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The structure of extra loops

Michael K. Kinyon and Kenneth Kunen

Abstract

The Sylow theorems hold for �nite extra loops, as does P. Hall's theorem for �nite
solvable extra loops. Every �nite nonassociative extra loop Q has a nontrivial center,
Z(Q). Furthermore, Q/Z(Q) is a group whenever |Q| < 512. Loop extensions are used to
construct an in�nite nonassociative extra loop with a trivial center and a nonassociative
extra loop Q of order 512 such that Q/Z(Q) is nonassociative. There are exactly 16

nonassociative extra loops of order 16p for each odd prime p.

1. Introduction
De�nition 1.1. A loop Q is an extra loop i� Q is both conjugacy closed
(a CC-loop) and a Moufang loop.

Lemma 1.2. A loop Q is an extra loop i� Q satis�es one (equivalently all)
of the following equations:

1. (x · yz) · y = xy · zy.
2. yz · yx = y · (zy · x).
3. (xy · z) · x = x · (y · zx).

Extra loops were �rst introduced via these equations by Fenyves [11,
12], who proved the equivalence of (1)(2)(3). Goodaire and Robinson [18]
showed that De�nition 1.1 is equivalent, and this de�nition is often more
useful in practice, since one may combine results in the literature on CC-
loops and on Moufang loops to prove theorems about extra loops.

Moufang loops are discussed in standard texts [3, 4, 24] on loop the-
ory. In particular, these loops are diassociative by Moufang's Theorem.
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CC-loops were introduced by Goodaire and Robinson [17, 18], and inde-
pendently (with di�erent terminology) by So$ikis [26]. Further discussion
can be found in [9, 10, 20, 21].

If Q is an extra loop and N = N(Q) is the nucleus of Q, then N is
a normal subloop of Q and Q/N is a boolean group (see Fenyves [12]).
Besides leading to the result of Chein and Robinson that extra loops are
exactly those Moufang loops with squares in the nucleus [8], Fenyves's result
suggests that one might provide a detailed structure theory for �nite extra
loops. A start on such a theory was made in [20], where it was shown that
if Q is a �nite nonassociative extra loop, then |N | is even and |Q : N | > 8,
so that 16 | |Q|. The �ve nonassociative Moufang loops of order 16 are
all extra loops (see Chein [5], p. 49). Among these �ve is the Cayley loop
(1845), which is the oldest known example of a nonassociative loop.

The Cayley loop is usually described by starting with the octonion ring
(R8), and restricting the multiplication to {±ei : 0 6 i 6 7}, where the
ei are the standard basis vectors. Restricting to R8\{0} or to S7 does
not yield an extra loop (it is Moufang, but not CC). In fact, by Nagy
and Strambach ([23], Corollary 2.5, p. 1043), there are no nonassociative
connected smooth extra loops. There are also no nonassociative connected
compact extra loops, since Q/N is boolean, and hence totally disconnected.

The main results of this paper are listed in the abstract. After we
review basic facts about extra loops in �, we characterize the nuclei of
nonassociative extra loops in �. The Sylow theorems are proved in �, and
P. Hall's theorem is proved in �. The center is discussed in �. In �, we
consider loop extensions and describe the two examples mentioned in the
abstract. In � we analyze the nonassociative extra loops of order 16p, for p
an odd prime, and show that the number of such loops is independent of p;
it follows that this number is 16, since by [16], there are 16 such loops of
order 48.

2. Basic facts
We collect some facts from the literature. In particular, we point out that
an extra loop yields four boolean groups which help elucidate the loop
structure. One is the quotient by the nucleus:
Lemma 2.1. Let Q be an extra loop with nucleus N = N(Q).

1. For each x ∈ Q, x2 ∈ N .

2. Q/N is a boolean group.
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3. Every �nite subloop of Q of odd order is contained in N .

4. Every element of Q of �nite odd order is contained in N .
The lemma, particularly (1), is due to Fenyves [12]. Considered as a

Moufang or CC-loop, an extra loop has a normal nucleus, so (2) follows
from (1) and the fact that a Moufang or CC-loop of exponent 2 is a boolean
group. (3) follows from (2) (since Q → Q/N maps the subloop to {1}), and
(4) follows from (3).
Corollary 2.2. Every �nite extra loop has the Lagrange property; that is,
the order of every subloop divides the order of the loop.

This follows from the fact that Q/N is a group, so that both Q/N and N
have the Lagrange property; see Bruck [4], �V.2, Lemma 2.1. This corollary
holds for all CC-loops Q, because Basarab [2] has shown that Q/N is an
abelian group; see also [20] for an exposition of Basarab's proof, and see [9]
for related results.

Another boolean group is generated by the associators:
De�nition 2.3. For x, y, z in a loop Q, de�ne the associator (x, y, z) ∈ Q
by (x · yz)(x, y, z) = xy · z. Let A(Q) be the subloop of Q generated by all
the associators.

In an extra loop Q, A(Q) 6 N(Q), since Q/N(Q) is a group. Further-
more, by �5 of [20], we have:
Lemma 2.4. In any extra loop Q:

1. (x, y, z) is invariant under all permutations of the set {x, y, z}.
2. (x, y, z) = (ux, vy, wz) for all x, y, z ∈ Q and u, v, w ∈ N(Q).

3. (x, y, z) = (x−1, y, z).

4. (x, y, z) commutes with each of x, y, z.

5. A(Q) 6 Z(N(Q)) and A(Q) is a boolean group.
Note that Lemma 2.4 shows that the associator (x, y, z) determines a

totally symmetric mapping from (Q/N)3 into A(Q).
If |Q| < 512, then Theorem 6.6 will show that A(Q) 6 Z(Q) (equiva-

lently, Q/Z(Q) is a group); this fails for some Q of order 512; see Example
. For any �nite nonassociative extra loop, |Z(Q)∩A(Q)| > 2 (see Theorem
6.1).

The properties we have listed for associators actually characterize extra
loops:
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Lemma 2.5. Suppose that Q is a loop with the following properties:

1. Q is �exible, that is, (x, y, x) = 1 for all x, y ∈ Q.

2. Every associator is in the nucleus.

3. The square of every associator is 1.

4. (x, y, z) is invariant under all permutations of {x,y,z}.

5. (x, y, z) commutes with each of x, y, z.

Then Q is an extra loop.

Proof. x·[y ·zx] = x·yz ·x·(y, z, x) = [xy ·z](x, y, z)x(y, z, x) = [xy ·z]·x.

The third boolean group is the right inner mapping group, which turns
out in this case to coincide with the left inner mapping group (see 2.7(5)
below). We use the following notation.

De�nition 2.6. For any loop Q, the left translations Lx and right transla-
tions Ry are de�ned by: xy = xRy = yLx. The right and left multiplication
groups are, respectively

RMlt = RMlt(Q) = 〈Ry : y ∈ Q〉 and LMlt = LMlt(Q) = 〈Lx : x ∈ Q〉.

For S ⊂ Q, set R(S) := {Rx : x ∈ S}. The right and left inner mapping
groups are, respectively,

RMlt1 = RMlt1(Q) = {g ∈ RMlt : 1g = 1} and
LMlt1 = LMlt1(Q) = {g ∈ LMlt : 1g = 1}.

Also for x, y ∈ Q, de�ne

R(x, y) := RxRyR
−1
xy and L(x, y) := LxLyL

−1
yx .

It is easily seen that R(x, y) ∈ RMlt1 and that RMlt1 is the group
generated by {R(x, y) : x, y ∈ Q}; likewise for the L(x, y) and LMlt1.

Lemma 2.7. For any extra loop Q:

1. All permutations in RMlt1 and LMlt1 are automorphisms of Q.

2. R(x, y)R(u, v) = R(u, v)R(x, y).
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3. L(x, y) = R(x, y) = L(y, x) = R(y, x)

4. R(x, y)2 = I.

5. RMlt1 = LMlt1 is a boolean group.

6. zR(x, y) = z(x, y, z).

(1) is due to Goodaire and Robinson [17], and (2),(3) are from [20];
these are true for all CC-loops. (4) is also from [20], and (5) is immediate
from (2),(3),(4). Also, [20] shows that zL(y, x) = z(x, y, z)−1 holds in all
CC-loops, so (6) follows, using (3) and Lemma 2.4.

Besides the left and right inner mappings, we have the middle inner
mappings Tx = RxL−1

x . In any CC-loop, the group generated by the middle
inner mappings coincides with the group generated by all inner mappings
[9].

Lemma 2.8. In any extra loop Q with N = N(Q) and A = A(Q):

1. Ta ∈ Aut(Q) i� a ∈ N(Q).

2. For each x ∈ Q, T (x) := Tx¹N ∈ Aut(N).

3. T : Q → Aut(N) is a homomorphism.

4. Each Tx maps A onto A, so that A E Q and Q/A is a group.

5. Each (Tx)2 is the identity on A.

(1) is from [9], and holds for all CC-loops. (2) is due to Goodaire
and Robinson [17], and (3) is from [21]. Both are true for all CC-loops.
(A)Tx = A is due to Fook [13], and is true for all Moufang loops; see also
Lemma 6.2 below. Note that by the remark preceding the lemma, to prove
that A is normal, it is su�cient to show that (A)Tx = A. (5) follows from
(3) and (4), since x2 ∈ N , so Tx2 is the identity on A by Lemma 2.4.

Our last boolean group is related to two of the others. In an extra loop
Q with A = A(Q), set

A∗ := {g ∈ RMlt : xg ∈ Ax, ∀x ∈ Q}

Note that this subgroup of RMlt is the kernel of the natural homomorphism
RMlt(Q) → RMlt(Q/A); g 7→ (Ax 7→ Axg), and so A∗ E RMlt(Q).

Lemma 2.9. Let Q be an extra loop. Then A∗ = RMlt1(Q) ·R(A), a direct
product. Hence A∗ is a boolean group.
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Proof. Obviously R(A) 6 A∗, and conversely, if Ra ∈ A∗, then a ∈ A.
By Lemma 2.7(6), RMlt1 6 A∗. If g ∈ A∗, write g = hRa for h ∈ RMlt1,
a = 1g. Since h ∈ A∗, Ra ∈ A∗, and so A∗ = RMlt1 ·R(A). Since A 6 N(Q)
and RMlt1 6 Aut(Q), the product RMlt1 ·R(A) is direct. Since A 6 N(Q),
R(A) is a boolean group (an isomorphic copy of A), and so A∗ is a boolean
group by Lemma 2.7(5).

3. The nucleus
We describe which groups can be nuclei of nonassociative extra loops.

Proposition 3.1. For a group G, the following are equivalent:

1. Z(G) contains an element of order 2.

2. There is a nonassociative extra loop Q with G = N(Q).

3. There is an extra loop Q with G = N(Q), |Q : G| = 8, and Z(Q) =
Z(G).

Proof. (2) → (1) is by Lemma 2.4. Now, assume (1) and we shall prove (3).
Fix −1 ∈ Z(G) of order 2, and let C = {±1,±e1 · · ·±e7} be the 16-element
Cayley loop. In the extra loop G × C, let M = {(1, 1), (−1,−1)}. Note
that M is a normal subloop. Let Q = (G× C)/M .

4. Sylow Theorems
We begin by remarking that for extra loops, two possible de�nitions of
�p-loop� are equivalent. For Moufang loops, the following result is due to
Glauberman and Wright [14, 15]. It also holds for power-associative CC-
loops, as follows easily from ([20], Coro. 3.2, 3.4).

Lemma 4.1. If Q is a �nite extra loop and p is a prime, then the following
are equivalent:

1. |Q| is a power of p.

2. The order of every element of Q is a power of p.

De�nition 4.2. Let π be a set of primes. A �nite loop Q is a π-loop if the
set of prime factors of |Q| is a subset of π. If |Q| has prime factorization
|Q| = Πpp

ip , then a Hall π-subloop of Q is a subloop of order Πp∈πpip . If
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π = {p}, than a Hall π-subloop is called a Sylow p-subloop. Let Sylp(Q)
denote the set of all Sylow p-subloops of Q, and let Hallπ(Q) denote the set
of all Hall π-subloops of Q.

Of course, in general, Sylow p-subloops and Hall π-subloops need not
exist. But for extra loops, Sylow p-subloops do exist and satisfy the familiar
Sylow Theorems for groups (Theorem 4.5 below). In �, we will show that
Hall π-subloops exist for solvable extra loops and satisfy P. Hall's Theorem
for groups (Theorem 5.3). As a preliminary to both theorems:

Lemma 4.3. Let π be a set of primes with 2 ∈ π, and let Q be a �nite
extra loop with A = A(Q).

1. If P is a Hall π-subloop of Q, then A 6 P .

2. If G is a Hall π-subgroup of RMlt(Q), then A∗ 6 G.

Proof. Since A E Q and is a boolean group, AP is a subloop of Q of order
|A||P |/|A ∩ P |, and so AP is a π-subloop of Q. By the Lagrange property
(Corollary 2.2), Hall π-subloops are maximal π-subloops, and so AP = P ,
establishing (1). The proof for (2) is similar.

Next we need a minor re�nement of the Sylow Theorems for groups. For
a �nite group G, let Op(G) denote the subgroup generated by all elements
of order prime to p ([1], p. 5). Note that Op(G) E G.

Lemma 4.4. Assume that G is a �nite group, p is prime, and P,Q ∈
Sylp(G). Then Q = x−1Px for some x ∈ Op(G).

Proof. If |G| = pmj, where p - j, then |Op(G)| = p`j, where 0 6 ` 6 m.
Also |P ∩ Op(G)| = p`, since P ∩ Op(G) ∈ Sylp(Op(G)) ([1], (6.4)). Thus
|P ·Op(G)| = |P ||Op(G)|/|P ∩Op(G)| = pmj = |G|, and so G = P ·Op(G).
Finally, by the usual Sylow Theorem, let Q = y−1Py, where y = ux, with
u ∈ P and x ∈ Op(G). But then Q = x−1Px.

Theorem 4.5. Suppose that Q is a �nite extra loop and |N(Q)| = pmr,
where p is prime and p - r. Then

1. |Sylp(Q)| = 1 + kp, where 1 + kp | r.
2. If S is a p-subloop of Q, then there exists P ∈ Sylp(Q) containing S.

3. If P1, P2 ∈ Sylp(Q), then there exists x ∈ N(Q) such that P1Tx = P2,
so that P1 and P2 are isomorphic.
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Proof. For p > 2: By Lemma 2.1(3), every p-subloop is contained in N , so
the Sylow Theorems for groups can be applied to N .

For p = 2: The natural homomorphism [·] : Q → Q/A;x 7→ [x] yields a
map [·] : P 7→ P/A from the set of 2-subloops P of Q with A 6 P to the
set of 2-subgroups of Q/A. If P/A ∈ Syl2(Q/A), then P ∈ Syl2(Q), and
so by Lemma 4.3, [·] yields a 1 − 1 correspondence between Syl2(Q) and
Syl2(Q/A). One can now apply the Sylow Theorems to the group Q/A. To
get x ∈ N(Q) in (3), we apply Lemma 4.4 to Q/A to get P1Tx = P2, where
[x] ∈ O2(Q/A). Now x = x1 · · ·xn where the order of each [xi], say ti, is
odd. Then xi = aizi, where ai = xti

i ∈ A and zi = x1−ti
i ∈ N since 1 − ti

is even. Thus each xi ∈ N , and so x ∈ N . Finally, that P1 and P2 are
isomorphic follows from Lemma 2.8(1).

Next we relate the Sylow p-subloops of an extra loop Q to the Sylow
p-subgroups of the right multiplication group RMlt(Q).
Theorem 4.6. Let Q be an extra loop with RMlt = RMlt(Q).

1. If g ∈ RMlt has odd order, then g = Ra for some a ∈ N(Q).

2. O2(RMlt) 6 R(N(Q)).

3. Each subgroup of RMlt of odd order is isomorphic to a subgroup of
N(Q).

4. S 7→ R(S) is a 1−1 correspondence between the subloops of Q of odd
order and the subgroups of RMlt of odd order.

Proof. For g ∈ RMlt, write (uniquely) g = hRa, where a = 1g and
h ∈ RMlt1. Note that hRah = Rah because h ∈ Aut(Q) and h2 = I
(Lemma 2.7(1)(5)). From this plus induction, g2k = (RahRa)k and g2k+1 =
hRa(RahRa)k for k > 0. Now, the Moufang identity RxRyRx = Rxyx

plus induction yields Rx(RyRx)k = Rx(yx)k . Thus, g2k+1 = hRu, where
u = a · (ah · a)k. If g2k+1 = I then h = I and 1 = u = a2k+1, so a ∈ N(Q)
by Lemma 2.1(4). This establishes (1), and the rest follows from (1) and
Lemma 2.1(3).

Theorem 4.7. Let Q be an extra loop. Then P 7→ RMlt1 · R(P ) is a
1 − 1 correspondence between the 2-subloops of Q containing A and the
2-subgroups of RMlt(Q) containing A∗.

Note that in the theorem, RMlt1 · R(P ) is not a direct product of sub-
groups, but is rather a factorization of a group into a subgroup and a subset.
The multiplication in this group is given by hRa · kRb = hkR(ak, b)Rak·b.
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Proof. If A 6 P 6 Q, then certainly A∗ 6 RMlt1 · R(P ) by Lemma 2.9.
Conversely, suppose G is a 2-subgroup of RMlt with A∗ 6 G, and set
P = 1G, the orbit of G through 1 ∈ Q. Each g ∈ G can be uniquely written
as g = hRa for some h ∈ RMlt1, a = 1g ∈ P , and since RMlt1 6 G, we have
G = RMlt1 ·R(P ). |P | is a power of 2, so what remains is to show that P is
a subloop. For a, b ∈ P , RaRb = R(a, b)Rab, and so ab ∈ P as R(a, b) 6 G.
Similarly, a ∈ P implies a−1 ∈ P , which completes the proof.

Corollary 4.8. Let Q be a �nite extra loop, and let p be a prime. Then
Sylp(Q) is in a 1− 1 correspondence with Sylp(RMlt(Q)).

Proof. If p > 2, then Theorem 4.6 yields that P 7→ R(P ) is a 1 − 1 corre-
spondence between Sylp(Q) and Sylp(RMlt).

If p = 2, then Theorem 4.7 and Lemma 4.3(2) yield that P 7→ RMlt1 ·
R(P ) is a 1− 1 correspondence between Sylp(Q) and Sylp(RMlt).

5. Solvability and Hall π-subloops
Recall that a loop Q is solvable if there exists a normal series

1 = Q0 E Q1 E · · · E Qm = Q

of subloops Qi such that each factor Qi+1/Qi is an abelian group.

Theorem 5.1. An extra loop Q is solvable if and only if N = N(Q) is
solvable.

Proof. Since solvability is inherited by subloops, the solvability of Q implies
the solvability of N . Conversely, if 1 = N0 E · · · E Nm = N is a normal
series for N , then 1 = N0 E · · · E Nm E Q is a normal series for Q, since
Q/N is an abelian group.

By Proposition 3.1 and the fact that the nucleus of a nonassociative
extra loop has index at least 8, the smallest nonsolvable nonassociative
extra loop has order 960.

Corollary 5.2. Let Q be an extra loop of order paqb, where p, q are primes.
Then Q is solvable.

Proof. Since |N(Q)| = pcqd, the result follows from Burnside's paqb-Theorem
for groups ([1], (35.13)) and Theorem 5.1.
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This theorem and its corollary actually hold for CC-loops Q because
Q/N is an abelian group by Basarab [2] (or see [9, 20]). However, the
Sylow theorems and P. Hall's Theorem (cf. [1], (18.5)) can fail in CC-loops,
since the 6-element nonassociative CC-loop does not have a subloop of order
2. P. Hall's Theorem for extra loops is:
Theorem 5.3. Let Q be a �nite solvable extra loop and π a set of primes.
Then

1. Q has a Hall π-subloop.

2. If P1, P2 ∈ Hallπ(Q), then there exists x ∈ Q such that P1Tx = P2.

3. Any π-subloop of Q is contained in some Hall π-subloop of Q.
The proof is similar to that of the Sylow Theorem 4.5.

Proof. For 2 6∈ π: If S is any π-subloop of Q, then the natural homomor-
phism Q → Q/N takes S onto a π-subloop of a boolean group, so that
S 6 N .

The result then follows from P. Hall's Theorem applied to the solvable
group N (Theorem 5.1).

For 2 ∈ π: The natural homomorphism [·] : Q → Q/A yields a map
[·] : P 7→ P/A from the set of π-subloops P of Q with A 6 P to the set
of π-subgroups of Q/A. If P/A ∈ Hallπ(Q/A), then P ∈ Hallπ(Q), and so
by Lemma 4.3, [·] restricts to a 1− 1 correspondence between Hallπ(Q) and
Hallπ(Q/A). Now apply P. Hall's Theorem to the solvable group Q/A.

6. The center
Theorem 6.1. If Q is a nonassociative extra loop and A(Q) is �nite, then
|Z(Q) ∩A(Q)| > 1.
Proof. Applying Lemma 2.8, de�ne T ′ : Q → Aut(A) by T ′(x) = Tx¹A. By
Lemma 2.4, T ′(x) = I for x ∈ N . Thus, via T ′, the boolean group Q/N
acts on the boolean group A. Since |A| is even and the size of each orbit is
a power of 2, there must be some a ∈ A\{1} which is �xed by this action.
Then a ∈ Z(Q).

This can fail when A(Q) is in�nite; see Example .
Lemma 6.2. In an extra loop,

(x, y, zt) = (x, y, tz) = (x, y, z) · (x, y, t)Tz = (x, y, z)Tt · (x, y, t).
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Proof. Applying Lemma 2.7, we have zR(x, y) = z(x, y, z), tR(x, y) =
t(x, y, t), and zR(x, y) · tR(x, y) = (zt)R(x, y) = zt · (x, y, zt), so

z(x, y, z) · t(x, y, t) = zt · (x, y, zt) .

Since associators are in the nucleus, we get (x, y, z)Tt · (x, y, t) = (x, y, zt).
Also, (x, y, tz) = (x, y, zt) by Lemma 2.4, since Q/N is abelian> Therefore
tz ∈ Nzt.

Since (x, y, t)Tz = (x, y, z) · (x, y, zt), we have, in the case of extra loops,
another proof of Fook's result (Lemma 2.8.3) that (A)Tz = A. Lemma 6.2
yields:
Lemma 6.3. In an extra loop, z commutes with (x, y, t) i� t commutes
with (x, y, z) i� (x, y, z)(x, y, t) = (x, y, zt).
Lemma 6.4. If Q is an extra loop, with a = (x, y, z), then

a ∈ Z(〈{x, y, z} ∪N〉), and A(〈{x, y, z} ∪N〉) = {1, a}.
Proof. a ∈ N implies that Ta is an automorphism of Q (Lemma 2.8), so that
{s ∈ Q : sa = as} is a subloop of Q, and this subloop contains all elements
of {x, y, z}∪N by Lemma 2.4, which also implies that (u, v, w) ∈ {1, a} for
all u, v, w ∈ {x, y, z}∪N . Then A(〈{x, y, z}∪N〉) ⊆ {1, a} follows by using
Lemma 6.2.

Lemma 6.5. If Q is an extra loop, then |A(Q) : A(Q)∩Z(Q)| /∈ {2, 4, 8}.
Proof. Set Z = A(Q)∩Z(Q), and de�ne T ′ : Q → Aut(A), as in the proof of
Theorem 6.1. Assume that |A : Z| > 1. Fix e1, e2, e3 ∈ Q with (e1, e2, e3) /∈
Z, and then �x e4 ∈ Q such that (e1, e2, e3)T ′(e4) 6= (e1, e2, e3). De�ne

q1 := (e2, e3, e4) q2 := (e1, e3, e4) q3 := (e1, e2, e4) q4 := (e1, e2, e3).

By Lemmas 6.3 and 2.4, qiT ′(ej) = qi i� j 6= i. Now, let qS =
∏

i∈S qi for
S ⊆ {1, 2, 3, 4}, and observe that qST ′(ej) = qS i� j /∈ S, so that the qS are
all in distinct cosets of Z. Thus, |A : Z| > 16.

Theorem 6.6. If Q is a �nite extra loop with some associator not contained
in Z(Q), then |A(Q)| > 32 and |Q : N(Q)| > 16, so that 512 | |Q|.
Proof. |Q : N | > 16 follows from Lemma 6.4. |A(Q) ∩ Z(Q)| > 2 follows
from Theorem 6.1, so |A(Q)| > 32 follows from Lemma 6.5, so 512 | |Q|.

The �512� is best possible; see Example . The construction there is
suggested by the proof of Lemma 6.5. We shall get A(Q) = N(Q) =
〈q0, q1, q2, q3, q4〉, of order 32, Q/N = 〈[e1], [e2], [e3], [e4]〉, of order 16, and
Z(Q) = {1, q0}.
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7. Extension
Say we are given an abelian group (G,+) and a boolean group (B, +), and
we wish to construct all extra loops Q such that G E Q, G 6 N(Q), and
Q/G ∼= B. We may view this as an extension problem; see [7] �II.3, p. 35.

Assuming that we already have Q, let π : Q → B be the natural quotient
map. By the Axiom of Choice, we can assume that B is a section; that is,
B is a subset of Q and π¹B is the identity function. Then for a, b ∈ B, we
have the loop product a · b from Q and the abelian group sum a + b ∈ B.
Since a · b and a + b are in the same left coset of G, there is a function
ψ : B × B → G with a · b = (a + b)ψ(a, b). We may assume that the
identity element of B is the 1 of Q, so that ψ(1, a) = ψ(a, 1) = 1. Each
Ta¹G ∈ Aut(G). Also, the map x 7→ Tx¹G is a homomorphism from Q to
Aut(G), and is the identity map on G (since G is abelian), so it de�nes a
homomorphism: B → Aut(G). Every element of Q is in some left coset of
G, so it can be expressed uniquely in the form au, with a ∈ B and u ∈ G.
Since G 6 N(Q), we can compute the product of two elements of this form
as au · bv = ab · uTbv = (a + b) · ψ(a, b)(uTb)v. In particular, for b ∈ B,
b2 = b · b = (b + b) · ψ(b, b) = ψ(b, b).

Turning this around, and converting to additive notation,

De�nition 7.1. Suppose we are given:

1. An abelian group (G, +) and a boolean group (B, +).

2. A map ψ : B ×B → G with ψ(0, a) = ψ(a, 0) = 0.

3. A homomorphism, a 7→ τa, from B to Aut(G).

Then B nψ
τ G denotes the set B ×G given the product operation:

(a, u) · (b, v) = (a + b, ψ(a, b) + uτb + v).

B nτ G denotes B nψ
τ G in the case that ψ(a, b) = 0 for all a, b.

Then B nτ G is a group, and is the usual semidirect product.

Lemma 7.2. B nψ
τ G is always a loop with identity element (0, 0). The

map u 7→ (0, u) is an isomorphism from G onto {0} ×G E B nψ
τ G.

Proof. We can solve the equations (a, u) · (b, v) = (c, w) for (b, v) or (a, u):

(a, u)\(c, w) = (a + c, w − ψ(a, a + c)− uτaτc)
(c, w)/(b, v) = (b + c, wτb − ψ(b + c, b)τb − vτb).
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Here, we have simpli�ed the expression using the facts that B is boolean
and the map b 7→ τb is a homomorphism. This proves that B nψ

τ G is
a loop. {0} × G is a normal subloop because the map (a, u) 7→ a is a
homomorphism.

It is fairly easy to calculate, in terms of ψ and τ , what is required
for B nψ

τ G to satisfy various properties, such as the inverse property, the
Moufang law, etc. In the case of extra loops, we shall use the conditions
of Lemma 2.5 on the associators; some of these conditions can be veri�ed
immediately:

Lemma 7.3. Let Q = B nψ
τ G. Then A(Q) 6 {0} ×G 6 N(Q).

Proof. To compute the associators, we solve:

[(a, u) · (b, v)(c, w)] · (
(a, u), (b, v), (c, w)

)
= (a, u)(b, v) · (c, w).

First, we compute both associations:

(a, u) · (b, v)(c, w) = (a, u)(b + c, ψ(b, c) + vτc + w)
= (a + b + c, ψ(a, b + c) + uτbτc + ψ(b, c) + vτc + w)

(a, u)(b, v) · (c, w) = (a + b, ψ(a, b) + uτb + v) · (c, w)
= (a + b + c, ψ(a + b, c) + ψ(a, b)τc + uτbτc + vτc + w).

So,
(
(a, u), (b, v), (c, w)

)
=

(
0, ψ(a + b, c) + ψ(a, b)τc − ψ(a, b + c)− ψ(b, c)

)
.

Observe that this depends only on a, b, c, and has value 0 if any of a, b, c are
0, so that {0} ×G 6 N(Q), and all (x, y, z) ∈ {0} ×G.

We now consider in more detail the case when both B and G are boolean.
We shall in fact start with τ and the desired associator map α : B3 → G,
where

(
0, α(a, b, c)

)
denotes the intended value of

(
(a, u), (b, v), (c, w)

)
for

some (any) u, v, w ∈ G. We plan to construct ψ from α and τ . This is
useful because α is determined by its values on a basis for B. We need to
assume some conditions on α suggested by Lemmas 6.2 and 2.4:

Lemma 7.4. Suppose that G and B are boolean groups and E is a basis
for B. Let τ ∈ Hom(B, Aut(G)), and assume that α : E3 → G satis�es the
equations:
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H1. (α(a1, b, c))τa2 + α(a2, b, c) = α(a1, b, c) + (α(a2, b, c))τa1 ,

H2. (α(a, b1, c))τb2 + α(a, b2, c) = α(a, b1, c) + (α(a, b2, c))τb1 ,

H3. (α(a, b, c1))τc2 + α(a, b, c2) = α(a, b, c1) + (α(a, b, c2))τc1 ,

F1. (α(a, b, c))τa = α(a, b, c),

F2. (α(a, b, c))τb = α(a, b, c),

F3. (α(a, b, c))τc = α(a, b, c).

Then α extends uniquely to a map α : B3 → G satisfying these same
equations for all elements of B, together with

P1. α(a1 + a2, b, c) = (α(a1, b, c))τa2 + α(a2, b, c),

P2. α(a, b1 + b2, c) = (α(a, b1, c))τb2 + α(a, b2, c),

P3. α(a, b, c1 + c2) = (α(a, b, c1))τc2 + α(a, b, c2).

If α is symmetric, then the same holds for α. If in addition, α satis�es
α(a, a, b) = 0 for all a, b ∈ E, then α(a, a, b) = 0 for all a, b ∈ B.

Proof. First, �x a, b ∈ E, and consider the map ϕ : E → Bnτ G de�ned by
ϕ(c) = (c, α(a, b, c)). H3 says that ϕ(c1)ϕ(c2) = ϕ(c2)ϕ(c1), and F3 says
that each (ϕ(c))2 = 1. It follows that ϕ extends uniquely to a homomor-
phism ϕ′ : B → B nτ G; then ϕ′(c) = (c, α′(a, b, c)).

Doing this for every a, b ∈ E, we get α′ : E × E × B → G, which is
the unique extension of α satisfying H3,F3,P3. But then it is easily seen
that α′ satis�es H1,H2,F1,F2 also. α′ is computed inductively using P3; the
purpose of ϕ was just to prove that this computation yields a well-de�ned
function.

Repeating this on the second coordinate yields α′′ : E × B × B → G,
which is the unique extension of α satisfying H2,H3,F2,F3,P2,P3. Doing it
again yields α.

If α is symmetric, then the symmetry of α follows from the uniqueness
of α. Finally, assume in addition that α(a, a, b) = 0 holds on E. First, for
each e ∈ E, note that {b ∈ B : α(e, e, b) = 0} is a subgroup of B, so that
α(e, e, b) = 0 for all b ∈ B. Then, for each �xed b ∈ B, {a ∈ B : α(a, a, b) =
0} is a also a subgroup, so that α(a, a, b) for all a, b ∈ B.

We now analyze the special case that in Q = B nψ
τ G, the elements of

E × {0} all have order 2 and all commute with each other. We can then
use α to compute the correct ψ. Observe �rst:
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Lemma 7.5. In an extra loop Q, suppose that the elements x1, x2, . . . , xn

all pairwise commute. Let π be a permutation of the set {1, 2, . . . , n}. Then
x1 · x2 · · · · · xn = xπ(1) · xπ(2) · · · · · xπ(n), where both products are right-
associated.

Proof. It is su�cient to prove x · yz = y ·xz when xy = yx, and this follows
by x · yz = xy · z · (x, y, z) = yx · z · (x, y, z) = y · xz.

Thus, if the elements of E×{0} all commute, then the value of a right-
associated product from E×{0} must be independent of the order in which
that product is taken. This will simplify the form of ψ. If the elements of
E × {0} also have order 2 in Q, then it is easy to say what properties α
must satisfy:

Theorem 7.6. Suppose that we are given boolean groups G and B, with
E ⊂ B a basis for B. Suppose that we also have τ ∈ Hom(B, Aut(G)) and
a map α : E3 → G satisfying:

1. α is invariant under permutations of its arguments,

2. α(e1, e1, e2) = 0,

3. (α(e1, e2, e3))τe4 + α(e1, e2, e4) = α(e1, e2, e3) + (α(e1, e2, e4))τe3 .

Then there is a unique ψ : B ×B → G satisfying:

a. ψ(0, a) = ψ(a, 0) = 0 for all a ∈ B,

b. Q := B nψ
τ G is an extra loop,

c. In Q, whenever e1, e2, e3 ∈ E, we have
(e1, 0) · (e1, 0) = 0, (e1, 0) · (e2, 0) = (e2, 0) · (e1, 0),

and the associator
(
(e1, 0), (e2, 0), (e3, 0)

)
=

(
0, α(e1, e2, e3)

)
,

d. ψ(e, b) = 0 whenever e ∈ E.

Condition (d) expresses the intent that the elements of the section be
right-associated products from E.

Proof. Note that (1 � 3) implies that (α(e1, e2, e3))τe1 = α(e1, e2, e3).
By Lemma 7.4, α extends uniquely to a symmetric map α : B3 → G

satisfying the conditions Hi, Fi, Pi there. For the uniqueness part of the
theorem, we note that assuming that B nψ

τ G is an extra loop, this α must
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indeed yield the associator; that is, by condition (c) and Lemma 6.2, we
have: (

(a, u), (b, v), (c, w)
)

=
(
0, α(a, b, c)

)
.

Then, by the computation in the proof of Lemma 7.3, we get:

α(a, b, c) = ψ(a + b, c) + ψ(a, b)τc + ψ(a, b + c) + ψ(b, c).

Consider the case where a = e ∈ E. Then condition (d) implies that
ψ(e, b) = ψ(e, b+c) = 0, so we get ψ(e+b, c) = ψ(b, c)+α(e, b, c). Repeating
this, we see that for e1, . . . , en ∈ E,

ψ(e1 + · · ·+ en, c) =
n∑

j=1

α
(
ej ,

∑

k<j

ek, c
)
. (∗)

For example,

ψ(e1 + e2, c) = α(e2, e1, c)
ψ(e1 + e2 + e3, c) = α(e2, e1, c) + α(e3, e1 + e2, c) =

α(e2, e1, c) + (α(e3, e1, c))τe2 + α(e3, e2, c)

This proves the uniqueness of ψ. To prove existence, one can take (∗) as a
de�nition of ψ (after proving that it is well-de�ned), and then prove that it
yields an extra loop with the correct associators.

To prove that it is well-de�ned, �x c and de�ne, Ψn = Ψ(c)
n : En → B

for n > 1 so that

Ψ1(e) = 0.

Ψn+1(e0, e1, . . . , en) = Ψn(e1, . . . , en) + α(e0, e1 + · · ·+ en, c).

It is easy to see that Ψ2(e, e) = 0 and Ψn+2(e, e, e1, . . . , en) = Ψn(e1, . . . , en).
We need to prove that each Ψn is invariant under permutations of its ar-
guments. Then, it will be unambiguous to de�ne ψ(e1 + · · · + en, c) =
Ψ(c)

n (e1, . . . , en). To prove invariance under permutations, we induct on n;
for the induction step, it is su�cient to prove that Ψn+2(e, e′, e1, . . . , en) =
Ψn+2(e′, e, e1, . . . , en), and this follows from the fact that

α(e, e′ + b, c) + α(e′, b, c) = (α(e, e′, c))τb + α(e, b, c) + α(e′, b, c)
= α(e′, e + b, c) + α(e, b, c).
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Now that we have ψ de�ned, we need to check that our given α(a, b, c)
is really the true associator. Use

(
0, (a, b, c)

)
to denote

(
(a, u), (b, v), (c, w)

)
for some (any) u, v, w ∈ G; then, as in the proof of Lemma 7.3,

(a, b, c) = ψ(a + b, c) + ψ(a, b)τc + ψ(a, b + c) + ψ(b, c).

We prove α(a, b, c) = (a, b, c) by induction on the number of basis elements
needed to add up to a. If a = 0, then α(a, b, c) = (a, b, c) = 0. For the
induction step, note that α(e+a, b, c)−α(a, b, c) = α(e, b, c)τa, which is the
same as (e + a, b, c) − (a, b, c), since using ψ(e + b, c) = ψ(b, c) + α(e, b, c),
we get:

(e + a, b, c)− (a, b, c) = α(e, a + b, c) + α(e, a, b)τc + α(e, a, b + c) =

α(e, b, c)τa+α(e, a, c)+α(e, a, b)τc+α(e, a, b)τc+α(e, a, c) = α(e, b, c)τa .

Now that we have identi�ed α(a, b, c) as the associator, it is easy to
prove that Q is an extra loop by verifying the conditions in Lemma 2.5.
(2) and (3) are clear from Lemma 7.3. (1) (Q is �exible) holds because
α(a, b, a) = 0, and (4) holds because α is symmetric. For (5), we must
check that

(
0, α(a, b, c)

)
commutes with (a, u), and this follows from the

fact that (α(a, b, c))τa = α(a, b, c).

We now describe three examples.
If |G| = 2 and |B| = 8 (so E = {e1, e2, e3}), there is only one non-

associative option. α(e1, e2, e3) must be the non-identity element of G, and
each τx must be I. This extra loop of order 16 is the opposite extreme from
the Cayley loop (where the elements outside the nucleus have order 4 and
anticommute).
Example 7.7. There is an extra loop Q of order 512 such that Q/Z(Q) is
nonassociative.

Proof. Let E = {e1, e2, e3, e4} and G = 〈q0, q1, q2, q3, q4〉, so that |Q| = 512.
De�ne τ so that q0τek

= q0 and qjτek
= qj +δj,kq0 for j, k ∈ {1, 2, 3, 4}; then

Z(Q) will be {(0, 0), (q0, 0)}. De�ne α so that α(ei, ej , ek) = q` whenever
i, j, k, ` ∈ {1, 2, 3, 4} are distinct.

The ψ of this example was �rst found using McCune's program Mace4
[22], and the abstract discussion of this section was then obtained by reverse
engineering.
Example 7.8. There is an in�nite nonassociative extra loop Q with
Z(Q) = {1}.
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Proof. Let B be any in�nite boolean group, and we use a wreath product
construction. B acts on (Z2)B by permuting the indices; that is, for u :
B → Z2, let ((u)τa)(b) = u(a + b). Let G = {u ∈ (Z2)B : |u−1{1}| < ℵ0};
so G is a direct sum of |B| copies of Z2 (and is hence isomorphic to B, since
dim(B) = |B|). Since B is in�nite, B nτ G (and hence also B nψ

τ G) will
have trivial center.

Let E be a basis for B. For e1, e2, e3 ∈ E, let α(e1, e2, e3) = 0 unless
e1, e2, e3 are distinct, in which case α(e1, e2, e3) is the element of G 6 (Z2)B

which is 1 on the 8 members of 〈e1, e2, e3〉 and 0 elsewhere. To verify condi-
tion (3), we let u = (α(e1, e2, e3))τe4 +α(e1, e2, e4) and let v = α(e1, e2, e3)+
(α(e1, e2, e4))τe3 , and consider cases: If e1 = e2, then u = v = 0, so assume
that e1 6= e2. If e3 ∈ {e1, e2}, then u = v = α(e1, e2, e4), and if e4 ∈ {e1, e2},
then u = v = α(e1, e2, e3), so assume also that {e3, e4} ∩ {e1, e2} = ∅. If
e3 = e4 then u = v = 0. In the remaining case, e1, e2, e3, e4 are all distinct;
then both u, v are 1 on the 16 members of 〈e1, e2, e3, e4〉 and 0 elsewhere.

8. Semidirect Products
The loop B nψ

τ G from De�nition 7.1 is not really a semidirect product,
since it need not contain an isomorphic copy of B. If we delete the ψ, we
get a true semidirect product. Following Robinson [25]:

De�nition 8.1. Let B,G be loops, and assume that τ ∈ Hom(B, Aut(G)).
Then B nτ G denotes the set B ×G given the product operation:

(a, u) · (b, v) = (ab, (u)τb · v).

We write B nG when τ is clear from context.

It is easily veri�ed that B n G is a loop, with identity element (1, 1),
but B n G need not inherit all the properties satis�ed by B and G. The
general situation for extra loops was discussed in [25]. Here, we consider
only an easy special case:

Lemma 8.2. Assume that τ ∈ Hom(B, Aut(G)), B is an extra loop, and
G is a group. Then B nτ G is an extra loop, and the inverse is given by
(a, u)−1 = (a−1, (u−1)τa−1).

Proof. Note that (a, u) · (a−1, (u−1)τa−1) = (1, 1). We verify the extra loop
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equation (xy · z) · x = x · (y · zx), setting x = (a, u), y = (b, v), z = (c, w):

((a, u)(b, v) · (c, w)) · (a, u) =
(
(ab · c) · a, (u)τbca · (v)τca · (w)τa · u

)

(a, u) · ((b, v) · (c, w)(a, u)) =
(
a · (b · ca), (u)τbca · (v)τca · (w)τa · u

)

These are clearly equal, since B is an extra loop. In writing these equations,
we used the facts that G is associative, and that Aut(G) is associative and τ
is a homomorphism, so that the notation τbca is unambiguous, even though
b · ca need not equal bc · a.

Of course, the same reasoning will work for other equations which are
weakenings of the associative law; for example, if B is Moufang and G is a
group, then B nG is Moufang.

In some cases, we can prove that every extra loop of a given order is a
semidirect product:
Lemma 8.3. Suppose that Q is a �nite extra loop and N = N(Q) is
abelian. Then Q is isomorphic to Bnτ G, where B ∈ Syl2(Q), G = O2(N),
τa = Ta¹G, and each (τa)2 = I.
Proof. Say |Q| = 2nr, where r is odd, so |B| = 2n. Then |N | = 2mr for
some m 6 n, and |B ∩ N | = 2m. Since N is abelian, it is an internal
direct sum of B ∩ N and G = O2(N), which must have order r. Then
Q = BG, since B ∩G = {1}. Furthermore, each Ta maps G to G because
Ta ∈ Aut(N) and G is a characteristic subgroup of N . Then Q ∼= B nτ G
follows. Also, (τa)2 = τa2 = I because a2 ∈ N , which is abelian.

Lemma 8.4. Suppose that Q is a nonassociative extra loop of order 16p,
where p is an odd prime. Then N(Q) ∼= Z2 × Zp.
Proof. |Q : N | > 8 because any 〈{x, y} ∪ N〉 is associative, and Z(N)
contains an element of order 2 by Lemma 2.4, so |N | = 2p and N cannot
be the dihedral group, so N must be Z2 × Zp.

Combining Lemmas 8.3 and 8.4, we see that such Q must be of the
form B nτ Zp, where B is one of the �ve extra loops of order 16 and each
τa ∈ {1,−1} 6 Aut(Zp); this is because (τa)2 = I, and the only element of
Aut(Zp) of order 2 is the map u 7→ −u. We shall now show that the number
of such loops is independent of p. Obviously, Hom(B, {1,−1}) does not
depend on p, but di�erent homomorphisms can result in isomorphic loops,
so we must show that for τ, σ ∈ Hom(B, {1,−1}), the question of whether
B nτ Zp

∼= B nσ Zp does not depend on p:
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Lemma 8.5. If B is a �nite extra 2-loop and τ, σ ∈ Hom(B, {1,−1}), say
τ ∼ σ i� there is an α ∈ Aut(B) with τ = ασ. Let p be an odd prime.
Then, identifying {1,−1} 6 Aut(Zp), B nτ Zp

∼= B nσ Zp i� τ ∼ σ.

Proof. If τ = ασ, then de�ne Φ : Bnτ Zp → BnσZp by (a, u)Φ = ((a)α, u).
To verify that Φ is an isomorphism, use

((a, u) ·τ (b, v))Φ = (ab, (u)τb + v)Φ = ((ab)α, (u)τb + v)
(a, u)Φ ·σ (b, v)Φ = ((a)α, u) ·σ ((b)α, v) = ((a)α · (b)α, (u)σ(b)α + v),

and these are equal because τb (i.e., (b)τ) is the same as σ(b)α (i.e., (b)ασ).
Conversely, suppose we are given an isomorphism Φ : BnτZp → BnσZp.

Then Φ(B×{0}) ∈ Syl2(BnσZp). But also (B×{0}) ∈ Syl2(BnσZp), and
Aut(B nσ Zp) acts transitively on the set of Sylow 2-subloops by Theorem
4.5. Thus, composing Φ with an automorphism, we may assume WLOG
that Φ(B × {0}) = B × {0}. Also, Φ({1} × Zp) = {1} × Zp because
{1} × Zp is the only subloop of B nσ Zp isomorphic to Zp. So, we have
(a, 0)Φ = ((a)α, 0) and (1, u)Φ = (1, (u)β) for some α ∈ Aut(B) and β ∈
Aut(Zp). Since (a, u) = (a, 0) · (1, u), we also have (a, u)Φ = ((a)α, (u)β).
Furthermore, the map (c, w) 7→ (c, (w)β−1) is an automorphism of BnσZp,
since Aut(Zp) ∼= Zp−1 is abelian. Composing Φ with this automorphism,
we may assume WLOG that β = I, so that (a, u)Φ = ((a)α, u). Then, since
Φ is an isomorphism, we have:

((ab)α, (u)τb+v) = ((a, u)·τ (b, v))Φ = (a, u)Φ·σ(b, v)Φ = ((ab)α, (u)σ(b)α+v),

so τ = ασ.

It follows now that the number of nonassociative extra loops of order
16p is independent of p. In the case p = 3, that number is already known
to be 16, since Goodaire, May, and Raman [16], following the classi�cation
of Chein [6], have listed all nonassociative Moufang loops of order less than
64. From Appendix E of [16], we �nd that 16 of the Moufang loops of order
48 are extra loops.

Theorem 8.6. For each odd prime p, there are exactly 16 nonassociative
extra loops of order 16p.

9. Conclusion
Although this paper has focused on extra loops, many of the lemmas hold
more generally for CC-loops. For example, if Q is a CC-loop, then by



The structure of extra loops 59

Basarab [2], Q/N is an abelian group. Of course, Q/N need not be boolean,
but if Q is power-associative, then Q/N has exponent 12. Also, if Q is
power-associative, nonassociative, and �nite, then |Q| is divisible by either
16 or 27. These results on power-associative CC-loops will appear elsewhere
[19].
Acknowledgement. We would like to thank M. Aschbacher for suggesting
the proof of Lemma 4.4, which is somewhat shorter than our original proof.
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