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Quotient hyper BCK-algebras

Arsham Borumand Saeid and Mohammad M. Zahedi

Abstract

In this note first we use the equivalence relation ~; which has been introduced in [1]
and construct a quotient hyper BC K-algebra H/I from a hyper BCK-algebra H via
a reflexive hyper BC'K-ideal I of H. Then we study the properties of this algebra, in
particular we give some examples of this algebra. Finally we obtain some relationships
between H/I and H.

1. Introduction

The hyperalgebraic structure theory was introduced by F. Marty [7] in
1934. Imai and Iséki [4] in 1966 introduced the notion of a BC K-algebra.
Recently [6] Jun, Borzooei and Zahedi et.al. applied the hyperstructure to
BC K-algebras and introduced the concept of hyper BC' K-algebra which is
a generalization of BC K-algebra. Now, in this note we use the equivalence
relation given in [1] and construct a quotient hyper BC'K-algebra H/I via
a hyper BC K-ideal I, then we obtain some related results which have been
mentioned in the abstract.

2. Preliminaries

Definition 2.1. Let H be a nonempty set and “o” be a hyperoperation on
H, that is “o” is a function from H X H to P*(H) = P(H)\{0}. Then H
is called a hyper BCK-algebra if it contains a constant 0 and satisfies the
following axioms:
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(HK1) (zoz)o(yoz) < zoy,

(HK2) (zoy)oz=(xoz2)oy,

(HK3) zoH < {x},

(HK4) z < y and y < x imply = =y,

for all z,y,2z € H, where x < y is defined by 0 € z oy and for every
A,BCH, A< Bisdefined by Va € A, 3b € B such that a < b.

Proposition 2.2. [6] In any hyper BCK-algebra H, for all z,y,z € H,
the following statements hold:
(1) 000 ={0}, (iv) 0oz = {0},

(i) 0< u, (v) zoy<Luz,

(1i1) =<z, (vi) z00={z}.
Definition 2.3. Let I be a nonempty subset of a hyper BCK-algebra
(H,0,0) and 0 € I. Then, [ is called a hyper BCK-ideal of H if x oy < I
and y € I imply that « € I, for all z,y € H. If additionally x o x C I for
all x € H, then [ is called a reflexive hyper BC K -ideal.

Lemma 2.4. [5] Let A, B and I be subsets of H.
(1)) If ACB<C, then AL C.
(i) If Aox < I forx € H, then aox < I for all a € A.
(¢it) If I is a hyper BCK -ideal of H and if Aox < I forxz €I,
then A < I.
(iv) If I be a reflexive hyper BCK -ideal of H and let A be a subset
of H. If ALI, then ACI.
Definition 2.5. [3] A hyper BCK-algebra H is said to be
— weak positive implicative if (xoz)o(yoz) <K (roy)oz),
— positive implicative if (xoz)o(yoz)=(roy)oz,
— implicative if © < xo(youx)
holds for all z,y,z € H.
Definition 2.6. [3] A nonempty subset I of a hyper BCK-algebra H
containing 0 is called
— a weak tmplicative hyper BCK -ideal if for all x,y,z € H

(xoz)o(yox)CIand z € I imply z €I,
— an implicative hyper BCK -ideal if for all z,y,z € H
(xoz)o(yox)< I and z € I imply z € I.
Definition 2.7. [6] Let H be a hyper BCK-algebra. Define the set
V(a,b) :={x € H|0 € (xoa)ob}. If for any a,b € H, the set V(a,b) has
the greatest element, then we say that H satisfies the hyper condition.
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Proposition 2.8. [1] Let I be a reflexive hyper BCK -ideal of H and let
x~ry ifand only if xoyCI and yox C 1.

Then ~g is an equivalence relation on H.

Proposition 2.9. [1] Let A, B are subsets of H, and I a reflexive hyper
BCK -ideal of H. Then we define A ~; B if and only if Va € A, 3b € B in
which a ~1 b, and Vb € B, da € A in which a ~1 b. Then relation ~1 is an
equivalence relation on P*(H).

3. Quotient hyper BC K-algebras

From now on H is a hyper BC K-algebra and [ is a reflexive hyper BCK-
ideal of H, unless otherwise is stated.

Lemma 3.1. Let A, B € P*(H), and I be a hyper BCK -ideal of H. Then
AoB < I and Bo A< I imply that A ~1 B.

Proof. For all a € Aand b € B we have boa C Bo A and aob C Ao B.
Since Ao B« I, and Bo A <« I, then we have boa < I, and aob < I.
Since [ is reflexive then a ~; b, which implies that A ~; B. O

Theorem 3.2. The relation ~g is a congruence relation on H.

Proof. By considering Proposition 2.8, it is enough to show that If z ~; y
and u ~jy v, then x ou ~y yow. Since x ~y y, we have zoy < [
and yox < I. So (xow)o(yov) < xoy and oy < I imply that
(rowv)o(yowv) < I. Similarly (yov)o (zov) < I. Therefore by Lemma 3.1
Tov~yyou.

Also we have (zou)o(vou) < zowv. Then forallt € zouand r € vou
we have tor C (zowu)o (vou). Therefore for all s € ¢ or there exists
a € x ov such that s < a, hence (soa) NI # (. Since soa C (tor)oa,
then ((tor)oa)NI # (. By Lemma 2.4 we have (tor)oa < I. Thus
(toa)or < I and r € I, which implies that t oa < I. Since ¢t € x o u and
r € vou we can get that (xou)o(zov) < I. Similarly (zov)o(zou) < I.
Then by Lemma 3.1 we can see that xov ~j xou.

Since ~j is an equivalence relation on P*(H), then x ov ~; y o v and
rov~yrou imply that xou~jyow. O

Suppose [ is a reflexive hyper BC K-ideal of (H,0,0). Denote the equiv-
alence classes of x by C.

Lemma 3.3. In any hyper BCK-algebra H we have I = CY.
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Proof. Let x € I. Since xz € 200, we have (£o0)NI # (). Then 200 C I and
since 0oz = 0 hence 0 ox C I. Then 0 ~; x therefore x € Cy. Conversely
let x € Cy hence x ~; 0 which means that x o0 C I. Since z € x o0 then
we have x € I. ]

Denote H/I = {Cy : x € H} and define Cp, «Cy ={C; |t € xoy}. If
Cy = Cp and Cy = Cy, then C, x Cy = Cypr x Cy. Indeed, if C, = Cpr and
Cy = Cy then o ~y o’ and y ~; 3/, we can conclude that z oy ~j 2’ o y/
since ~y is a congruence relation. Now let C; € Cp x Cy then t € z o y.
Then there exist 7 € 2’ o3 such that ¢t ~; r hence C; = C,. Therefore
Cy x Cy C Cp * Cy, and similarly Cyp * Cyy € C, x Cy. Hence * is well-
defined.

On H/I we define < putting: C, < Cy if and only if Cy € Cyp * Cy.
Observe that: 2 <y=0€czoy= Coc C,*xCy = C, < C,.

Theorem 3.4. Let (H,0,0) be a hyper BCK -algebra and let I be a reflexive
hyper BCK -ideal of H. Then (H/I,*,Cy) is a hyper BCK-algebra.

Proof. (HK1): Since H is a hyper BC' K-algebra, we have (xoz)o(yoz) <
(xoy). Soforallt €aob C (zoz)o(yoz) there exists s € (zoy) such
that ¢ < s. Therefore Cy < Cy, where C; € Cy x Cp C (Cp % C,) x (Cy % Cy)
and Cs € Cy * Cy, hence (C x Cy) * (Cy x C,) < Cp x Cy.

(HK2): We must show that (Cy x Cy) * C, = (Cy * C;) % Cy. Let
Cre (CpxCy)*C,. Thent €aoz C (xoy)oz=(xroz)oy, which means
that C; € (Cp * C) x Cyy. Hence (Cp x Cy) x C, C (Cy x C;) % Cy. Similarly
(CpxCy) xCy C (Cp xCy) * C..

(HK3): Cp+{Cy |t € Hy ={CoxCy |t € H} = | J{Cy |y € wot}.
teH
By Proposition 2.2 for all y € x ot we have y < x. So Cy < C, therefore

{Cy |y € xot} < Cp. Thus U{Cy | y € x ot} < Cp. Therefore
teH
CoxH/I < C,.

(HK4): Let C; <« Cy and Cy < C,. We must show that C, = C,,.
Since C, < Cy then Cy € C; * Cy. So there exists a t € x oy such that
t ~7 0. Therefore t 0 0 < I, thus t € I. Hence (zoy) NI # 0. Now, since
I is a reflexive hyper BC'K-ideal we conclude that x oy C I. Similarly
yox C I. Thus x ~y y which means that C, = C,. ]

Theorem 3.5. If H is a bounded hyper BCK-algebra with the greatest
element 1, then (H/I,*,Cy) is also a bounded hyper BC K -algebra with the
greatest element C.
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Proof. Tt is enough to prove that C; is the greatest element of H/I. For
any ¢ € H, since 0 € x o1 then Cy € C, *x C. This means that Cy is the
greatest element of H/I. O

The inverse of the above theorem does not hold.

Example 3.6. Let H = {0,1,2}. Then the following table shows a hyper
BCK-algebra structure on H, which is not bounded.

o ‘ 0 1 2
0] {0} {o} {o}
{1} {0} {1}
2({2p {2} {02}

Then I = {0,2} is a reflexive hyper BCK-ideal of H. Now construct the
quotient hyper BC K-algebra H/I via I. Because

Co=1={0,2}=Co={yly~r2}, Cr={yly~rl}={1},

then H/I ={Cy, C1} and

Ci|C1 Cy
We can check that (H/I,*,Cy) is a bounded hyper BC K-algebra. O

Theorem 3.7. If J is a reflexive hyper BCK -ideal of H and I C J, then:
(a) I is a hyper BCK-ideal of the hyper BCK -subalgebra J of H,
(b) the quotient hyper BCK -algebra J/I is a hyper BCK -ideal of H/I.

Proof. (a) At first we show that J is a hyper BC K-subalgebra of H. To
show this let z,y € J we must show that z oy C J. Since z oy < z, then
for all a € zoy we have a < z. Hence 0 € aox. Thus (aox)NI # (0, since
I is reflexive then a ox C I and therefore a o x C J. Now x € J implies
that a € J, thus x oy C J. Hence J is a hyper BC K-subalgebra of H. It
is clear that I is hyper BC K-ideal of the hyper BC K-subalgebra of J.

(b) We can check that J/I C H/I. If Cp, x Cy < J/I and C, € J/I,
then for any ¢ € x oy, there exists s € J such that C; < Cs . Thus
Co e CyxCs. So Cy = C, for some r € t os. Therefore 0 ~7 r and this
implies that O or C I and o0 C I. Hence r € I, which means that
(tos)NI # 0. Since I is reflexive, then tos C I. Now tos C J,and s € J
implies that ¢ € J. Thus zoy < J. Sincey € J, so x € J, thus C, € J/I.
Hence J/I is a hyper BCK-ideal of H/I. O
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Theorem 3.8. If L is a hyper BCK -ideal of H/I, then J ={z|Cy, € L}
is a hyper BCK-ideal of H and moreover I C J. Furthermore L = J/I.

Proof. Since I = Cyp € L, then 0 € J. Let zoy < J and y € J. Then for
any t € x oy there exists s € J such that ¢ < s. Hence Cy < (s, which
implies that C, x Cy < L. Since y € J, we get that Cy € L, thus C, € L.
Therefore x € J, hence J is a hyper BCK-ideal of H. Let x € I = Cj.
Then x ~; 0, thus C, = Cy and hence C, € L. Therefore x € J, that is
ICJ. Clearly L =J/I. O

Theorem 3.9. If I is a hyper BCK-ideal of H, then there is a bijection
from the set Z(H,I) of all hyper BCK -ideals of H containing I to the set
I(H/I) of all hyper BCK -ideals of H/I.

Proof. Define f : Z(H,I) — Z(H/I) by f(J) = J/I. By Theorem 3.7(b) f
is well-defined, also Theorems 3.8 implies that f is onto. Let A, B € Z(H,I)
and A # B. Without loss of generality, we may assume that there is an
x € (B\A). If f(A) = f(B),then C, € f(B)=B/Iand C, € f(A) = A/I.
Thus there exists y € A such that C, = Cy so z ~y y, thatis xoy < I
and yox < I. Since I C A we have z oy < A. Thus y € A implies that
x € A, which is a contradiction. So f is one-to-one. O

Theorem 3.10. Let I be a hyper BCK-ideal of H. Then there exists a
canonical surjective homomorphism ¢ : H — H/I by ¢(x) = Cy, and
kero = I, where kerp = o~ 1(Cp).

Proof. Tt is clear that ¢ is well-defined. Let z,y € H. Then p(xoy) =
{pt) [t ezoy} ={C, |t € xoy} = CpxCy = p(x) x (y). Hence ¢
is homomorphism. Clearly ¢ is onto. We have kerp = {x € H | p(z) =
Co}={zeH|C,=Cy=1}={xcH|xel}=1 O

Theorem 3.11. Let f : Hi — Hs be a homomorphism of hyper BCK -
algebras, and let I be a hyper BCK-ideal of Hy such that I C kerf. Then
there exists a unique homomorphism f : H1/I —s Ho such that f(C,) =
f(z) for all x € Hy, Im(f) = Im(f) and kerf = kerf/I. Moreover f is
an isomorphism if and only if f is surjective and I = kerf.

Proof. Let Cp = Cp. Then x ~j 2/, which implies that z o2’ C I and
2’ ox C I. Thus there exists ¢ € (xoa’)()I. Then 0= f(t) € f(xoz') =
f(z) o f(2'), hence f(x) < f(z'). Similarly f(2') < f(z), therefore f is
well-defined.

We have f(C, *C) fUC, |t € zoy)})

_Z{f( i) | texoy} =
{f(t) [t exoy} = flwoy) = f(x) o fly) = f(Ca) *

f(Cy). Then fis a
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homomorphism. On the other hand
Cp €Ekerf <= f(Cp) =0<= f(x) =0<= z € kerf.

Note that f is unique, since it is completely determined by f. Finally it is
clear that f is surjective if and only if f is surjective. O

Theorem 3.12. Let f : Hi — Hs be a homomorphism of hyper BCK -
algebras. Then Hy/kerf = Im(f). O

Theorem 3.13. Let I,J be hyper BCK-ideals of H. Then there is a
(natural ) homomorphism of hyper BCK -algebras between I/(I N J) and
<IUJ > /J, where < IUJ > is the hyper BCK -ideal generated by IUJ.

Proof. Define ¢ : I —< IUJ > /J by p(z) = CJ, where C is the
equivalence classes C, via the hyper BCK-ideal J. If x1 = x2, then it is

clear that C; = CJ,, which means that ¢ is well-defined. Also we have

p(roy) = {p(t) |t € zoy} = {CY |t € zoy} = CxC} = p(x) * o(y).
So that ¢ is a homomorphism. Moreover
kero={zecl|px)=Cl}={zrecl|C/=C{=1J}
={zel|lzedJ}=INJ
Thus by Theorem 3.12 the proof is completed. O

Open Problem 1. Under what condition(s) is the defined homomorphism
wn Theorem 3.11 an isomorphism 7

Theorem 3.14. Let I,J be hyper BCK-ideals of H such that I C J.
Then (H/I)/(J/I) = H/J.

Proof. Tt is clear that J/I C H/I. Define f: H/I — H/J by CL+ C,
where CL € H/I and CJ € H/J.

If CI = C'yl, then z ~y y which implies that x oy C I and yox C I.
Since I C J hence xoy CJ and yox C J. Thus = ~jy then C;E]:Ci,]
which means that f is well-defined.

F(CixCy) = fUCT | t € woy}) = {C] | t € woy} = CxCyf = F(C1)+f(Cy).

Clearly f is onto and
kerf ={C; € H/I'| f(C}) = C{} ={C; € H/T | C = C{f}
={CleH/I|zeJ}=J/L
Now by Theorem 3.12 the proof is completed. O
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4. Some result in quotient hyper BC K-algebras

Let Cq,Cy € H/I. Then according to Definition 2.7 we have

V(CQ,CI,) = {Cz S H/I ‘ Cy e (Cm * Ca) * Cb}
Obviously C(),Ca,cb S V(Ca,Cb), V(Co,CO) = {Co} and V(Ca,Cb) =
V(Cy, C,) for all C,,Cy € H/I.
Theorem 4.1. If H satisfies the hyper condition, then H/I so is.
Proof. If x € V(a,b), then we have xoa < b. Thus for all ¢t € zoa, t < b.
Therefore Cy < Cp, thus Cp x Cf < Cp. Hence C, € V(C,4, Cy). Since

V(a,b) has the greatest element, then by Theorem 3.5, V(Cg, Cy) has the
greatest element too. 0

Remark 4.2. The converse of the above theorem is not correct in general.
Let H ={0,1,2} and

o] 0 1 2
0[{oy {0} {0}
1 {1y {01} {1}
21{2p {2 {0}

Then I = {0,1} is a reflexive hyper BC'K-ideal of a hyper BCK-algebra
(H,0,0) and the elements of the quotient hyper BC'K-algebra H/I are as
follows: Co =1 ={0,1} =C1 ={y |y ~r 1}, Co={y|y~r2} ={2}.
Hence H/I = {Cy,Ca} and

It can be checked that the quotient hyper BC'K-algebra H/I satisfies the
hyper condition, but H does not satisfy the hyper condition, since V(1,2) =
{0,1,2}, 1«2 and 2 K 1. O

Theorem 4.3. If H is an implicative hyper BCK -algebra, then so is H/I.
Proof. The proof is easy. O
Note that the converse of the above theorem is not correct in general.

Example 4.4. The set H = {0,1,2} with the operation

ol 0 1 2

0f{oy {o} {o}

L {1} {0} {0}

2 {2y {1} {1}
is a hyper BCK-algebra. I = {0,1} is a reflexive hyper BC K-ideal such
that Co=I1={0,1} =C1 ={y|y~r1}, Co={y|y~r2} ={2} and
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We can check that H/I = {Cy,C3} is an implicative hyper BC K-algebra,
while the hyper BC' K-algebra H is not, since 1 €« 10 (201). O

Theorem 4.5. If H is a (weak) positive implicative hyper BCK algebra,
then so is H/I.

Proof. Let H be a positive implicative hyper BC' K-algebra. Then we have
CtE(Cx*CZ)*(Cy*CZ)<:> Cy = Cy forsome s€ (zoz)o(yox), t~rs
<= (Cy=C5 forsome s€(zoy)oz, s~it

= Cp e (CpxCy) xC..
The other case is similar. O

Note that Example 4.4 shows that the converse of the above theorem
is not correct in general. Since H/I is positive implicative while H is not,

since (202)0(202)={0,1} # {0} =(202)02.

Theorem 4.6. Let I and J be reflexive hyper BCK -ideals of H and I C
J. If J is a weak implicative hyper BCK -ideal of H, then J/I is a weak
implicative hyper BCK -ideal of H/I.

Proof. Let J be a weak implicative hyper BC K-ideal of H and (C, x C,)
(CyxCy) C J/I and C, € J/I. Then for all Cs € (Cy x C.,) * (Cy * Cy)
where s € (x02) o (yox), we have Cs € J/I. Thus s ~ r, for some r € J.
So sor C I, hence sor C J. Consequently r € J implies that s € J. Thus
(xoz)o(yox)C J,and from C, € J/I we can conclude that z € J. Since
J is a weak implicative hyper BC K-ideal, then we get that x € J. Hence
C, € J/I, which means that J/I is a weak implicative hyper BC' K-ideal of
H/I 0

Open Problem 2. Does the converse of the above theorem true 7

Theorem 4.7. Let I C J be reflexive hyper BCK -ideals of H. Then J/I
is an implicative hyper BCK -ideal of H/I if and only if J is an implicative
hyper BCK -ideal of H.

Proof. Let J be an implicative hyper BC K-ideal and Cy % (CyxC,) < J/I.
Then for all C; € C, * (Cy * Cy) there exists C, € J/I such that Cy < C,,
where t ~; s, s€ xo(yox)and r € J. Since Cy < C, then Cy € Cy * C,
hence there exists v € tor such that 0 ~y u. Thus uo0 C I, therefore u € I.
Then (tor)NI # 0 which means that torn.J # (. Therefore r € J implies
that t € J. Since t ~5 s thus sot C I and hence sot C J. Thust € J
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implies that s € J, hence z o (y o x) < J. Since J is an implicative hyper
BCK-ideal by Theorem 3.6 of [3] we can get that « € J. Hence C, € J/I.
Now Theorem 3.6 [3] implies that J/I is an implicative hyper BC K-ideal
of H/I.

Conversely, let J/I be an implicative hyper BCK-ideal of H/I and
zo(yox) < J. Then for all t € x o (y o x) there exists r € J such that
t < r. Thus Cy < C,, and we can conclude that C, x (Cy x Cy) < J/I.
Since J/I is an implicative hyper BC' K-ideal of H, then C, € J/I, we can
get that x € J. Therefore J is an implicative hyper BC K-ideal of H, by
Theorem 3.6 of |3]. O
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