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Permutation representations

of triangle group A(2,4,5)

Qaiser Mushtaq and Muhammad S. Saeed

Abstract

Let G(2,4, Z) be a linear-fractional group generated by the transformations  : z — 2+

and y:z+— satisfying the relations 2> = y* = 1. In this paper, corresponding

-1
2(2+1)
to each 0 in F, we shall determine the coset diagrams D(6,p) depicting the actions of
G(2,4,7) on PL(F,) and find also the values of p for which there exist vertices on the
vertical line of symmetry in D(0,p). Also, we find conditions for the existence of certain

useful fragments of coset diagrams in D(0, p).

1. Introduction

The group G(2,4,7) is defined as a linear-fractional group generated by

the transformations z : z —— g—zl and y:z +— 2(;—4}1), satisfying the

relations 22 = y* = 1. The group G(2,4, Z) can be extended by adjoining
an involution ¢ : 2z — o such that (zt)® = (yt)* = 1. We denote the
extended group by G*(2,4, 7).

Let PL(F,) denote the projective line over the Galois field F},, where p
is a prime. The points of PL(F}) are the elements of F}, together with the
additional point oo.

The group G*(2,4,p) has its customary meanings, as the group of all
transformations z — gji'g where a,b,c,d are in F), and ad — bc # 0.

The homomorphism « : G*(2,4,7) — G*(2,4, p) give rise to an action
of G*(2,4, Z) on PL(F},). We denote the generators xa and yo of G*(2, 4, p)
by Z and 7 respectively. A homomorphism a : G*(2,4, Z7) — G*(2,4,p) is
called a non-degenerate homomorphism if neither x nor y lies in the kernel
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of o, so that T = x«a and § = ya are of orders 2 and 4 respectively. As
always, two non-degenerate homomorphisms « and 3 are called conjugate
if there exists an inner automorphism p of G*(2,4,p) such that 5 = ap.
These conjugacy classes will contain homomorphisms from G*(2,4,7) to
G*(2,4,p).

The triangle groups A (l,m,k) =< z,y : 2t = y™ = (xy)* = 1 >,
where [, m,k > 1, are described explicitly in [1, 2, 3,4]. The triangle groups
A(2,4,k) =< z,y : 22 = y* = (29)¥ = 1 > can be obtained as subgroups
of Sy41 through actions of the group G(2,4,Z) on PL(F;) where ¢ is a
power of a prime p. According to [2], the triangle groups A (2,4,k) are
known as infinite groups if and only if k¥ > 4. The group A (2,4,k) is Cy,
Dg, and Sy, for k = 1, 2, 3, respectively. When k = 4, the triangle group
A (2,4,4) is Abelian-by-cyclic [6].

2. Coset diagrams
The coset diagrams depict an action of
G*2,4,7) =<z yt: 2=y =t =(at) = (yt)> =1 >

on a finite set (or space).

These coset diagrams may be used to provide diagrammatic interpreta-
tions of several aspects of combinatorial group theory, such as the proof of
the Ree-Singerman theorem (on the cycle structures of generating-permuta-
tions for a transitive group). They can be used also as an equivalent to the
Abelianized form of the Reidemeister-Schreier process. The same sort of
method is also useful for the construction of infinite families of finite quo-
tients of a given finitely-presented group. Use of coset diagrams to find
torsion-free subgroups of certain finitely-presented groups has been instru-
mental in the construction of small volume hyperbolic 3-orbifolds and other
hyperbolic 3-manifolds with interesting properties. They are also applied
to the construction of arc-transitive graphs and maximal automorphism
groups of Riemann surfaces. Coset diagrams can often be used to prove
certain groups are infinite, by joining diagrams together to construct per-
mutation representations (of a given group) of arbitrarily large degree.

The coset diagrams for the action of G*(2,4, Z) on a finite set (or space)
are defined as follows.

The four cycles of y are represented by small squares whose vertices are
permuted counter-clockwise by y. Any two vertices which are interchanged
by the involution z, is represented by an edge. The action of ¢ is represented
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by reflection about a vertical axis of symmetry. The fixed points of z and
1y, if they exist, are denoted by heavy dots.
For instance, the action of G*(2,4,Z) on PL (F3;) yields the following
permutation representations
T : (00,11)(0,17)(1,30)(2,8) (3,27) (4,16) (5,22) (6,18) (7,12) (9, 13)
(10,15)(14,20)(19,26)(21, 23)(24,25)(28, 29)

7 ¢ (0,4,8,00)(1,9,30,7) (2,26,12,23) (3, 25,20, 18) (5,21, 19, 14)
(6,16,27,13)(10, 15,22, 11)(17, 24, 29, 28)

and the coset diagram depicting this action is:

7 4
w0
10 11 17 28
15 22 24 29
2 16
26 23 27 &
12 13
30

We shall determine coset diagrams, denoted by D(0,p), depicting the
actions of G(2,4,Z) on PL(F),) and find also the values of p for which
there exist vertices on the vertical line of symmetry in D(6,p). Also, we
find conditions for the existence of certain fragments of coset diagrams in
D(0,p).

The conjugacy classes of non-degenerate homomorphisms « of G*(2,4, Z)
into G*(2, 4, p) correspond in a one-to-one fashion with the conjugacy classes
of non-trivial elements of G*(2,4, p), under a correspondence which assigns
to the non-degenerate homomorphism « the class containing the element
(zy)a. This, of course, means that we can actually parametrize the conju-
gacy classes of non-degenerate homomorphisms except for a few uninterest-
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ing ones, by the elements of F,. That is, we can in fact parametrize the
actions of G*(2,4,7) on PL(F}).

Let X,Y and T denote matrices corresponding to the elements Z,7 and
t in G*(2,4,p), where as described earlier, T = za, ¥ = ya and t = ta,
for some non-degenerate homomorphism « from the group G*(2,4, Z) into
G*(2,4,p). Then X,Y and T will satisfy the relations

X2=v*=T?=(XT)’=(YT) =\

for some scalar A. Since X,Y and T are of orders 2,4, and 2 respectively
therefore we can choose

| a ke | d kf 10 =k
e P I R e e

where m = trace(Y) and a,c,d, f, k € F), with k # 0. Also m = 0(mod p)
for some 6 in F),.

To find m, the trace of Y, we adopt the following method. Since y* = 1,
we have Y4 = A\I. As in Theorem 3.3.1 in [5], some scalar multiple of Y is

conjugate to the matrix [ p p(_)l ], where p is 8th root of unity, so that

0
p® =1or (p* —1)(p* +1) = 0. But p* # 1, therefore (p* + 1) = 0. This
implies that (p? 4+ v2p +1)(p?> — v2p + 1) = 0. That is,

(P +V2p+1) = 0 (2.1)
or (pP=V2p+1) = 0

But m = p+ p~! implies that mp = p? + 1, that is, p> —mp+1 = 0.
Thus comparing this equation with the characteristic equation of Y, we
obtain m = +v/2. Let m = \/ﬁ, so that trace(Y) = V2 where Y satisfy

the relation Y4 = AT for some scalar .

|l a ke _le kf .

So X = [ ¢ —a ] ,and Y = [ FoVa—e ] , and the characteristic
equations of X,Y and XY are:

X2 4+ AI=0, (2.2)

Y2 V2V +1=0, (2.3)

and
(XY)? —rXY + AI =0. (2.4)
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In the following we see that any element ¢ (not of order 1, 2 or 5) of
G*(2,4,p) is the image of xy under some non-degenerate homomorphism of
G*(2,4, Z) into G*(2,4,p).

By Lemma 3.2 [5], it is sufficient to show that every element of G*(2,4, p)
is a product of an element of order 2 and an element of order 4. So we shall
look for elements T,7,t of G*(2,4, p) satisfying the relations

P=y'=T=a)=m)=1 (2.5)

with T ¥ in a given conjugacy class.
We shall take Z, 7 and ¢ to be represented by

S P I e e |

where a,c,d, f, k € F).
Since X is non-singular, we shall write

a4+ ke = -A (2.6)
and require that detY =1 so that

P —V2+EkfP+1=0 (2.7)
This certainly yields the elements satisfying the relations (2.5). So we
only have to check on the conjugacy class of T ¥.
Now the matrix XY is
ad+ kfc akf 4 v2kc— ked
cd—af  kfc—+2a+ ad

and therefore the matrix representing = ¥ has the trace
r=a(2d — V2) + 2kfc (2.8)

and the determinant A = —(a? + kc?), because det Y = 1.
The matrix XYT is given by

akf +\2ke —ked —akd — k?fc
kfc—2a+ ad akf — ked

and if sk = trace(XYT) then
s =2af + c(vV2—2d), (2.9)
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and so
r? + ks? = 2A. (2.10)

Thus, corresponding to each 6 in F, by using equations (2.6) to (2.10),

we can find a triplet (Z,7,%) such that 7% = 7* = £* = (zH)? = (78)% = 1.
Therefore, we can draw the coset diagram depicting an action of G*(2,4, Z)
on PL(F}).

Example 1. If p = 89 and § = 11, then by using equations (2.6) to (2.10),
weobtain A=1,k=—-1,r=10,s=3, f =20, d=2,a=—-13,c= -9

and so

—-132+9 22 —-20 1
x(z) = o

[ — = — t =
92413 W2 =50 793 (2)

Thus our Z,7,t act as

T : (00,41)(0,76

~—

) (1,88)(2,39)(3,53)(4,87)(5,24)(6,82)(7,23)(8,71)(9, 33)
10,27)(11,74)(12,69)(13,70)(14,48)(15,38)(16,45)(17,60)(18, 26)
19,86)(20, 50)(21, 46)(22, 65)(25)(28, 35)(29, 79)(30,42)(31, 51)(32, 62)
( ( )
(

~— — ~—
—~~

34, 68)(36, 61)(37, 66)(40, 52) (43, 80) (44, 67) (47, 54)(49, 73) (55, 72)
56,64)(57)(58, 77) (63, 85)(59, 75)(78, 84)(81, 83)

~~ ~~ —~
—_— — ~—

: (0,3,32,10)(1, 12, 88,52)(2, 28,8, 17)(4, 50, 18, 83)(5, 73, 67, 74)

6,46, 87,59)(7, 36, 39, 29)(9, 64, 30, 00) (11,37, 22, 31)(13, 56, 57, 75)
14, 20, 80, 66)(15, 86, 44, 60)(16, 47, 51, 43)(19, 25, 62, 48)(21, 78, 35, 45)
23,85, 77,81)(24, 68, 84, 42)(26, 53, 71, 72)(27, 38, 76, 40)(33, 69, 41, 82)
34,54, 61, 55)(49, 70, 58, 79)(63)(65)

<

e R

45)(3,30)(4, 67)(5, 18)(6, 15)(7, 51)(8, 78)(9, 10)(11, 81)
(14,70)(16,39)(17,21)(19, 75)(20, 49)(22, 85)(23, 31)
(27, 33)(28, 35)(29, 43)(32, 64) (34, 55) (36, 47) (37, 77)
(41, 76)(42, 53) (44, 87) (46, 60) (50, 73) (54, 61) (56, 62)
(63,65)(68, 72)(71,84)(74,83)(79, 80)(88)

t 1 (0,00)(1)(2,
(12,52)(13, 48)
(24, 26)(25, 75)
(38,82)(40, 69)

(58,66)(59, 86)

~—~ —~ —~

and yield the coset diagram D(11,89)
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fatad

1
40 78 41 &%
27 38 82 33
72 71| |0 10 9 o |24 &E
26 53] |3 32 54 300 |42 24
52 2 57 56
48 19 75 13
18 350 20 14 70 4% 735
23 4 30 &6 5819 67 74

<
]

BT 77 44 56 50 57 37 11
23 @s| &3 &0 15 & 45 85 |z 31
7 2 17 % 78 21 43 51
36 39 2 28 35 4s 16 47

X

8l 54

55 34

D(11,29)

The coset diagrams for the actions of G*(2,4,Z) on PL (F,) contain
fixed points of ¢, which lie on the vertical line of symmetry. Here we have
determined the condition under which these fixed vertices exist in D(0, p).

Theorem 1. The transformation t has fized vertices in D (0, p) if and only
if 6(0—2) is a square in F.

Proof. First we show that the fixed points of T exist in D (0,p) if p =
1 (mod4) and there do not exist fixed points of T if p = 3 (mod4).

Since ¥ and T 7 have even orders, they lie in G*(2,4,p) and hence
so does Z. This implies that the permutation Z is even. Since r? = A,
A is a square if and only if € is. This means that T is in G*(2,4, p) if and
only if —2 is not a square in Fj, and p = 1(mod4). Thus T has fixed
vertices in D (6, p) if and only if —1 and € are either both squares or both
non-squares in F,. That is, T has fixed vertices in D (6,p) if p =1 (mod4)



86 Q. Mushtaq and M. S. Saeed

and it does not have fixed vertices if p = 3 (mod4). This means that for
the non-degenerate homomorphism with parameters 6, T is an element of
G*(2,4,p) if and only if —0 is a square in Fj,.

Let § be the automorphism of G*(2,4,p) defined by 26 = Tt, y6 = ¥
and t6 = t. Then if «: G*(2,4,7) — G*(2,4,p) maps xz,y,t to T,7,1,
the homomorphism « = da maps z,y,t to T,7,L. If welet X,V and
T denote elements of GL(2,p) which yield the elements T, 7 and ¢ in
G*(2,4,p), then obviously X,Y and T can be taken as follows

e[ o3 AL e[

where k # 0 and a, ¢, d, k, f € F), such that they satisfy the equations (2.6)
to (2.10). We recall that, T 7 will be of order 2 if and only if tr (XY) =r =10
and similarly T gt will be of order 2 if and only if tr (XYT) = ks = 0.
Since the determinant of XY is A, therefore the parameter of T 7 is r2/A,
which we have denoted by 6. Also ks is the trace of XYT and kA is its
determinant. If we let ¢ = k—ZQ we get 04 = 12+ ks?/A. Substituting the
values of 7 and s from the equations (2.8) and (2.9), in 0+ = 72 +ks?/ A
and then making the substitution of the equation (2.7) and A = —(a?+kc?)
we obtain 6 4+ ¢ = 2. That is if § is the parameter of a then 2 — @ is the
parameter of o'

Since change from o to o interchanges both Z and zt and 6 and 2 — 0,
it follows that Tt maps to an element of G*(2,4,p) if and only if 6 (2 — 0)
is a square in Fj,. Since ¢ is in G*(2,4,p) if both of T and Tt is, but not
if just one of them is, t is in G*(2,4, p) if and only if 6 (2 — 0) is a square
in F,. Now t has fixed points in PL (F),) if either ¢ belongs to G*(2,4,p)
and p = —1 (mod4) or t dose not belong to G*(2,4,p) and p = 1 (mod4) is
equivalent to saying that —1 is a square in F,, we conclude that ¢ has fixed
vertices in D (6, p) if and only if —6(2—0) = 0 (0 —2) is a square in F).
Hence the result. O

We can see in Example 1 that the coset diagram depicting actions of
G(2,4,7) on PL (Fgg) contain fixed points of ¢ on the line of symmetry.

The fact that ¢ has fixed vertices on the line of symmetry in D(6, p) or
not helps us to determine the structure of the group < z,7,t >. It also
enables us to show that for infinitely many values of p, the group G*(2, 4, p)
has minimal genus.

Corollary 1. If p = +1(mod5) then the transformation t has fized ver-
tices in D (0,p) if and only if 0 —2 is a square in F, and (T 7)° = 1.
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3. Fragments of coset diagrams

By joining graphs representing groups of smaller degree we can obtain a
bigger graph representing a group of larger degree. Then it is easy to study
the properties of the new group just by studying its graph. We have different
methods of joining graphs together, to give representations of the group
of larger degree. We need not have to study the entire group of a smaller
degree, we can achieve this just by studying its fragment and find a condition
for the existence of the fragment in the coset diagram, so that if the fragment
exists in a coset diagram of larger degree, we can study the properties of
the diagram for the related group of larger degree.

The coset diagrams, depicting actions of G*(2,4,p) on PL(F,), fre-
quently contain some special fragments, namely ~1, 9 and 3 respectively

Vi

L4 ¥a

3

We determine conditions on 6 and p for the existence of these fragments
in the coset diagrams D(6,p).
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Theorem 2.
(i) The fragment ~v1 will occur in D(6,p) if 5 is a square in F),.
it e fragment ~yo will occur in ,p) if —11 is a square in F,.
(i) The fragment ~o will m D(0,p) if —11 1 n F,
(t3i) The fragment ~3 will occur in D(0,p) if —19 is a square in F).

Proof. The vertices vy, v and vs are fixed by the elements T 7, T 7°
and 7 7°Ty°Tyxy respectively. Recall that det X = A, trace(Y) = V2,
det(XY) = A, and trace(XY) = r. After suitable manipulations, the
equations

Y3=Y —2I (3.1)
Yi=—-1 (3.2)
XYX =rX 4+ AY — V2AI (3.3)

can be obtained from the equations (2.2), (2.3) and (2.4).

In fragment v, the vertex vy is fixed by T 3. The matrix corresponding
to T y will be My = XY. The determinant of M; will be det(XY) =
det(X)det(Y) = A, and the trace of M; will be equal to trace(XY) = r.
So the discriminant of the characteristic equation of M; will be r? — 4A.
But 2> = §A. This means that the discriminant is, in fact, 72 — 4A =
OA —4A = (6 — 4)A. Since A is a square if and only if 6 is, we can
eliminate A, as we are in field F},. So the discriminant of the characteristic
equation of the matrix corresponding to the element Z 7 of G*(2,4,p) will
be d;(6) =60 — 4.

In fragment ~, the vertex v, is fixed by Z 7°Z §. The matrix corre-
sponding to T 7% ¥ will be My = XY3XY. Now det My = A2 If we
substitute the value of Y3 from equation (3.1) in equation My = XY3XY,
we get Mo = X(Y — V2I)XY = (XY)2 — V2X2Y. If we now substitute
values of (XY)? and X? (from equations (2.4) and (2.2)) in equation My =
(XY)? —/2X?2Y the result will be an equation My = rXY — AT ++2AM.
So the trace of My will be trace(rXY) —trace(AI)++/2trace(AY). That
is, trace(Ms) = r? — 2A + 2A = r2. This implies that the discriminant of
the characteristic equation of My will be r* —4A2. But r2 = 0A. This
means that the discriminant is, in fact, §2A2% — 4A? = (62 — 4)A2. Since
A is a square if and only if 0 is, we can eliminate A so the discriminant
of the characteristic equation of the matrix corresponding to the element
2Ty of G*(2,4,p) will be do(0) = 6% — 4= (6 —2)(0 +2).

corresponding to T 7°% §°% § T § will be Mz = XY3XY3XYXY. So
det M3 = A*. If we substitute the value of Y3 from equation (3.1) in
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equation Mz = XY3XY3XY XY, we get
Ms = XY —V2D)X(Y —V2I)(XY)? (3.4)
(XY — V2X)(XY — V2X)(XY)?
= [(XY)?+2X% - V2XYX — V2X?V](XY)2
If we now substitute values of (XY)?, X? and XY X (from equations (2.4),
(2.2) and (3.3)) in equation (3.4) the result will be an equation
Ms =r3XY —r2AT — 2rAXY + A%T +V2r2AY + V2rX. (3.5)

So the trace of Mz will be 7% — 2r2A — 2r2A + 2A2% + 272A. That is,
trace(M3) = r* — 2r? A 4+ 2A? . This implies that the discriminant of the
characteristic equation of M3 will be

(r* —2r2A +2A%)2 — 4AY =18 4 8r1A% — 4r0A — 872 A3,
This means that the discriminant is, in fact,
0 AT + 802A% — 403AT — 89AT = (0% + 807 — 403 — 89) A%

Since A is a square if and only if @ is, we can eliminate A, so the discrim-
inant of the characteristic equation of the matrix corresponding to 7 7°%
7Ty Ty of G*(2,4,p) will be

ds(0) = 0" — 46° +80° — 80 = 0(0 — 2)[0 — (1 + V=3)][(6 — (1 — V=3)]
Thus,

(i) the fragment ~; will occur in D(6,p) if and only if di(0) = 60 — 4
is a square in Fj,. If §; and 6, are the roots of f(z) = 22 — 3z + 1 then

2

[T d1(6;) = f(4) = 5. Thus 7y will exist in some D(6;,p) if 5 is a square
i=1

in Fj.

(7i) the fragment ~9 will occur in D(0,p) if and only if dy(f) =
(0—2)(0+2) is a square in F},. If §; and 6 are the roots of f(z) = 22 —32+1
2

then [] d2(6;) = f(2)f(—2) = —11. Thus ~o will exist in some D(6;,p)
i=1

if —11 is a square in E,.
(¢i7) the fragment ~3 will occur in D(6,p) if and only if ds(6) =
00 —2)(0—(14++v=3))((0 — (1 —+/—3)) is asquarein F,. If 6; and 0

are the roots of f(z) =22 —3z+1 then ]2[ ds(0;) = £(0)f(2)f(1+ V=3)

i=1
f(1—=+/=3) = —19. Thus ~3 will occur in some D(6;,p) if —19 is a square
in Fj. Hence the result. O
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Example 2. In the coset diagram given below, we can see that all the three

fragments are present.

&1 26 T
3 11 \53 &3
32 A
(3] 4 53 38
- X X
) 5
3 54 13 28
31 65
21 &
25 &0 33 15
20 55
(3 2N
44 34 48 50
57 13
3 10 47 23 37 42 7 47
19 22 35 45 41 2 29 58
D64, 713

In the following we give a hand-calculated list summarizing the situation
for all primes p < 241. We let p denote the primes congruent to +1 or
+9(mod 40) and 6 is a root of the polynomial 6% — 360 + 1.
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31

41

71

79

89

151

191

199

239

241

14

20

36

10

64

51

31

11

81

29

125

90

104

63

139

17

225

53

191

x

Z —

Z —

Z —

z+2
z—1

2z —3
3z—2
3z -7
16z — 3
4z + 21
Tz —4
7z —10
52 — 17
13z — 16
—16z — 13
-1

Tz
23z — 21
29z — 23
—132+4+9

-9z +13
20z — 34
—172—-20
—29z 4+ 67

28z + 29
4z — 35

352 —4
—60z + 4
65z + 60
—31z — 46
46z + 31
41z — 45
—45z — 41
—41z 4+ 63

—63z + 41
—21z +43

—43z + 21
—38z + 25

25z + 38
33z 4+ 119

119z — 33
97z — 101

101z — 97

|

Z —

Zz —

Z —

Z —

—z+6
32+
1
—z+38
—z—18
62z + 25
z—25
122 4+ 13
-2

z+2

z+9

9z +11
z—25
25z 48
2z +42
212+ 7
2z —20
20z 4+ 23
8

4z+5

z + 64
29z 4+ 45
z—4

4z + 22
3z 430
10z + 54
—z—21
21z 458
z 460
60z + 19

—2z2—129

29z + 22
z — b7
57z 4+ 98
z — b7
57z 4+ 98
32

32z + 11
32

32z + 11



92 Q. Mushtaq and M. S. Saeed

References

[1] G. Baumslag, J. W. Morgan, and P. B. Shalen: Generalized triangle
groups, Math. Proc. Camb. Phil. Soc. 102 (1987), 25 — 31.

[2] H. S. M. Coxeter and W. O. J Moser: Generators and relations for
discrete groups, Springer-verlag, Berlin 1980.

[3] J. Howie, V. Metaftsis and R. M. Thomas: Finite generalized triangle
groups, Trans. Amer. Math. Soc. 347 (1995), 3613 — 3623.

[4] L. Levai, G. Rosenberger and B. Souvignier: All finite generalized tri-
angle groups, Trans. Amer. Math. Soc. 347 (1995), 3625 — 3627.

[5] Q. Mushtaq: Parametrization of all homomorphisms from PGL(2,Z) into
PSL(2,q), Comm. Algebra 20 (1992), 1023 — 1040.

[6] Q. Mushtaq and F. Shaheen: Finite presentation of alternating groups,
Acta Math. Sinica, New Ser. 11 (1995), 221 — 224.

Department of Mathematics Received March 29, 2003
Quaid-i-Azam University

Islamabad

Pakistan

e-mail: gmushtaq@apollo.net.pk



