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Quotient groups induced by fuzzy subgroups

Yong Lin Liu

Abstract

We construct a quotient group induced by a fuzzy normal subgroup and prove the cor-
responding isomorphism theorems. Obtained results are used to the characterization of
selected classes of quotient groups.

1. Introduction
In [16] L. A. Zadeh introduced the concept of fuzzy sets and fuzzy set
operations. A. Rosenfeld [14] applied this concept to the theory of groupoids
and groups. The various constructions of fuzzy quotient groups and fuzzy
subgroup isomorphisms have been investigated by several researchers (see
e.g. [1, 3, 6, 9, 11, 13]). In this paper we give a new method of construction
of quotient groups by fuzzy normal subgroups and apply this construction
to the characterization of selected classes of quotient groups.

2. Preliminaries
A fuzzy subset of a group G, i.e. a function µ from G into [0,1], is called a
fuzzy subgroup of G if

(F1) µ(xy) > min{µ(x), µ(y)} for all x, y ∈ G, and
(F2) µ(x−1) > µ(x) for all x ∈ G,
or, equivalently, if µ(xy−1) > min{µ(x), µ(y)} for all x, y ∈ G.
A fuzzy subgroup µ of a group G is called normal if for all x, y ∈ G it

satis�es one of the following equivalent conditions (cf. [15]):
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(F3) µ(xyx−1) > µ(y),
(F4) µ(xyx−1) = µ(y),
(F5) µ(xy) = µ(yx).
It is not di�cult to see that for all fuzzy subgroups µ of a group G and

all x, y ∈ G

(i) µ(e) > µ(x),
(ii) µ(x−1) = µ(x),

(iii) µ(xy−1) = µ(e) implies µ(x) = µ(y).
Fuzzy subgroups of G can be characterized by the collection of levels, i.e.

sets of the form µt = {g ∈ G |µ(g) > t}, where t ∈ [0, 1]. Namely, as it is
proved in [15], a fuzzy subset µ of a group G is a fuzzy (normal ) subgroup of
G if and only if for all t ∈ [0, 1], µt is either empty or a (normal ) subgroup
of G.

The image f(η) of a fuzzy subset η of G and preimage f−1(µ) of a fuzzy
subset µ of G′ and a map f : G → G′ are de�ned as

f(η)(y) =

{
sup

x∈f−1(y)

η(x) if f−1(y) 6= ∅,
0 otherwise,

and
f−1(µ)(x) = µ(f(x)), x ∈ G.

It is not di�cult to see that f(η) and f−1(µ) are fuzzy subsets.

3. Quotient groups induced by fuzzy subgroups
Let µ be a fuzzy normal subgroup of a group G. For any x, y ∈ G, de�ne a
binary relation ∼ on G by

x ∼ y ⇐⇒ µ(xy−1) = µ(e),

where e is the unit of G.
Lemma 1. ∼ is a congruence of G.
Proof. The re�exivity and symmetry are obvious. To prove the transitivity
let x ∼ y and y ∼ z. Then µ(xy−1) = µ(yz−1) = µ(e) and µ(xz−1) =
µ(xy−1yz−1) > min{µ(xy−1), µ(yz−1)} = µ(e). Hence µ(xz−1) = µ(e),
which proves that ∼ is an equivalence relation.
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Now, if x ∼ y, then µ(xy−1) = µ(e). Thus for all z ∈ G we have
µ((xz)(yz)−1) = µ(xzz−1y−1) = µ(xy−1) = µ(e). Hence xz ∼ yz. Since
µ is a fuzzy normal subgroup, we have µ((zx)(zy)−1) = µ(zxy−1z−1) =
µ(z−1zxy−1) = µ(xy−1) = µ(e). This gives zx ∼ zy.

Using these facts it is not di�cult to see that ∼ is a congruence.
The equivalence class containing x is denoted by µx. G/µ denotes the

corresponding quotient set.
Proposition 1. If µ is a fuzzy normal subgroup of a group G, then G/µ is
a group with the operation µxµy = µxy.
Example. Let G be the additive group of all integers and let µ(x) = t1 if
2|x, and µ(x) = t0 if 2 6 |x, where 0 6 t0 < t1 6 1. Then µ is a fuzzy normal
subgroup of G and G/µ = {µ0, µ1} is a quotient group induced by µ.
Lemma 2. [13] If f : G → G′ is an epimorphism of groups and µ a fuzzy
normal subgroup of G, then f(µ) is a fuzzy normal subgroup of G′.

Basing on this Lemma and Proposition 4.2 in [7] we can proved
Lemma 3. Let f : G → G′ be a homomorphism of groups, µ a fuzzy
subgroup of G and ν a fuzzy subgroup of G′.

(i) If f is an epimorphism, then f(f−1(ν)) = ν.

(ii) If µ is a constant on kerf , then f−1(f(µ)) = µ.
Let Gµ = µµ(0) = {x ∈ G|µ(x) = µ(0)}. It is obvious that if µ is a

fuzzy (normal) subgroup of G, then Gµ is a (normal) subgroup of G.
Theorem 1. Let f : G → G′ be an epimorphism of groups and µ a fuzzy
normal subgroup of G with kerf ⊆ Gµ. Then G/µ ∼= G′/f(µ).

Proof. By Proposition 1 and Lemma 2, G/µ and G′/f(µ) are groups.
Let η : G/µ → G′/f(µ), where η(µx) = (f(µ))f(x). If µx = µy,

then µ(xy−1) = µ(e). Since kerf ⊆ Gµ, then µ is a constant on kerf ,
and by Lemma 3 (ii) we have f−1(f(µ)) = µ. Thus (f−1(f(µ)))(xy−1) =
(f−1(f(µ)))(e), i.e. f(µ)(f(xy−1)) = f(µ)(f(e)), then f(µ)(f(x)(f(y))−1)
= f(µ)(e′), and so (f(µ))f(x) = (f(µ))f(y). Hence η is well-de�ned.

It is also a homomorphism because η(µxµy) = η(µxy) = (f(µ))f(xy) =
(f(µ))f(x)f(y) = (f(µ))f(x)(f(µ))f(y) = η(µx)η(µy). Since f is an epimor-
phism, for any (f(µ))y ∈ G′/f(µ), there exists x ∈ G such that f(x) = y.
So η(µx) = (f(µ))f(x) = (f(µ))y, which means that η is an epimorphism.

Moreover, (f(µ))f(x) = (f(µ))f(y) ⇒ f(µ)(f(x)(f(y))−1) = f(µ)(e′) ⇒
f(µ)(f(xy−1)) = f(µ)(f(e)) ⇒ (f−1(f(µ)))(xy−1) = (f−1(f(µ)))(e) ⇒
µ(xy−1) = µ(e) ⇒ µx = µy, which proves that η is an isomorphism.
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Hence G/µ ∼= G′/f(µ).
Corollary 1. Let f : G → G′ be an epimorphism of groups and ν a fuzzy
normal subgroup of G′. Then G/f−1(ν) ∼= G′/ν.

Proof. Since f−1(ν) is a fuzzy normal subgroup (cf. [12]), G/f−1(ν) and
G′/ν are groups. Moreover, by Lemma 3, we have ν = f(f−1(ν)).

If x ∈ kerf , then f(x) = e′ = f(e), and so ν(f(x)) = ν(f(e)), i.e.
f−1(ν)(x) = f−1(ν)(e). Hence x ∈ Gf−1(ν), i.e. kerf ⊆ Gf−1(ν).

Theorem 1 completes the proof.
Proposition 2. Let χS be a characteristic function of a subset S of a group
G. Then χS is a fuzzy normal subgroup of G if and only if S is a normal
subgroup of G.
Proof. If x, y ∈ S, where S is a normal subgroup of G, then χS (xy−1) =
χS (x) = χS (y) = 1. Hence χS (xy−1) = min{χS (x), χS(y)}. If at least
one of x and y is not in S, then at least one of χS (x) and χS (y) is 0.
Therefore χS (xy−1) > min{χS (x), χS (y)}. Hence χS is a fuzzy subgroup of
G. Moreover, for any x, y ∈ G, if y ∈ S, then xyx−1 ∈ S and χS (xyx−1) =
1 = χS (y). If y 6∈ S, then χS (y) = 0, so χS (xyx−1) > χS (y). Hence χS is a
fuzzy normal subgroup of G.

Conversely, if χS be a fuzzy normal subgroup of G, then for any x, y ∈ S,
we have χS (xy−1) > min{χS (x), χS (y)} = 1. Thus χS (xy−1) = 1 and
xy−1 ∈ S. Similarly for any y ∈ S, x ∈ G we have χS (xyx−1) > χS (y) = 1.
Hence χS (xyx−1) = 1 and xyx−1 ∈ S. This proves that S is a normal
subgroup of G.
Corollary 2. G/χ

kerf
∼= G′ for any epimorphism f : G → G′ of groups.

Proof. It follows from the fact that χ{e}f = χ
kerf

and G′/χ{e}
∼= G′.

Let N be a normal subgroup of a group G. Recall that a quotient group
G/N induced by a normal subgroup N is determined by an equivalent
relation ∼, where x ∼ y is de�ned by xy−1 ∈ N . For no confusion, we write
x ∼ y(N) if x is equivalent to y with respect to N , and x ∼ y(χN ) if x is
equivalent to y with respect to the fuzzy normal subgroup χN .
Lemma 4. If N is a normal subgroup of a group G, then x ∼ y(N) if
and only if x ∼ y(χN ).
Corollary 3. Let f : G → G′ be an epimorphism of groups and N be a
normal subgroup of G such that kerf ⊆ N . Then G/χN

∼= G′/χ
f(N)

.

Proof. By Proposition 2, χN and χ
f(N)

are fuzzy normal subgroups of G
and G′, respectively. Putting µ = χN in Theorem 1, we obtain Gµ =
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GχN = N ⊇ kerf . Since f is an epimorphism, for any x′ ∈ G′, there exists
x ∈ G such that x′ = f(x). If x′ ∈ f(N), then x ∈ N , which by Lemma 3
(ii) gives f(µ)(x′) = f(χN )(x′) = f(χN )(f(x)) = χN (x) = 1 = χ

f(N)
(x′). If

x′ 6∈ f(N), then x 6∈ N and f(µ)(x′) = f(χN )(x′) = χN (x) = 0 = χ
f(N)

(x′).
Hence G/χN

∼= G′/χ
f(N)

.
Observe that by Lemma 4, we obtain G/χN

∼= G/N and G′/χ
f(N)

∼=
G′/f(N). This together with Corollary 3 implies the First Isomorphism
Theorem for groups.

Moreover, if f : G → G′ is an epimorphism of groups and K is a normal
subgroup of G′, then, by Proposition 2, we see that χ

f−1(K)
and χK are

fuzzy normal subgroups of G and G′, respectively.
Putting ν = χK , we have f−1(ν) = f−1(χK ) = χ

f−1(K)
. Indeed, if

x ∈ f−1(K), then f(x) ∈ K, f−1(χK )(x) = χK f(x) = 1 = χ
f−1(K)

(x). If
x 6∈ f−1(K), then f(x) 6∈ K, f−1(χK )(x) = χK f(x) = 0 = χ

f−1(K)
(x).

Thus for ν = χK , as a consequence of Corollary 1, we obtain
Corollary 4. If f : G → G′ is an epimorphism of groups and K is a
normal subgroup of G′, then G/χ

f−1(K)
∼= G′/χK .

Lemma 5. If N is a normal subgroup and µ is a fuzzy normal subgroup
of a group G, then µ restricted to N is a fuzzy normal subgroup of N and
N/µ is a normal subgroup of G/µ.
Proof. Indeed, if µa, µb ∈ N/µ, where a, b ∈ N , then µa(µb)−1 = µaµb−1 =
µab−1 ∈ N/µ. If µa ∈ N/µ, µx ∈ G/µ, where a ∈ N and x ∈ G, then
xax−1 ∈ N and µxµa(µx)−1 = µxµaµx−1 = µxax−1 ∈ N/µ. Thus N/µ is a
normal subgroup of G/µ.
Theorem 2. If µ and ν are two fuzzy normal subgroups of a group G such
that µ(e) = ν(e), then GµGν/ν ∼= Gµ/(µ ∩ ν).
Proof. By Lemma 5, ν is a fuzzy normal subgroup of GµGν . By [11] µ∩ν is
a fuzzy normal subgroup of Gµ. Thus GµGν/ν and Gµ/(µ∩ ν) are groups.

For any x ∈ GµGν , x = ab, where a ∈ Gµ and b ∈ Gν , we de�ne
g : GµGν/ν → Gµ/(µ ∩ ν) putting g(νx) = (µ ∩ ν)a.

If νx = νy, where y = a1b1, a1 ∈ Gµ and b1 ∈ Gν , then

ν(ab(a1b1)−1) = ν(abb−1
1 a−1

1 ) = ν(a−1
1 abb−1

1 ) = ν(a−1
1 a(b1b

−1)−1) = ν(e).

Hence ν(a−1
1 a) = ν(b1b

−1) = ν(e). Thus

(µ ∩ ν)(aa−1
1 ) = min{µ(aa−1

1 ), ν(aa−1
1 )} = min{µ(e), ν((a−1

1 a)−1)}
= min{µ(e), ν(e)} = (µ ∩ ν)(e),
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i.e. (µ ∩ ν)a = (µ ∩ ν)a1 . Hence g is well-de�ned.
If νx, νy ∈ GµGν/ν, where x = ab, y = a1b1, a, a1 ∈ Gµ and b, b1 ∈ Gν ,

then xy = aba1b1. Since Gµ is normal, ba1b1 ∈ Gµ. Hence g(νxνy) =
g(νxy) = (µ ∩ ν)a(ba1b1) = (µ ∩ ν)a(µ ∩ ν)ba1b1 and (µ ∩ ν)((ba1b1)a−1

1 ) =
min{µ(ba1b1a

−1
1 ), ν(ba1b1a

−1
1 ) } = min{µ((ba1b1)a−1

1 ), ν(b(a1b1a
−1
1 )) } =

min{µ(e), ν(e) } = (µ∩ν)(e). Hence (µ∩ν)ba1b1 = (µ∩ν)a1 , i.e. g(νxνy) =
(µ ∩ ν)a(µ ∩ ν)a1 = g(νx)g(νy), which shows that g is a homomorphism.

It is also endomorphism since for (µ ∩ ν)a ∈ Gµ/(µ ∩ ν) and b ∈ Gν ,
we have x = ab ∈ GµGν and g(νx) = (µ ∩ ν)a.

Moreover, if x, y ∈ GµGν , where x = ab, y = a1b1, a, a1 ∈ Gµ,
b, b1 ∈ Gν , and (µ ∩ ν)a = (µ ∩ ν)a1 , then (µ ∩ ν)(aa−1

1 ) = (µ ∩
ν)(e), i.e, min{µ(aa−1

1 ), ν(aa−1
1 )} = min{µ(e), ν(e)}. But µ(e) = ν(e)

and µ(aa−1
1 ) = µ(e) imply ν(aa−1

1 ) = ν(e). Therefore ν(xy−1) =
ν(ab(a1b1)−1) = ν(abb−1

1 a−1
1 ) = ν(a−1

1 abb−1
1 ) > min{ν(a−1

1 a), ν(bb−1
1 )} =

min{ν((aa−1
1 )−1), ν(bb−1

1 )} = min{ν(e), ν(e)} = ν(e). Thus νx = νy.
Hence GµGν/ν ∼= Gµ/(µ ∩ ν).

Corollary 5. Let N , K be two normal subgroups of a group G. Then
NK/χK

∼= N/χN∩K .

Proof. By Proposition 2, χN and χK are fuzzy normal subgroups of G.
Putting µ = χN and ν = χK in Theorem 2, we obtain Gµ = N , Gν =
K, µ ∩ ν = χN ∩ χK = χN∩K and µ(e) = 1 = ν(e). Hence NK/χK

∼=
N/χN∩K .

Since NK/χK
∼= NK/K and N/χN∩K

∼= N/N ∩ K, as a consequence
of the above two lemmas we obtain the Second Isomorphism Theorem of
groups. The Third Isomorphism Theorem is a consequence of the following
Theorem 3. Let µ and ν be two fuzzy normal subgroups of a group G with
ν 6 µ and ν(e) = µ(e). Then (G/ν)/(Gµ/ν) ∼= G/µ.
Proof. By Lemma 5, Gµ/ν is a normal subgroup of G/ν.

Putting f(νx) = µx for all x ∈ G, we de�ne f : G/ν → G/µ such
that ν(xy−1) = ν(e) = µ(e) for all νx = νy. Because ν 6 µ, we have
µ(xy−1) > ν(xy−1) = µ(e), and so µ(xy−1) = µ(e), i.e. µx = µy, which
means that f is well-de�ned. Since f(νxνy) = f(νxy) = µxy = µxµy =
f(νx)f(νy), f is a homomorphism. By the de�nition, it is an epimorphism,
too. But kerf = {νx ∈ G/ν | f(νx) = µe} = {νx ∈ G/ν |µx = µe} = {νx ∈
G/ν |µ(x) = µ(e)} = {νx ∈ G/ν |x ∈ Gµ} = Gµ/ν. Thus kerf = Gµ/ν
and (G/ν)/(Gµ/ν) ∼= G/µ.
Corollary 6. (G/χK )/(N/χK ) ∼= G/χN for any normal subgroups N ⊆ K
of a group G.



Quotient groups induced by fuzzy subgroups 77

Finally we consider fuzzy abelian subgroups, i.e. fuzzy subgroups µ of a
group G satisfying the identity µ(xyx−1y−1) = µ(e).
Proposition 3. A fuzzy subgroup µ of a group G is abelian if and only if
G/µ is abelian.
Proof. If µ is a fuzzy abelian subgroup, then µ(xyx−1y−1) = µ(e), and
hence µ(xy) = µ(yx). Thus µ is fuzzy normal. Since µ(xy(yx)−1) =
µ(xyx−1y−1) = µ(e), we have µxy = µyx, i.e. µxµy = µyµx. Hence G/µ is
an abelian group.

Conversely, if G/µ is abelian, then µxy = µyx and µ(xy(yx)−1) = µ(e).
So µ(xyx−1y−1) = µ(e).

Let µ be a fuzzy subgroup of a group G. The smallest positive integer
n (if it exists) such that µ(xn) = µ(e) is called the fuzzy order of x with
respect to µ and is denoted by FOµ(x) (cf. [4]). If FOµ(x) is �nite for
every x ∈ G, then µ is called fuzzy torsion. In the case when for all x ∈ G
FOµ(x) is a power of a prime number p, we say that µ is a fuzzy p-subgroup
of G.
Proposition 4. A fuzzy normal subgroup µ of a group G is a fuzzy p-
subgroup if and only if G/µ is a p-group.

Proof. If µ is a fuzzy p-subgroup of G, then for any µx ∈ G/µ there is
a nonnegative integer s such that µ(xps

) = µ(e), i.e. µxps = µe. Hence
(µx)ps

= µe. Conversely, if G/µ is a p-group of G, then for any x ∈ G
and some nonnegative integer t we have (µx)pt

= µe, i.e. µxpt = µe. Thus
µ(xpt

) = µ(e), which completers the proof.
Proposition 5. A fuzzy subgroup µ of an abelian group G is fuzzy torsion
if and only if G/µ is torsion.
Proof. Because G is an abelian group, µ is normal. Let G/µ be torsion. For
any x ∈ G, there is a positive integer n such that (µx)n = µe, i.e. µxn = µe,
and so µ(xn) = µ(e). Hence FOµ(x) is �nite and µ is fuzzy torsion.

The converse is obvious.
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