as seen in the following
example.

Example 3.5. Let X = {0, a, b, c, d} be a set with the following Cayley
table:

∗ 0 a b c d

0 0 0 0 0 0
a a 0 a 0 0
b b b 0 0 0
c c c c 0 0
d d c d a 0

Then (X, ∗, 0) is a BCK-algebra and hence a BCI-algebra. Let µ be a
fuzzy set in X defined by

µ(x) =
{

0.9 if x ∈ {0, b},
0.3 if x ∈ {a, c, d}.
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Consider the set

FP (µ) = {0α, aβ, bγ , cδ, dσ | α, γ ∈ (0, 0.9], β, δ, σ ∈ (0, 0.3] }.

Then FP (µ) is a quasi ideal of FP (X). Note that

(a0.4¯ c0.5)¯ (b0.7¯c0.5) = (a∗ c)0.4¯ (b∗ c)0.5 = 00.4¯00.5 = 00.4 ∈ FP (µ)

and b0.7 ∈ FP (µ). But amin{0.4, 0.5, 0.7} = a0.4 6∈ FP (µ). This shows that
FP (µ) is not a quasi p-ideal of FP (X).

The converse of Proposition 3.4 is true only in some very limited cases.
One of such cases is given in following theorem.

Theorem 3.6. Let µ be a fuzzy set in a BCI-algebra X. If FP (µ) is a
quasi ideal of FP (X) such that for all xα, yβ, zγ ∈ FP (X)

(xα ¯ zγ)¯ (yβ ¯ zγ) ∈ FP (µ) =⇒ xα ¯ yβ ∈ FP (µ),

then FP (µ) is a quasi p-ideal of FP (X).

Proof. Let xα, yβ, zγ ∈ FP (X) be such that (xα¯ zγ)¯ (yβ ¯ zγ) ∈ FP (µ)
and yβ ∈ FP (µ). Then by hypothesis, we have xα ¯ yβ ∈ FP (µ) and
yβ ∈ FP (µ), and so xmin{α, β} ∈ FP (µ) since FP (µ) is a quasi ideal of
FP (X). But min{α, β, γ} 6 min{α, β} and xmin{α, β} ∈ FP (µ) imply
(according to the definition of FP (µ)) that xmin{α, β,γ} ∈ FP (µ). Hence
FP (µ) is a quasi p-ideal of FP (X).

Now we describe the connection between fuzzy p-ideals of a BCI-algebra
X and quasi p-ideals of FP (X).

Theorem 3.7. If µ is a fuzzy p-ideal of a BCI-algebra X, then FP (µ) is
a quasi p-ideal of FP (X).

Proof. Since µ(0) > µ(x) for all x ∈ X, we have µ(0) > α for all α ∈ Im(µ).
Hence 0α ∈ FP (µ).

Let xα, yβ, zγ ∈ FP (X) be such that (xα¯ zγ)¯ (yβ¯ zγ) ∈ FP (µ) and
yβ ∈ FP (µ). Then µ((x ∗ z) ∗ (y ∗ z)) > min{α, β, γ} and µ(y) > β. Since
µ is a fuzzy p-ideal of X, it follows that

µ(x) > min{µ((x ∗ z) ∗ (y ∗ z)), µ(y)}
> min{min{α, β, γ}, β} = min{α, β, γ}

so that xmin{α,β,γ} ∈ FP (µ). This completes the proof.
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We now consider the converse of Theorem 3.7.

Theorem 3.8. Let µ be a fuzzy set in a BCI-algebra X such that FP (µ)
is a quasi p-ideal of FP (X). Then µ is a fuzzy p-ideal of X.

Proof. Obviously µ(0) > µ(x) for all x ∈ X. Let x, y, z ∈ X be such that
µ((x ∗ z) ∗ (y ∗ z)) = α and µ(y) = β. Then yβ ∈ FP (µ) and

(xα ¯ zα)¯ (yβ ¯ zα) = ((x ∗ z) ∗ (y ∗ z))min{α,β} ∈ FP (µ).

Since FP (µ) is a quasi p-ideal, it follows that xmin{α,β} ∈ FP (µ) so that

µ(x) > min{α, β} = min{µ((x ∗ z) ∗ (y ∗ z)), µ(y)}.
Therefore µ is a fuzzy p-ideal of X.

Lemma 3.9. [6] A fuzzy set µ in a BCI-algebra X is a fuzzy p-ideal of X
if and only if the level set L(µ; α) = {x ∈ X | µ(x) > α} is a p-ideal of X
when it is non-empty.

Combining Lemma 3.9 and Theorems 3.7 and 3.8, we have

Theorem 3.10. Let µ be a fuzzy set in a BCI-algebra X. Then the fol-
lowing statements are equivalent.

(i) µ is a fuzzy p-ideal of X,
(ii) FP (µ) is a quasi p-ideal of FP (X),

(iii) L(µ; α) is a p-ideal of X for every α ∈ Im(µ).

4. Fuzzy p-ideals with a finite set of values

Results of this section are motivated by the corresponding results obtained
for fuzzy subgroups and different types of fuzzy ideals of algebras connected
with logic (cf. for example [2], [4] and [6]).

In the sequel we will consider only fuzzy sets with a finite image, i.e.
fuzzy sets for which 2 6 |Im(µ)| < ∞. Similarly as in the group theory,
we assume that the empty set ∅ is a subalgebra (a subgroup, respectively).
Moreover, we assume also that every fuzzy set takes value 1 on the empty
set. Thus a fuzzy point xα can be defined as a fuzzy set xα on X such that

xα(z) =





1 for z ∈ ∅
α for z = x
0 for z 6= x

We start with the following.
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Proposition 4.1. Let {Xω : ω ∈ Ω}, where ∅ 6= Ω ⊆ [0, 1], be a collection
of p-ideals of a BCI-algebra X such that

(i) X =
⋃

ω∈Ω

Xω,

(ii) α > β ⇐⇒ Xα ⊂ Xβ ∀ α, β ∈ Ω.

Then a fuzzy set µ in X defined by

µ(x) = sup{ω ∈ Ω : x ∈ Xω}

is a fuzzy p-ideal of X.

Proof. In view of Lemma 3.9, it is sufficient to show that every nonempty
level set L(µ; α) is a p-ideal of X. Assume L(µ; α) 6= ∅ for some α ∈ [0, 1].
Then

α = sup{β ∈ Ω : β < α} = sup{β ∈ Ω : Xα ⊂ Xβ}
or

α 6= sup{β ∈ Ω : β < α} = sup{β ∈ Ω : Xα ⊂ Xβ}.
In the first case we have L(µ;α) =

⋂
β<α Xβ , because

x ∈ L(µ;α) ⇐⇒ x ∈ Xβ for all β < α ⇐⇒ x ∈ ⋂
β<α

Xβ .

In the second case, there exists ε > 0 such that (α − ε, α) ∩ Ω = ∅. We
prove that in this case L(µ; α) =

⋃
β>α

Xβ. Indeed, if x ∈ ⋃
β>α

Xβ , then

x ∈ Xβ for some β > α, which gives µ(x) > β > α. Thus x ∈ L(µ; α), i.e.⋃
β>α

Xβ ⊆ L(µ; α). Conversely, if x /∈ ⋃
β>α

Xβ , then x /∈ Xβ for all β > α,

which implies that x /∈ Xβ for all β > α− ε, i.e. if x ∈ Xβ then β 6 α− ε.
Thus µ(x) 6 α − ε. Therefore x /∈ L(µ;α). Hence L(µ; α) ⊆ ⋃

β>α

Xβ , and

in the consequence L(µ; α) =
⋃

β>α

Xβ . This completes our proof because
⋃

β>α

Xβ and
⋂

β<α

Xβ are p-ideals.

Proposition 4.2. Let µ be a fuzzy set in X and let Im(µ) = {λ0, λ1, ..., λn},
where λ0 > λ1 > ... > λn. If X0 ⊂ X1 ⊂ ... ⊂ Xn = X are p-ideals of X
such that µ(Xk \Xk−1) = λk for k = 0, 1, ..., n, where X−1 = ∅, then µ is
a fuzzy p-ideal in X.

Proof. Since X0 is a p-ideal, then 0 ∈ X0 and µ(0) = µ(X0 \ X−1) = λ0,
which gives µ(0) > µ(x) for all x ∈ X.
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To prove that µ satisfies the second condition of the definition of fuzzy
p-ideals we consider the following four cases:

1o (x ∗ z) ∗ (y ∗ z) ∈ Xk \Xk−1, y ∈ Xk \Xk−1 ,

2o (x ∗ z) ∗ (y ∗ z) ∈ Xk \Xk−1, y /∈ Xk \Xk−1 ,

3o (x ∗ z) ∗ (y ∗ z) /∈ Xk \Xk−1, y ∈ Xk \Xk−1 ,

4o (x ∗ z) ∗ (y ∗ z) /∈ Xk \Xk−1, y /∈ Xk \Xk−1 .

In the first case x ∈ Xk, because Xk is a p-ideal. Thus

µ(x) > λk = µ((x ∗ z) ∗ (y ∗ z)) = µ(y) = min{µ((x ∗ z) ∗ (y ∗ z)), µ(y)} .

In the second case y ∈ Xk−1 ⊂ Xk or y ∈ Xm \ Xm−1 ⊂ Xm \ Xk

for some m > k. This together with (x ∗ z) ∗ (y ∗ z) ∈ Xk \Xk−1 implies
x ∈ Xk or x ∈ Xm \Xk. Thus

µ(x) > λk = µ((x ∗ z) ∗ (y ∗ z)) = min{µ((x ∗ z) ∗ (y ∗ z)), µ(y)}
for x ∈ Xk, y ∈ Xk−1. Similarly

µ(x) > λm = µ(y) = min{µ((x ∗ z) ∗ (y ∗ z)), µ(y)}
for y ∈ Xm \Xm−1, x ∈ Xm \Xk.

In the last two cases the process of verification is analogous.

Corollary 4.3. Let µ be a fuzzy set in X and let Im(µ) = {λ0, λ1, ..., λn},
where λ0 > λ1 > ... > λn. If X0 ⊂ X1 ⊂ ... ⊂ Xn = X are p-ideals of X
such that µ(Xk) > λk for k = 0, 1, ..., n, then µ is a fuzzy p-ideal in X.

Corollary 4.4. If Im(µ) = {λ0, λ1, ..., λn}, where λ0 > λ1 > ... > λn, is
the the set of values of a fuzzy p-ideal µ in X, then all L(µ;λk) are p-ideals
of X such that µ(L(µ; λ0)) = λ0 and µ(L(µ; λk) \ L(µ;λk−1)) = λk for
k = 1, 2, ..., n.

Proposition 4.5. If a fuzzy p-ideal µ in a BCI-algebra X has the finite
set of values, then every descending chain of p-ideals of X terminates at
finite step.

Proof. Suppose there exists a strictly descending chain X1 ⊃ X2 ⊃ X3 ⊃ ...
of p-ideals of a BCI-algebra X which does not terminate at finite step. We
prove that µ defined by

µ(x) =

{ n

n + 1
for x ∈ Xn \Xn+1, n = 1, 2, . . .

1 for x ∈ ⋂
Xn, n = 1, 2, . . .
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where X1 = X, is a fuzzy p-ideal with an infinite number of values.
Clearly µ(0) > µ(x) for all x ∈ X. Let x, y, z ∈ X. Assume that

(x ∗ z) ∗ (y ∗ z) ∈ Xn \Xn+1 and y ∈ Xk \Xk+1 for some k and some n.
(Without loss of generality, we can assume n 6 k.) Then y ∈ Xn, and in
the consequence, x ∈ Xn because Xn is a p-ideal. Hence

µ(x) > n

n + 1
= min{µ((x ∗ z) ∗ (y ∗ z)), µ(y)} .

If (x ∗ z) ∗ (y ∗ z) and y are in
⋂

Xn, then x ∈ ⋂
Xn . Thus

µ(x) = 1 = min{µ((x ∗ z) ∗ (y ∗ z)), µ(y)} .

If (x ∗ z) ∗ (y ∗ z) /∈ ⋂
Xn and y ∈ ⋂

Xn, then (x ∗ z) ∗ (y ∗ z) ∈ Xk \Xk+1

for some k. Hence x ∈ Xk and

µ(x) > k

k + 1
= min{µ((x ∗ z) ∗ (y ∗ z)), µ(y)} .

If (x ∗ z) ∗ (y ∗ z) ∈ ⋂
Xn and y /∈ ⋂

Xn, then y ∈ Yt \Xt+1 for some t,
which implies x ∈ Xt and

µ(x) > t

t + 1
= min{µ((x ∗ z) ∗ (y ∗ z)), µ(y)} .

This proves that µ is a fuzzy p-ideal. Obviously µ has an infinite number
of different values. Obtained contradiction completes our proof.

For finite BCI-algebras the following proposition is true (cf. [6]).

Proposition 4.6. Let µ and ν be a fuzzy p-ideals of a finite BCI-algebra
X such that the families of level p-ideals of µ and ν are identical. Then
µ = ν if and only if Im(µ) = Im(ν).

5. Equivalences of fuzzy p-ideals

Results of this section are motivated by the corresponding results obtained
for fuzzy subgroups [9] and by the connection of some BCI-algebras [1]
with groups.

In the set F (X) of all fuzzy sets on X we can introduce (sf. [9]) the
equivalence relation based on the heuristic principle that the distinction or
similarity of fuzzy sets is really based on the relative membership degrees of
elements with respect to each other rather than the absolute membership
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degree of each element to the fuzzy set under consideration. Thus two fuzzy
sets are similar if they maintain the same relative degrees of membership
with respect to two elements. This gives the motivation to the following
relation [9]:

µ ∼ ν ⇐⇒




µ(x) > µ(y) ⇔ ν(x) > ν(y)
µ(x) = 1 ⇔ ν(x) = 1
µ(x) = 0 ⇔ ν(x) = 0

for all x, y ∈ X.
It is not difficult to see that this relation is an equivalence relation on

F (X) and coincides with the equality of subsets in 2X .
The condition µ(x) = 0 if and only if ν(x) = 0 says that the supports

of µ and ν are equal. This condition cannot be redundant since it is an
essential part of the equivalence relation as seen in the example below.

If in the above definition we replace the strict inequality by > we obtain
the new equivalence relation which has the same equivalence classes as the
above equivalence.

Example 5.1. Let K = {1,−1, i,−i} be a group. Then (K, ·, 1) is a BCI-
algebra (a BCI-quasigroup in fact) with 0 = 1. Define two fuzzy sets µ
and ν putting

µ(x) =





1 for x = 1
0.5 for x = −1
0.3 for x ∈ {i,−i}

and ν(x) =





1 for x = 1
0.5 for x = −1
0 for x ∈ {i,−i}

Then these fuzzy sets are fuzzy p-ideals satisfying only two first condition
of the above definition. Hence µ and ν are not equivalent.

Proposition 5.2. If µ and ν are equivalent fuzzy p-ideals (fuzzy ideals),
then |Im(µ)| = |Im(ν)|.
Proof. The proof is analogous to the proof of Proposition 2.2 in [9].

Note that the converse of Proposition 5.2 is not true.

Example 5.3. Let X = {0, a, b, c} be a BCI-algebra with the following
Cayley table:

∗ 0 a b c

0 0 0 b b
a a 0 c b
b b b 0 0
c c b a 0
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Define fuzzy sets µ and ν in X as follows:

µ(x) =





1 for x = 0
0.5 for x = a
0.3 for x ∈ {b, c}

ν(x) =





1 for x = 0
0.5 for x = b
0.3 for x ∈ {a, c}

Then these two fuzzy sets are fuzzy ideals with the same supports and the
same images. But µ and ν are not equivalent because µ(a) > µ(b), but
ν(a) ≯ ν(b).

Between level p-ideals of equivalent fuzzy p-ideals there is a one-to-one
correspondence. Namely, the following theorem is valid.

Theorem 5.4. Two fuzzy p-ideals µ and ν of a BCI-algebra X are equiv-
alent if and only if for each α > 0 there exists β > 0 such that L(µ;α) =
L(ν; β).

Proof. Let µ and ν be equivalent. If µ(x) = 1 for all x, then also ν(x) = 1 for
all x. In this case we put β = α. Analogously when µ(x) = 0 for all x ∈ X.
Now, if |Im(µ)| > 2, then, according to the Proposition 4.2, fuzzy p-ideals
µ and ν have the same number of values. Thus Im(µ) = {α1, . . . , αn}
and Im(ν) = {β1, . . . , βn} for some αi < αi+1 and βi < βi+1. Hence
L(µ; αi) ) L(µ;αi+1) and L(ν; βi) ) L(ν; βi+1). This together with the
condition µ(x) > µ(y) ⇔ ν(x) > ν(y) gives L(µ;αi) = L(ν; βi).

Conversely, since by the assumption |Im(µ)| > 2, there exists x ∈ X
such that µ(x) > 0. Thus x ∈ L(µ; α) for some α > 0. But by hypothesis
there is β > 0 such that L(µ; α) = L(ν; β). Hence ν(x) > β > 0. Similarly
we can show that ν(x) > 0 implies µ(x) > 0. Therefore µ(x) = 0 if and
only if ν(x) = 0.

Now let α = µ(x) > µ(y) for some x, y ∈ X. In this case, by hypothesis
x ∈ L(µ; α) = L(ν;β). If ν(x) 6 ν(y), then obviously ν(y) > β and
y ∈ L(ν; β) = L(µ;α), which is impossible. Thus ν(x) > ν(y). Similarly
ν(x) > ν(y) implies µ(x) > µ(y).

If µ(x) = 1, then also µ(0) = 1, by the definition of fuzzy p-ideals,
and, in the consequence 0, x ∈ L(µ; 1) = L(ν; β) for some β > 0. Hence
ν(0) = ν(x) for all x ∈ L(ν;β) = L(µ; α) because ν(0) > ν(x) implies
1 = µ(0) > µ(x). But for ν(0) < 1 = ν(∅) we have also µ(0) < µ(∅) = 1,
which is a contradiction. Therefore β = 1. Hence µ(x) = 1 if and only if
ν(x) = 1. This completes the proof.

Now let
∅ ⊂ X1 ⊂ X2 ⊂ . . . ⊂ Xn = X
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be a maximal chain of p-ideals of a BCI-algebra X. Putting µ(∅) = 1 and
µ(Xk \Xk−1) = λk for all k = 1, . . . , n, where

1 > λ1 > λ2 > . . . > λn > 0

we can obtain a fuzzy p-ideal µ on X. Such fuzzy p-ideal can be identified
with the sequence

λ1 λ2 . . . λn.

It is clear that non-equivalent fuzzy p-ideals have distinct sequences.

Example 5.5. Let (X, ∗, 0) be a BCI-algebra induced by Z5, i.e. let X =
Z5 and x∗y = (x+4y)(mod 5). Then (X, ∗, 0) is a group-like BCI-algebra
(BCI-quasigroup) in which all p-ideals are subgroups of Z5 (cf. [1]). Thus a
maximal chain of p-ideals of X has the form ∅ ⊂ X1 ⊂ X2, where X1 = {0}
and X2 = Z5 and corresponds to the sequence λ1 λ2.

Using Theorem 5.4 it is not difficult to see that any fuzzy p-ideal of
X corresponds to a fuzzy p-ideal determined by one of the following three
sequences: 1 1, 1λ, 1 0, where 1 > λ > 0. The first sequence determines a
fuzzy p-ideal µ1 such that µ1(x) = 1 for all x ∈ X. The second corresponds
to µ2 such that µ2(0) = 1 and µ2(x) = λ for all x 6= 0. The sequence 1 0
represents µ3 such that µ3(0) = 1 and µ3(x) = 0 for all x 6= 0. (Fuzzy
p-ideals µ2 and µ3 are non-equivalent because they have different supports.)

Note that the number of fuzzy p-ideals of this BCI-algebra is 1 + 2 =
22 − 1, i.e., one fuzzy p-ideal whose support is X1 and two whose support
is X2.

Example 5.6. Now let (X, ∗, 0) be a BCI-algebra induced by Z4. Then
x ∗ y = (x + 3y)(mod 4) and ∅ ⊂ X1 ⊂ X2 ⊂ X3 , where X1 = {0},
X2 = {0, 2} ' Z2, X3 = Z4, is a maximal chain of p-ideals of X. This chain
corresponds to the sequence λ1 λ2 λ3.

Similarly as in the previous case, it is not difficult to see that all non-
equivalent fuzzy p-ideals of X correspond to one of the following sequences:
1 1 1, 1 1 λ1, 1 1 0, 1λ1 λ1, 1λ1 λ2, 1λ1 0, 1 0 0, where 1 > λ1 > λ2 > 0.

The sequence 1α β represents a fuzzy p-ideal

µ(x) =





1 for x ∈ X1

α for x ∈ X2 \X1

β for x ∈ X3 \X2

In this case the number of fuzzy p-ideals is 1+2+22 = 23−1, i.e. one fuzzy
p-ideal whose support is X1, 2 whose support is X2, and 22 whose support
is X3.
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Basing on the above two examples we can formulate the following the-
orem, which can be proved by induction.

Theorem 5.7. A chain X1 ⊂ X2 ⊂ . . . ⊂ Xn = X of p-ideals of a BCI-

algebra X induces
n−1∑
k=0

2k = 2n − 1 non-equivalent fuzzy p-ideals of X.

Corollary 5.8. A BCI-algebra X in which all its p-ideals can be ordered
in the chain X1 ⊂ X2 ⊂ . . . ⊂ Xn = X has exactly 2n − 1 non-equivalent
fuzzy p-ideals.

6. Fuzzy p-ideals of group-like BCI-algebras

Group-like BCI-algebras are described in [1]. Such BCI-algebras are quasi-
groups induced by commutative groups, i.e. for every group-like BCI-alge-
bra (X, ∗, 0) there exists a commutative group (X, +, 0) such that x ∗ y =
x− y holds for all x, y ∈ X. The maximal chain of p-ideals of BCI-algebra
X induced by a cyclic p-group Zpn coincides with the maximal chain of
subgroups of Zpn and has the form {0} ⊂ X1 ⊂ . . . ⊂ Xn, where Xk = Zpk .
Thus, as a consequence of our Theorem 5.7 or Proposition 3.3 from [9], we
obtain

Corollary 6.1. A BCI-algebra induced by a cyclic p-group Zpn has exactly
2n+1 − 1 non-equivalent fuzzy p-ideals.

Similarly, as a consequence of our Theorem 5.7 and results obtained in
[9] (Theorem 3.4 and Proposition 3.6), we obtain

Corollary 6.2. A BCI-algebra induced by the group Zpn×Zq, where p 6= q
are primes, has exactly 2n+1(n + 2)− 1 non-equivalent fuzzy p-ideals.

Corollary 6.3. A BCI-algebra induced by the group Zq ×Zq, where q is a
prime, has exactly 4q + 7 non-equivalent fuzzy p-ideals.

Thus, for example, BCI-algebras induced by Zp, where p is a prime,
have only 3 non-equivalent fuzzy p-ideals. All these fuzzy p-ideals are de-
scribed in Example 5.5. BCI-algebras induced by Zp2 have 7 non-equivalent
fuzzy p-ideals (see Example 5.6), but BCI-algebras induced by Z12, Z18 and
Z20 have 31 such fuzzy p-ideals.
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