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Extending sloops of cardinality 16 to SQS-skeins
with all possible congruence lattices

Magdi H. Armanious and Enas M. A. Elzayat

Abstract

It is well known that each STS(15) with a sub-STS(7) is derived [11]. In this article, we will
improve this result by showing that each non-simple sloop L of cardinality 16 with any possible
congruence lattice C(L) can be extended to a non-simple SQS-skein S of cardinality 16 with all
possible congruence lattices for C(S). Accordingly, we may say that any triple system STS(15)

with m sub-STS(7)s is a derived triple system from an SQS(16) having n sub-SQS(8)s for all
possible non-zero numbers of m and n.

1. Introduction
A Steiner quadruple (triple) system is a pair (L; B), where L is a �nite set and B
is a collection of 4-subsets (3-subsets) called blocks of L such that every 3-subset
(2-subset) of L is contained in exactly one block of B [9], [10]. Let SQS(m)
denote a Steiner quadruple system (brie�y: quadruple system) of cardinality m
and STS(n) denote Steiner triple system (brie�y: triple system) of cardinality n.

It is well known that SQS(m) exists i� m ≡ 2 or 4 (mod 6) and STS(n) exists
i� n ≡ 1 or 3 (mod 6) (cf. [9], [10]).

Let L = (L;B) be a quadruple system. If one considers Lx = L − {x} for
any point x ∈ L and deletes that point from all blocks which contain it then the
resulting system (Lx; B(x)) is a triple system, where B(x) = {b‘ = b−{x} : b ∈ B
and x ∈ b}. Now, (Lx; B(x)) is called a derived triple system (or brie�y DTS) of
(L;B) (cf. [9], [10]).

There is one to one correspondence between STSs and sloops. A sloop L =
(L; ·, 1) is a groupoid with a neutral element 1 satisfying the identities:

x · y = y · x, 1 · x = x, x · (x · y) = y.
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Notice that for any a and b ∈ L the equation a · x = b has the unique solution
x = a · (a · x) = a · b, i. e., L is a quasigroup.

A sloop L is called Boolean if it satis�es in addition the associative law.

Also, there is one to one correspondence between SQSs and SQS-skeins (cf.
[9], [10]). An SQS-skein (S; q) is an algebra with a unique ternary operation q
satisfying:

q(x, y, z) = q(x, z, y) = q(z, x, y),
q(x, x, y) = y,

q(x, y, q(x, y, z)) = z.

Since the equation q(a, b, x) = c has the unique solution q(a, b, c) = x for
a, b, c ∈ S, it follows that an SQS-skein (S; q) is a ternary quasigroup (3-quasigroup).

An SQS-skein (S; q) is called Boolean if it satis�es in addition the identity:
q(a, x, q(a, y, z)) = q(x, y, z).

The sloop associated with a derived triple system is also called derived.
A subsloop N of L (sub-SQS-skein of S) is called normal if and only if N = [1]θ

(N = [x]θ) for a congruence θ on L(respectively,S) (cf. [1], [12]).
A subsloop N is called normal if and only if

x · (y ·N) = (x · y) ·N

for all x, y ∈ L [12].
There is an isomorphism between the lattice of normal subsloops (sub-SQS-

skeins containing a �xed element) and the congruence lattice of the sloop (SQS-
skein) (cf. [1], [12]). Quackenbush in [12] and similarly the author in [1] have
proven that the congruences of sloops (of SQS-skeins) are permutable, regular and
uniform. Moreover, they proved the following property well known from groups.
Theorem 1. Every subsloop (sub-SQS-skein) of a �nite sloop L = (L; ·, 1) (SQS-
skein S = (S; q)) with cardinality 1

2 |L| (respectively, 1
2 |S|) is normal.

The variety of all sloops (SQS-skeins) is a Mal`cev variety. Any Boolean group
is a sloop that is called a Boolean sloop. If (G; +) is a Boolean group, then
(G; q(x, y, z) = x + y + z) is a Boolean SQS-skein [1]. The class of all Boolean
sloops (Boolean SQS-skeins) is the smallest non-trivial subvariety of the variety
of all sloops (SQS-skeins).

In section 2, we will do an algebraic classi�cation of the class of all sloops of
cardinality 16 according to the shape of its congruence lattice and the concepts
of solvability and nilpotence. We will show that this classi�cation coincides with
the combinatorial classi�cation based on the number of subsystems of cardinality
7 (cf. [5], [7]) and the classi�cation of the class of all SQS-skeins of cardinality 16
(cf. [1]).

Let L be a derived sloop from an SQS-skein S, then the congruence lattice
C (S) of S is a sublattice of the congruence lattice C (L) of L. We are faced with
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the question: is any sloop L of cardinality 16 derived from an SQS-skein S for all
possible sublattice C (S) of the lattice C (L) ?

Among the DTS(15)s determined in [11], there are 23 systems having a sub-
system of order 7. In this article, it will be shown that any STS(15) with n
sub-STS(7)s can be extended to an SQS(16) with 2n sub-SQS(8)s in particular
and to an SQS(16) with all possible number of sub-SQS(8)s in general.

Clearly any Boolean sloop is derived from a Boolean SQS-skein and both have
the same congruence lattice. In subsection 3.1, we will show that any non-simple
sloop L of cardinality 16 can be derived from an SQS-skein S in which both L
and S have the same congruence lattice.

In [8] Guelzow constructed a semi-Boolean SQS-skein of cardinality 16 all of
whose derived sloops are Boolean. Then, we may say that if the congruence lattices
of all derived sloops of an SQS-skein are isomorphic, it is not necessary that the
congruence lattice of this SQS-skein is isomorphic to them.

Subsection 3.2 is devoted to the proof that any non-simple sloop L of cardinality
16 can be extended to an SQS-skein S with any proper sub-lattice C (S) of the
lattice C (L).

2. Algebraic classi�cation of sloops of cardinality 16

We de�ne the solvability of sloops similarly as the de�nition of solvability of SQS-
skeins given in [1]. A congruence θ of a sloop L (an SQS-skein S) will be called
Boolean if L/θ (S/θ) is Boolean. Clearly, the largest congruence of any sloop
(SQS-skein) is Boolean and the intersection of any two Boolean congruences is
Boolean.

A Boolean series of congruences on a sloop L (an SQS-skein S) is a series of
congruences

1 := θ0 ⊇ θ1 ⊇ θ2 ⊇ ... ⊇ θn := 0

such that the factor algebra [1]θi/θi+1 (respectively, [x]θi/θi+1) is a Boolean sloop
(respectively, SQS-skein) for all i = 0, 1, ..., n− 1. If n is the smallest length of a
Boolean series, then L (respectively, S) is solvable of length n.

Centrality in Mal`cev varieties is de�ned in [13]. We apply this de�nition on
sloops similarly as in SQS-skeins [1]. A congruence of a sloop L (an SQS-skein
S) is called central, if it contains the diagonal relation

∆L = {(a, a) : a ∈ L} (∆S = {(a, a) : a ∈ S})
as a normal subsloop of L (respectively, sub-SQS-skein of S). A central congruence
of the sloop L (SQS-skein S) is denoted by ξ(L) (respectively, by ξ(S)). If there
is a series of congruences on L (of S)

1 := θ0 ⊇ θ1 ⊇ θ2 ⊇ . . . ⊇ θn := 0
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such that θi/θi+1 ⊆ ξ(L/θi+1) (respectively, θi/θi+1 ⊆ ξ(S/θi+1)) for all i =
0, 1, ..., n − 1, then this series is called central series of L (of S). Also, L (respec-
tively, S) is called nilpotent of class n, if n is the smallest length of central series
in L (in S). A construction of nilpotent sloops (SQS-skeins) of class n for each
positive integer n is given in [3] and [4].

It is routine matter to see that the class of all solvable sloops (SQS-skeins)
and the class of all nilpotent sloops (SQS-skeins) are varieties. It is easy to show
that each central series of L (of S) is a Boolean series (cf.[1]). Then we may say
that the variety of nilpotent sloops (SQS-skeins) is a subvariety of the variety of
solvable sloops (SQS-skeins) [1]. Notice that not every solvable sloop (SQS-skein)
is nilpotent (examples of a solvable sloop L (SQS-skein S ), which is not nilpotent,
will be given in Lemma 2 for n = 1 and 2).

By the de�nition of solvability, we may say that the cardinality |L| (|S|) of a
solvable sloop L (SQS-skeins S) is equal to 2n for a positive integer n. The class of
solvable sloops (SQS-skeins) of order 1 and the nilpotent sloops (SQS-skeins) of
class 1 are exactly the Boolean sloops (SQS-skeins). Notice that all sloops (SQS-
skeins) of cardinality 2, 22 and 23 are Boolean and for any positive integer n, there
is exactly one Boolean sloop (SQS-skein) (up to isomorphism) with cardinality 2n

that is the direct power of the 2-element group.
To determine the di�erent classes of sloops of cardinality 16, let L (respec-

tively, S) be a non-simple sloop (SQS-skein) with |L|= 16 (|S|= 16 ) and C (L)
(C (S)) be its congruence lattice. If C (L) (C (S)) has more than one atom, then
L (respectively, S) is Boolean. If C (L) (C (S)) has exactly one atom θ, then
C (L/θ) (respectivelt, C (S/θ)) is isomorphic to the lattice of subgroups Sub(Zn

2 )
for n = 1, 2 or 3, where Z2 is the 2-element group. This leads directly to a similar
classi�cation of the class of SQS-skeins of cardinality 16 (cf. [1], [2]).
Lemma 2. Let L(S) be a sloop (an SQS-skein) of cardinality 16 and θ be an
atom of the congruence lattice C(L) (C(S)). Then L(S) is simple or C(L/θ) ∼=
C(S/θ) ∼= Sub(Zn

2 ) for n = 1, 2, 3 or C(L) ∼= C(S) ∼= Sub(Z4
2). Moreover, L(S) is

solvable of length 2 for n = 1 or 2, nilpotent of length 2 for n = 3 and Boolean for
the last case.
Proof. The proof for SQS-skeins is given in [1]. Similarly, one can easily prove the
lemma for sloops.

Any subsloop (sub-SQS-skein) of cardinality 1
2 |L| ( 1

2 |S|) corresponds to a
maximal congruence in C (L) (C (S)). The converse is true specially for sloops
(SQS-skeins) of cardinality 16, which means that a maximum congruence in C (L)
(C (S)) corresponds to a subsloop (2 sub-SQS-skeins) of cardinality 8. This leads
us to reformulate the classi�cation given in Lemma 2 into classi�cation depending
on the number of subsloops (sub-SQS-skeins) of cardinality 8, as in the following
lemma.
Lemma 3. Let L(S) be a sloop of cardinality 16, then L(S) has n subsloops ( 2n
sub-SQS-skeins) of cardinality 8 for n = 0, 1, 3, 7 or 15.
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In fact, these classes associate with the same well-known classes of triple sys-
tems of cardinality 15. In [5], [6] and [7] all possible triple systems of order 15
were given. This means that structures of sloops of cardinality 16 with any pos-
sible congruence lattice (equivalently with any possible number of subsloops of
cardinality 8) are well known. Also, examples of SQS-skeins of cardinality 16
with each possible congruence lattice (equivalently with any possible number of
sub-SQS-skeins of cardinality 8) are well known (cf. [1] and [2]).

3. Extending a sloop L(16) to an SQS-skein S(16)
Cole, White and Cummtings [7] �rst determined that there are exactly 80 non-
isomorphic triple systems of order 15. A listing of all 80 triple systems can be
found in Bussemark and Seidel [5]. A triple system is called derived, if it can be
extended to a quadruple system. There are 23 triple systems of order 15 having
subsystems of order 7. All are derived [11].

Let L = (L; ·, 1) be a derived sloop of an SQS-skein S = (S; q), so the funda-
mental operations of L are polynomial functions of the operation q, which means
in general that the congruence lattice C(S) is a sublattice of C(L). Namely, if
C(L/θ) ∼= Sub(Zm

2 ) and C(S/θ) ∼= Sub(Zn
2 ) for an atom θ, then n 6 m. As a

special case, if L is simple derived sloop from the SQS-skein S, then S must be
simple. Notice that each triple system having no subsystems of order 7 associates
with a simple sloop.

This paper is a generalization of the result of Phelps in [11] that every non-
simple sloop of order 16 can be extended to a SQS-skein of order 16. The question
that the following two sections nearly answers is therefore: Given a non-simple
sloop L (Steiner loop) with any congruence lattice C (L), does there exist an
SQS-skein S of order 16 such that L is derived from S for all possible C(S) ? The
only situation not answered in this paper is: L any sloop and S simple. Otherwise,
the answer is yes.

3.1. Extending a sloop L(16) to an SQS-skein S(16)
with C(S)=C(L)

In this section, we will show that: A non-simple sloop L with a certain congru-
ence lattice C (L) can be extended to a non-simple SQS-skein S having the same
congruence lattice C (S); i. e., C (L) = C (S). In other words, an STS(15) with
a non-zero number n of sub-STS(7)s can be extended to an SQS(16) having 2n
sub-SQS(8), for each possible number n; i.e., n = 1, 3, 7 or 15.

Now, let L1 = (L1; · , 1 ) be the Boolean sloop of cardinality 8 and (L1 −
{1}; B1) be the corresponding triple system of L1. It is known that (L1−{1}; B1)
and the projective plane PG(2, 2) are isomorphic, so we can index the element of
L1 − {1} as follows:
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{a0, a1, ..., a6} where {0, 1, ..., 6} is the set of points of PG(2, 2) such that
{i, j, k} is a line in PG(2, 2) if and only if {ai, aj , ak} is a block in B1. More-
over, we denote the set of lines of PG(2, 2) by the set {i, i + 1, i + 3} (mod 7).

Let F = {F0, F1, ..., F6} be a 1-factorization of the complete graph with the
vertices L1, where Fi = {ajak : aj ·ak = ai in L1}. We observe that 1ai is an edge
in Fi for each i. Also, we consider the sets L2 = {b, b0, b1, ..., b6} and L = L1 ∪ L2

such that L1 ∩L2 = ∅. We de�ne the 1-factorization G of the complete graph K8

with the set of vertices L2 similarly as F by writing b instead of 1 and bi instead
of ai in each factor of F. Now we are ready to formulate the following well-known
constructions for sloops and SQS-skeins of cardinality 16 [10].
Construction 1. Let α be a permutation on the set {0, 1, ..., 6}. By taking B :=
B1 ∪ {{ai, bj , bk} : bjbk ∈ Gα(i)}, then (L − {1}; B) is a triple system containing
(L1 − {1};B1) as a subsystem [10].

Let L = (L; · , 1 ) be the given associated sloop with the triple system (L −
{1}; B) and L1 = (L1; ·, 1) be the associated subsloop, where the binary operation
"." is de�ned by:

x · y :=
{

z if {x, y, z} ∈ B

1 if x = y

By Theorem 1, we may say that L has at least one maximal congruence θ0

determined by the normal subsloop L1.
Theorem 4. Construction 1 yields precisely all non-simple sloops of cardinality
16.

Proof. Without loss of generality, we may call the elements of L, L1 and L2 =
L−L1, the sloop L = (L; ·, 1), the subsloop L1 = (L1; ·, 1) and the 1-factorization
F on L1 exactly as the preceding de�nitions. Since b ·ai ∈ L2 for each ai ∈ L1, we
may de�ne the permutation α on the set {0, 1, 2, ..., 6} by bα(i) = b · ai.

Moreover, we de�ne a 1-factor Gα(i) on L2 by the rule: xy ∈ Gα(i) if and only
if x · y = ai in L. This supplies us with a 1-factorization G = {G0, G1, ..., G6} on
the set of points L2.

Let (L−{1};B) be the triple system constructed by construction 1. If {ai, aj , ak}
is a block in B1, then ai · aj = ak in L1 and if {ai, bj , bk} is a block in B, then
ai = bj · bk in L. This means that the triple system (L − {1}; B) coincides with
the associated triple system with the sloop L. This completes the proof of the
theorem.

Construction 2. Let
Q1 = {{x1, x2, y1, y2} : 0 6 i 6 6, x1x2 ∈ Fi&y1y2 ∈ Fi},
Q2 = {{x1, x2, y1, y2} : 0 6 i 6 6, x1x2 ∈ Gi&y1y2 ∈ Gi},
Q = Q1 ∪Q2 ∪ {{x1, x2, y1, y2} : 0 6 i ≤ 6, x1x2 ∈ Fi &y1y2 ∈ Gα(i)}.

Since L1 is a Boolean sloop, so for all x, y, z, w ∈ L1 if x·y = z ·w, then x·z = y ·w
and y · z = x · w. Then if xy, zw ∈ Fi, hence xz, yw ∈ Fj and
xw, zy ∈ Fk for some j and k. This means that {x, y, z, w} is the unique block
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in Q 1 containing any 3-element subset of it. Accordingly, Q 1 = (L1; Q1) and
Q 2 = (L2; Q2) are SQS(8)s. Hence Q = (L;Q) is a quadruple system in which
Q 1 and Q 2 are subsystems.

The associated SQS-skein S = (L; q) with the quadruple system Q = (L; Q)
has at least one maximum congruence θ0 determined by the two classes L1 and
L2 (cf. [1], [9], where the operation q is de�ned by:

q(x, y, z) =
{

w if {x, y, z, w} ∈ Q

z if x = y

By the de�nition of Fi, if {ai, aj , ak, 1} ∈ Q1 , then 1ai, ajak ∈ Fi, which means
that L1 is a derived sloop of Q1. Moreover, if {x, y, z} ∈ B, then {x, y, z} ∈ B1 or
{x, y, z} ∈ {{ai, bj , bk} : bjbk ∈ Gα(i)}.

Hence {x, y, z} = {ai, aj , ak} or {x, y, z} = {ai, bj , bk} for bjbk ∈ Gα(i), which
means that 1ai, ajak ∈ Fi or 1ai ∈ Fi and bjbk ∈ Gα(i). This implies that
{1, x, y, z} ∈ Q. Therefore, (L−{1}; B) is a derived triple system of the quadruple
system Q = (L;Q).

Now, consider two sets:
S‘1 = {1, ai, ai+1, ai+3, b, bα(i), bα(i+1), bα(i+3)}

and
S‘2 = {1, ai, ai+1, ai+3, bα(i+2), bα(i+4), bα(i+5), bα(i+6)}.

By choosing a suitable permutation α, we will show in the following that there
is a derived sloop L from an SQS-skein S of cardinality 16 in which both L and
S have the same congruence lattice.
Lemma 5. S‘1 is a subsloop of L a sub-SQS-skein of S if and only if {α(i), α(i+
1), α(i + 3)} is a line in PG(2, 2).
Proof. Let S‘1 be a subsloop of L, then we have:

b · bα(i) = ai = bα(i+1) · bα(i+3) ⇐⇒ b bα(i), bα(i+1)bα(i+3) ∈ Gα(i)

⇐⇒ {α(i), α(i + 1), α(i + 3)} is a line in PG(2, 2).
Also,

b ·bα(i+1) = ai+1 = bα(i) · bα(i+3) ⇐⇒ {α(i), α(i + 1), α(i + 3)}
is a line in PG(2, 2) ⇐⇒ b · bα(i+3) = ai+3 = bα(i) · bα(i+1).

Similarly, one can prove the other direction. The proof of this lemma for the
SQS-skeins is given in [1].

Lemma 6. If S‘1 is a subsloop of L (a sub-SQS-skein of S), then S‘2 is also a
subsloop of L (a sub-SQS-skein of S).
Proof. The 1-factorization of the complete graph K4 with the set of vertices
{bα(i+2), bα(i+4), bα(i+5), bα(i+6)} is included in the factors Gα(i), Gα(i+1), Gα(i+3).
This shows directly that S‘2 is a subsloop of L (an sub-SQS-skein of S).
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Lemma 7. For each line transformed into a line by the permutation α in PG(2, 2),
two maximum congruences are formed in the lattice C(L) ( C(S) ) in addition to
θ0.

Proof. We have |S‘1| = |S‘2| = 1
2 |L|, so S‘1 and S` 2 are two distinct normal sub-

sloops of L (sub-SQS-skeins of S). Let θ1 and θ2 be the associated congruences
with S‘1 and S‘2, respectively. Then θ1 ∩ θ2 is a congruence with 4 congruence
classes, which implies that there are exactly three covers of θ1 ∩ θ2, namely θ0, θ1,
θ2. This completes the proof.

In fact, this similarity between properties of sloops and SQS-skeins leads di-
rectly to the following result.
Theorem 8. Let L (S ) be a sloop (an SQS-skein) of cardinality 16 and assume
that its congruence lattice C(L) ( C(S) ) has an atom θ. If the permutation α
transforms 2n−2−1 lines into lines in PG(2, 2) for n = 2, 3, 4, or 5, then C(L/θ) ∼=
C(S/θ) ∼= Sub(Zn−1

2 ) for n = 2, 3, 4 and C(L) ∼= C(S) ∼= Sub(Z4
2) for n = 5.

Proof. According to the Lemmas 4, 5 and 6, we get directly the required.

Consequently, we may say that any sloop of cardinality 16 with n subsloops
of cardinality 8 is a derived sloop from an SQS-skein of cardinality 16 having 2n
sub-SQS-skeins for each possible non-zero number n; i.e. for n = 1, 3, 7 and 15.

3.2. Extending a sloop L(16) to an SQS-skein S(16)
with arbitrary C(S) 6 C(L)

In this section, we will show that: A non-simple sloop L with any possible congru-
ence lattice C (L) can be extended to a non-simple SQS-skein S with all possible
congruence lattice C (S); i.e., for all possible sublattice C (S) of C(L).

Without loss of generality and according to the de�nition of the 1-factorization
F given in constructions 1 and 2, we may choose the sub-1-factors:

1− f0 = {a1a3, a4a5} ⊆ F0 and f2 = {a1a4, a3a5} ⊆ F2 on the set {a1, a3, a4, a5}.

2− f1 = {a2a4, a5a6} ⊆ F1 and f3 = {a2a5, a4a6} ⊆ F3 on the set {a2, a4, a5, a6}.

3− f4 = {a1a2, a0a5} ⊆ F4 and f6 = {a0a2, a1a5} ⊆ F6 on the set {a0, a1, a2, a5}.

By interchanging the sub-1-factors f0 and f2 in the 1-factors F0 and F2 we get
new 1-factors F ‘

0 and F ‘
2, where F ‘

0 = {1a0, a1a4, a3a5, a2a6} and F ‘
2 = {1a2, a1a3, a4a5, a0a6}.

Similarly, we interchange the sub-1-factors f1 and f3 in the 1-factors F1 and F3 to
get new 1-factors F ‘

1 and F ‘
3 and the sub-1-factors f4 and f6 in the 1-factors F4

and F6 to get new 1-factors F ‘
4 and F ‘

6 .
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Now, we consider three new 1-factorizations on the set L1 :

1F‘ = {F ‘
0, F1, F

‘
2, F3, F4, F5, F6},

2F‘ = {F ‘
0, F

‘
1, F

‘
2, F

‘
3, F4, F5, F6},

3F‘ = {F ‘
0, F

‘
1, F

‘
2, F

‘
3, F

‘
4, F5, F

‘
6}.

Let Q1 and Q2 be the same as in construction 2, and let

jQ
‘ = Q1 ∪Q2 ∪Q,

where
Q = {{x1, x2, y1, y2} :x1x2 ∈ F ‘

i ∈j F‘ and y1y2 ∈ Gα(i) for some 0 6 i 6 6}.

Indeed, the changes occurs only in the quadruple systems, so we will denote the
new quadruple systems by (L; jQ

‘) for j = 1, 2, 3. Notice that the triple system
(L− {1}; B) is still as a derived triple system of (L; jQ

‘) for each j = 1, 2, 3.
The 1-factorization 1F‘ contains exactly the three sub-1-factorizations {F ‘

0, F
‘
2, F6},

{F1, F5, F6}, {F3, F4, F6} in which each of them contains two disjoint sub-1-factorizations
of the complete graph K4. Similarly, the 1-factorization 2F‘ contains exactly
one sub-1-factorization{F ‘

0, F
‘
2, F6} containing two disjoint sub-1-factorizations of

the complete graph K4 and the 1-factorization 3F‘ does not contain any sub-1-
factorization of the complete graph K4.

We observe that α may transform 2n−2 − 1 lines into lines in PG(2, 2) for
n = 2, 3, 4, 5. Thus:

If n = 2, then α does not transform any line into a line.
If n = 3, then α transforms at most one line into a line among the lines of the

subset R = {{0, 2, 6}, {1, 5, 6}, {3, 4, 6}}.
If n > 4, then α transforms 1 or 3 lines into lines among the lines of R.

Now, let (L; jq
‘) be the associated SQS-skein with (L; jQ

‘) for j = 1, 2, 3.
Analogously, we may deduce the following result.
Theorem 9. The constructed sloop L = (L; ·, 1) is a derived sloop from the con-
structed SQS-skein jS = (L; jq

‘) for each j = 1, 2 and 3 and for any permutation
α. Moreover, each non-simple sloop L can be extended to a non-simple SQS-skein
jS with all possible congruence lattices for C(L) and C(jS).
Proof. Any permutation α transforms 2n−2 − 1 lines into lines in PG(2, 2) for
n = 2, 3, 4, 5. Notice in all cases that θ0 is a congruence of each of L and jS for
j = 1, 2 and 3, where θ0 is determined by the two classes L1 and L2.

In the following, we consider θ to be the unique atom of the lattices C (L) and
C (jS) for j = 1, 2 and 3, except in the case for n = 5, when θ is considered to be
any atom of C (L). Now, we have the following result:

When n = 2, then α does not transform any line to a line, hence C (L/θ) ∼=
C (jS/θ) ∼= Sub(Z2) for j = 1, 2 and 3, where the atom θ is equal to θ0.
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When n = 3, then α transforms one line into line in PG(2, 2), by Lemma 3
hence C(L/θ ∼= Sub(Z2

2). Also, α transforms nothing or one line into a line in
PG(2, 2) among the lines of the subset R, so C(3S/θ) ∼= C(2S/θ) ∼= C(1S/θ) ∼=
Sub(Z2), where the atom θ is equal to θ0 , or C(2S/θ) ∼= C(1S/θ) ∼= Sub(Z2

2).
When n = 4, then α transforms 3 lines into 3 lines in PG(2, 2), by Lemma 3

hence C(L/θ) ∼= Sub(Z3
2). Also, α transforms 1 or 3 lines into lines in PG(2, 2)

among the lines of the subset R = {{0, 2, 6}, {1, 5, 6}, {3, 4, 6}}, so C(3S/θ) =
C(3S/θ0) ∼= Sub(Z2) and C (2S/θ) ∼= C (1S/ θ) ∼= Sub(Z2

2) or C (1S/θ) ∼= Sub(Z3
2).

When n = 5, then α transforms 7 lines into 7 lines in PG(2, 2), by Lemma 3
and since C (L) contains in this case more than one atom, hence C (L/θ) ∼= Sub(Z3

2)
for each atom θ of C (L) or C (L) ∼= Sub(Z4

2). This means that α transforms the
three lines of R into 3 lines in PG(2, 2), so C (3S/θ) = C (3S/θ0 ) ∼= Sub(Z2),
C (2S/θ) ∼= Sub(Z2

2) and C (1S/θ) ∼= Sub(Z3
2), where θ is still the unique atom of

C (jS) for j = 1, 2 and 3.
For the case C (L) ∼= C (S) ∼= Sub(Z4

2), we may choose the Boolean SQS-skein
S of cardinality 16 and L any of its derived sloops. This completes the proof.

Consequently, we may say that any sloop with a non-zero number n of subsloops
of cardinality 8 can be extended to an SQS-skein having 2m sub-SQS-skeins of
cardinality 8 for each possible positive numbers n and m; i.e., for each n and
m = 1, 3, 7 or 15 with m 6 n.

Examples. Example for each case can be determined by choosing the permutation
α as follows:
• For n = 2 take α = (12)(345), hence α does not transform any line into a line in
PG(2, 2), which means that the congruence lattices C (L) and C (jS) for j = 1, 2
and 3 have exactly one co-atom θ0.
• For n = 3 take α = (012)(345) or α = (345). In both cases α transforms one line
into a line in PG(2, 2). This implies that L has three maximum congruences, so
C (L/θ) ∼= Sub(Z2

2). The permutation α = (012)(345) transforms the line {0, 1, 3}
into the line {1, 2, 4}, this means that C (jS) for j = 1, 2 and 3 have only one
co-atom θ0.

But the permutation α = (345) transforms the line {0, 2, 6} into itself, hence
C (jS) has exactly three co-atoms for j = 1 and 2 and C (3S) has only one co-atom
θ0.
• For n = 4 take α = (012345) or α = (4321)(650) , both cases α transforms three
lines into three lines in PG(2, 2), then L has exactly 7 maximum congruences.
α = (012345) transforms the three lines of the set R = {{0, 2, 6}, {1, 5, 6}, {3, 4, 6}}
into three lines in PG(2, 2), which implies that C(1S) has exactly 7 co-atoms,
C (2S) has exactly three co-atoms and C (3S) has only one co-atom θ0.

α = (4321)(650) transforms only the line {0, 2, 6} of R into a line of R, which
means that the congruence lattices C (jS) has exactly three co-atoms for j = 1
and 2 and C (3S) has only the co-atom θ0.
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• For n = 5 take α = identity on {0, 1, ..., 6}, so α transforms all lines into lines in
PG(2, 2), which means that C (L) has 15 co-atoms, C (1S) has 7 co-atoms, C (2S)
has 3 co-atoms and C (3S) has only the co-atom θ0.

Consequently, we may say that any STS(15) with a non-zero number n of sub-
STS(7)s can be extended to an SQS(16) having 2m sub-SQS(8)s for all possible
non-zero positive numbers n and m; i.e., for any n and m ∈ {1, 3, 7, 15} with
m 6 n.

Among the DTS(15)s determined in [11], there are 57 systems having no sub-
systems of order 7. The sloops associated with these 57 systems are simple. We
therefore see that the sloops associated with these 57 systems must be derived
from simple SQS-skeins. But it is not necessary for a sloop derived from a simple
SQS-skein to be simple.

We �nish this work with a natural question:

Question. Is whether or not a sloop of cardinality 16 with each possible congruence
lattice can be extended to a simple SQS-skein ?
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