
Quasigroups and Related Systems 13 (2005), 157 − 174Conjugate invariant quasigroupsZoran Stojakovi¢ and Wieslaw A. DudekAbstra
tSome properties of 
onjugate invariant quasigroups and their relations to various 
ombi-natorial and algebrai
 stru
tures are des
ribed.1. Introdu
tionThe theory of quasigroups, although older than the theory of groups, is often
onsidered as a minor o�shoot of the later (whi
h 
an be witnessed by AMSSubje
t Classi�
ation 20N05 where quasigroups and loops are 
onsideredas just one of "other generalizations of groups"). What is negle
ted in this
onsideration are numerous appli
ations of quasigroups in other bran
hesof mathemati
s and not only mathemati
s. This paper aims to give a briefpresentation of some appli
ations of quasigroups in 
ombinatori
s, namelythe 
onne
tion of so 
alled 
onjugate (parastrophy) invariant quasigroupsand some 
ombinatorial stru
tures and also to des
ribe some algebrai
 prop-erties of su
h quasigroups.2. PreliminariesAlthough we shall 
onsider binary and n-ary quasigroups, we shall givebasi
 de�nition and notions for n-ary 
ase, whi
h for n = 2 give the usualde�nitions in the binary 
ase.The sequen
e xm, xm+1, . . . , xn we denote by xn
m or {xi}

n
i=m. If m > nthen xn

m will be 
onsidered empty.2000 Mathemati
s Subje
t Classi�
ation: 20N05, 20N15, 05B07Keywords: n-groupoid, n-quasigroup, n-group, 
onjugate, H-permutable,Steiner system, Mendelsohn system, quadruple system, identity



158 Z. Stojakovi¢ and W. A. DudekAn n-ary groupoid (n-groupoid) (Q, f) is 
alled an n-quasigroup if theequation A(ai−1
1 , x, an

i+1) = an+1 has a unique solution x for every an+1
1 ∈ Qand every i ∈ {1, . . . , n}. An n-quasigroup (Q, f) is 
alled idempotent if forevery x ∈ Q f(x, x, . . . , x) = x. An element x ∈ Q is 
alled an idempotentif f(x, x, . . . , x) = x.An n-quasigroup (Q, f) is 
alled (i, j)-asso
iative i� the following iden-tity holds

f(xi−1
1 , f(xi+n−1

i ), x2n−1
i+n ) = f(xj−1

1 , f(xj+n−1
j ), x2n−1

j+n ).An n-quasigroup whi
h is (i, j)-asso
iative for all i, j ∈ Nn is 
alled an
n-group.By Sn we denote the symmetri
 group of degree n and by An its alter-nating subgroup.If G is a group and S ⊆ G, by Γ{S} we denote the subgroup of Ggenerated by S.A Steiner system S(t, k, v) is a pair (S, T ), where S is a v-set and T is afamily of k-subsets of S su
h that every t-subset of S is 
ontained in exa
tlyone element of T . An S(2, 3, v) is 
alled a Steiner triple system (STS) and an
S(3, 4, v) is 
alled a Steiner quadruple system (SQS). Ordered analogues ofSteiner systems are Mendelsohn systems. A Mendelsohn system M(t, k, v)is a pair (S, T ) where S is a v-set and T is a family of 
y
li
 k-tuples
〈a1, . . . , ak〉, a1, . . . , ak distin
t elements of S, su
h that every ordered pairof distin
t elements from S belongs to exa
tly one element of T . A 
y
li

k-tuple 〈a1, . . . , ak〉 is the following set of k ordered pairs: 〈a1, . . . , ak〉 =
{(a1, a2), (a2, a3), . . . , (ak−1, ak), (ak, a1)}. An M(2, 3, v) and an M(3, 4, v)are 
alled a Mendelsohn triple system (MTS) and a Mendelsohn quadruplesystem (MQS), respe
tively.3. Quasigroup 
onjugatesHere we give some basi
 properties of quasigroup 
onjugates [2℄.If (S, f) is an n-quasigroup and σ ∈ Sn+1, then the n-quasigroup (Q, fσ)de�ned by

fσ({xσ(i)}
n
i=1) = xσ(n+1) ⇐⇒ f(xn

1 ) = xn+1is 
alled a σ-
onjugate (or simply 
onjugate) of f . A 
onjugate (Stein [19℄) isalso 
alled parastrophe (after A. Sade [18℄), the later is also used in Russianliterature (Belousov, [1℄, [2℄, [3℄).



Conjugate invariant quasigroups 159Let f, g, h be n-ary quasigroup operations de�ned on the same set Q. If
h is a 
onjugate of g and g is a 
onjugate of f , then h is a 
onjugate of f .If fσ = g and h = gτ , then h = (fσ)τ = fστ .If f = fσ, then (Q, f) is 
alled σ-permutable. If H ⊆ Sn+1 and f = fσfor all σ ∈ H, then (Q, f) is 
alled H-permutable. H-permutable quasi-groups are also 
alled 
onjugate invariant quasigroups.The set H of all σ ∈ Sn+1 su
h that f = fσ is a subgroup of Sn+1whi
h is denoted by Π(f). A H-permutable n-quasigroup (Q, f) su
h that
H = Π(f) is 
alled exa
tly H-permutable n-quasigroup.An n-quasigroup (Q, f) is 
alled totally symmetri
 (TS) if (Q, f) is
Sn+1-permutable, alternating symmetri
 (AS) if it is An+1-permutable ([21℄,[28℄) and 
y
li
 if it is Cn+1-permutable, where Cn+1 is a 
y
li
 subgroupof Sn+1 generated by the 
y
le (12 . . . n + 1) ([20℄). Binary quasigroupswhi
h are σ-permutable for di�erent values of σ are 
ommutative quasi-groups, semisymmetri
 quasigroups (satisfying the identity (xy)y = y), to-tally symmetri
 quasigroups, quasigroups satisfying Sade's left "key's" law(x(xy)=y) and Sade's right "key's" law ((xy)y=x) [7℄.For ea
h subgroup H of Sn+1 we de�ne Λ(H), the spe
trum of H, tobe the set of all positive integers q for whi
h there exists an n-quasigroup
(Q, f) of order q with Π(f) = H.4. H-permutable n-groupoidsAlthough for arbitrary n-groupoids 
onjugates 
an not be always de�ned,the de�nition of σ-permutability 
an be extended to n-groupoids.De�nition 1. Let σ ∈ Qn+1. An n-groupoid (Q, f) is σ-permutable if forall xx+1 ∈ S

f(xn
1 ) = xn+1 ⇐⇒ f({xσ(i)}

n
i=1) = xσ(n+1).As before, the set of all σ ∈ Sn+1 for whi
h an n-groupoid is σ-permutable is a subgroup of Sn+1. If H ⊆ Sn+1, and an n-groupoid (S, f)is σ-permutable for all σ ∈ H, then it is H-permutable.Let (Q, f) be an n-groupoid, H a subgroup of Sn+1 and Γ a set ofgenerators of H. It is not di�
ult to see that f is H-permutable if and onlyif f is σ-permutable for every σ ∈ Γ.Theorem 1. [22℄ Let H be a nontrivial subgroup of the symmetri
 group

Sn+1. Every H-permutable n-groupoid is an n-quasigroup if and only if His a transitive permutation group.



160 Z. Stojakovi¢ and W. A. DudekProof. If H is a transitive subgroup of Sn+1, then it is easy to see that every
H-permutable n-groupoid is an n-quasigroup.Now we assume that H is not a transitive subgroup of Sn+1. If forevery k ∈ Nn+1, there exists σ ∈ H su
h that σk = n + 1, then H must betransitive. Hen
e there exists k ∈ Nn+1 su
h that there is no permutationin H whi
h maps k to n + 1.Let P = {σ(k) | σ ∈ H} and R = Nn+1\P and let (Q,+) be a nontrivial
ommutative group. If we denote P = {a1, . . . , ai}, R = {b1, . . . , bm},
bm = n + 1, and if a ∈ Q is an arbitrary element, then we de�ne an
n-groupoid (Q, f) by

f(xn
1 ) = −xb1 − · · · − xbm−1

+ a.Now we shall show that f is an H-permutable n-groupoid whi
h is not an
n-quasigroup. Sin
e |P | > 1, f is not an n-quasigroup. If for some σ ∈ Hand some aj ∈ P , σ(aj) = bs, then sin
e there exists τ ∈ H su
h that
τ(k) = aj , it follows στ(k) = bs, whi
h is a 
ontradi
tion. Hen
e for every
σ ∈ H and every x ∈ P , σ(x) ∈ P . Also for every σ ∈ H and every
y ∈ R, σ(y) ∈ R (sin
e σ(bp) = aq implies σ−1(aq) = bp, and that 
ase was
onsidered earlier). So, (Q, f) is an H-permutable n-groupoid.A question of the existen
e of exa
tly H-permutable n-quasigroups fordi�erent subgroups H of Sn+1 is 
onsidered in [16℄ where the existen
e ofsu
h quasigroups for some 
omposite orders is established:Theorem 2. [16℄ For every m > n, p > 2, and every subgroup H of Sn+1there exists a H-permutable n-quasigroups of order mp, su
h that H = Π(f).Proof. Let M and P be �nite Abelian groups of orders m and p, respe
tively.We 
onstru
t an n-quasigroup f on Q = M × P as follows: Choose n + 1distin
t elements a1, a2, . . . , an+1 in M , 
hoose a pair b, c of distin
t elementsfrom P , and let s = a1 + a2 + · · · + an+1.Now let x1, x2, . . . , xn+1 ∈ M , y1, y2, . . . , yn+1 ∈ P . We de�ne

f((x1, y1), (x2, y2), . . . , (xn, yn)) = (xn+1, yn+1)i� the following two 
onditions hold:(1) x1 + x2 + · · · + xn+1 = s,(2) if for some σ ∈ H, (x1, x2, . . . , xn+1) = (aσ(1), aσ(2), . . . , aσ(n+1)),then y1 + y2 + · · ·+ yn+1 = b. Otherwise, y1 + y2 + · · ·+ yn+1 = c. It is easyto 
he
k that (Q, f) is an n-quasigroup su
h that Π(f) = H.



Conjugate invariant quasigroups 161In [16℄ the following 
onje
ture was made:For ea
h subgroup H of Sn+1, Λ(H) 
onsists of all but �nitely manypositive integers.Some 
onstru
tions of exa
tly H-permutable n-quasigroups of primeorders were given in [22℄, whi
h 
an be easily extended to some 
ompositeorders.Theorem 3. [22℄ Let H be a subgroup of Sn+1. If there exist disjoint sets
R1, . . . , Rk ∈ Nn+1 su
h that for every σ ∈ H, σ(Ri) = Ri, i = 1, . . . , k, forevery x ∈ Nn+1 \ (R1 ∪ · · · ∪ Rk), σ(x) = x, and H 
ontains all permuta-tions from Sn+1 with the given properties, then there exists an H-permutable
n-quasigroup (Q, f) of order p, where p > n + 1 is any prime, su
h that
Π(f) = H.In [22℄ the spe
trum of 
y
li
 n-quasigroups (Q, f) ([20℄) with the prop-erty that Π(f) = Cn+1, where Cn+1 a subgroup of Sn+1 generated by the
y
le (12 . . . n + 1), was investigated.5. Steiner and Mendelsohn systems
H-permutable n-quasigroups are 
losely related to some 
ombinatorialstru
tures. First we shall 
onsider binary 
ase. It is well known that �-nite idempotent TS and semisymmetri
 quasigroups are equivalent to STSsand MTSs, respe
tively ([6℄, [14℄).Let (Q, ∗) be a �nite idempotent TS quasigroup. If we de�ne

T = {{x, y, x ∗ y} | x, y ∈ Q, x 6= y},then (Q, T ) is a STS, Conversely, if (Q, T ) is a STS, then if we de�ne abinary operation * on Q for all x, y ∈ Q, x 6= y, by
x ∗ y = z ⇐⇒ {x, y, z} ∈ T,and

x ∗ x = x,then (Q, ∗) is an idempotent TS quasigroup.This is not the only way of turning quasigroups into STSs and vi
e versa.It 
an be shown analogously that idempotent TS loops of order v + 1 areequivalent to STS of order v.



162 Z. Stojakovi¢ and W. A. DudekMTS are also equivalent to a 
lass of H-permutable quasigroups. If
(Q, T ) is a MTS, and if we de�ne a binary operation * on Q by

x ∗ y = z ⇐⇒ (x, y) ∈ 〈x, y, z〉, x 6= y,and x ∗ x = x for all x ∈ Q, we get an idempotent quasigroup (Q, ∗) su
hthat ∗ = ∗(123). Conversely, if (Q, ∗) is a �nite idempotent quasigroup and
∗ = ∗(123), then (Q, T ) where

T = {〈x, y, x ∗ y〉 | x, y ∈ Q, x 6= y}is a MTS. Here the quasigroup (Q, ∗) is H-permutable, where H is a 
y
li
subgroup of S3 generated by (123) (semisymmetri
 quasigroup).Previous results 
an be naturally generalized to ternary 
ase.If (Q, f) is a �nite ternary TS quasigroup, then by
T = {{x, y, z, f(x, y, z)} | x, y, z ∈ Q, x 6= y 6= z 6= x},a SQS (Q, T ) is de�ned.If (Q, T ) is an SQS and a ternary operation f is de�ned on Q for distin
telements x, y, z ∈ Q by

f(x, y, z) = u ⇐⇒ {x, y, z, u} ∈ T,and f(x, x, y) = f(x, y, x) = f(y, x, x) = y (generalized idempoten
e (GI))otherwise, then (Q, f) is a GITS quasigroup.MQS are also equivalent to a 
lass of ternary quasigroups. If (Q, T ) isa MQS, then if for distin
t elements x, y, z ∈ Q we de�ne
f(x, y, z) = u ⇐⇒ 〈x, y, z, u〉 ∈ Tand f(x, x, y) = f(x, y, x) = f(y, x, x) = y otherwise, we obtain a GI H-permutable ternary quasigroup (Q, f), where H = Γ{(1234)}. Conversely,if (Q, f) is a �nite GI ternary H-quasigroup, where H = Γ{(1234)}, thenby

T = {{x, y, z, f(x, y, z)} | x, y, z ∈ Q, x 6= y 6= z 6= x},a MQS (Q, T ) is de�ned.



Conjugate invariant quasigroups 1636. Other quadruple systemsWe have seen that �nite idempotent S3-permutable (TS) quasigroups and
C3-permutable (semisymmetri
) quasigroups are equivalent to STSs andMTSs, respe
tively. This was naturally generalized to the ternary 
ase,where �nite GI S4-permutable 3-quasigroups and GI C4-permutable 3-quasigroups are equivalent to SQSs and MQSs, respe
tively. But in theternary 
ase besides these two 
lasses of GI H-permutable 3-quasigroups,there exist many other GI H-permutable 3-quasigroups and to ea
h su
h
lass of GI H-permutable 3-quasigroups a 
lass of quadruple systems 
an beasso
iated, analogously as it is done for Steiner and Mendelsohn quadruplesystems.Among these quadruple systems so 
alled tetrahedral quadruple systemswere �rst introdu
ed and studied in [28℄ and they represent another gener-alization of MTSs.De�nition 2. Let Q be a �nite set of v elements. A dire
ted quadruple
〈abcd〉, where a, b, c, d are distin
t elements of Q, is the following set of 12ordered triples

〈abcd〉 = {(abc), (adb), (acd), (bdc),
(bca), (dba), (cda), (dcb),
(cab), (bad), (dac), (cbd)}.De�nition 3. A tetrahedral quadruple system (TQS) of order v is a pair

(Q, T ) where T is a 
olle
tion of dire
ted quadruples of elements of Q, su
hthat every ordered triple of distin
t elements of Q belongs to exa
tly onedire
ted quadruple from Q.Dire
ted quadruples are obtained from 4-element subsets of Q by anorientation whi
h 
an be represented by the following diagram (Figure 1).If the elements a, b, c, d of a dire
ted quadruple 〈abcd〉 are represented asthe verti
es of the tetrahedron as in Figure 1, then the verti
es of ea
h fa
eof the tetrahedron are 
y
li
ally ordered in positive dire
tion observed fromthe interior of the tetrahedron.So, TQSs 
an be 
onsidered as a 3-dimensional analogue of MTSs. If
〈abc〉 is a dire
ted triple from an MTS, then the orientation of the pairswhi
h belong to that triple is shown in Figure 2.
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Figure 1. Figure 2.That TQSs are a generalization of MTSs will follow from the algebrai

hara
terization of TQS whi
h will be given later.Let (Q, T ) be a TQS of order v. We de�ne a ternary operation f on Q.If (abc) is an ordered triple of distin
t elements from Q, then it belongs toexa
tly one dire
ted quadruple from T . If d is the fourth element in thatquadruple, then we de�ne f(a, b, c) = d. If for all x, y ∈ Q f(x, x, y) =
f(x, y, x) = f(y, x, x) = y then (Q, f) is a GIAS-3-quasigroup.Now let (Q, f) be a �nite GIAS-3-quasigroup. Let (abc) be an orderedtriple of distin
t elements of Q and f(a, b, c) = d. Suppose d ∈ {a, b, c}, say
d = a, then sin
e (Q, f) is AS, f(a, b, c) = d implies f(a, a, b) = c and sin
e
(Q, f) is GI we get c = a whi
h is a 
ontradi
tion. Hen
e d 6∈ {a, b, c}.Now, for every ordered triple (abc) of distin
t elements from Q, wede�ne a dire
ted quadruple 〈abcf(a, b, c)〉 and denote by T the family ofsu
h dire
ted quadruples. Sin
e (Q, f) is AS, it follows that for every fourdistin
t elements a, b, c, d ∈ Q su
h that 〈abcd〉 ∈ T

〈abcd〉 = 〈bcad〉 = 〈cabd〉 =

= 〈adbc〉 = 〈dbac〉 = 〈badc〉 =

= 〈acdb〉 = 〈cdab〉 = 〈dacb〉 =

= 〈bdca〉 = 〈dcba〉 = 〈cbda〉.This means that every ordered triple of distin
t elements from Q belongsto exa
tly one dire
ted quadruple from T , hen
e (Q, T ) is a TQS.We have seen that TQSs are equivalent to GIAS-3-quasigroups, but sin
ein the binary 
ase the alternating subgroup A3 of the symmetri
 group S3 isin fa
t 
y
li
 group C3, it follows that TQSs are a generalization of MTSs.



Conjugate invariant quasigroups 165The spe
trum of TQSs was determined in [28℄, [15℄ where it was provedthat the spe
trum 
onsists of all n ≡ 1, 2, 4, 5, 8, 10 (mod 12).Similarly, we 
an de�ne quadruple systems for other subgroups H of S4.In [30℄ the spe
trum of GI H-permutable 3-quasigroups where H is D4 (thedihedral group), K4 (Klein group) and Γ{(13)(24)} was determined. Thespe
trum Λ(D4) = {1} ∪ {2n | n ∈ N} and Λ(K4) 
onsists of all n ≡ 0, 1, 2
(mod 4). 7. IdentitiesIt is easy to see that De�nition 1 
an be given in another equivalent form.De�nition 4. Let σ ∈ Qn+1. If σ(k) = n + 1 for some k ∈ Nn, then an
n-groupoid (Q, f) is σ-permutable if for all xn+1

1 ∈ Q

f({xσ(i)}
k−1
i=1 , f(xn

1 ), {xσ(i)}
n
i=k+1) = xσ(n+1).If σ(n + 1) = n + 1, then (Q, f) is σ-permutable if for all xn+1

1 ∈ S

f({xσ(i)}
n
i=1) = f(xn

1 ).We see that the 
lass of all H-permutable n-groupoids is a variety.When applied to n-quasigroups, this de�nition is equivalent to the pre-viously given de�nition of σ-permutability.Consequently, every H-permutable n-quasigroup 
an be de�ned as an
n-quasigroup satisfying a system of identities.For example, a 3-groupoid (Q, f) is a GIAS-3-quasigroups if and only ifthe following identities hold











f(x, y, y) = x,

f(x, y, z) = f(y, z, x),

f(y, f(x, y, z), z) = x.The se
ond of the given identities is equivalent to f = f (123), and the thirdis equivalent to f = f (124). Γ{(123), (124)} is a generating set of the group
A4, hen
e (Q, f) is a GIAS-3-quasigroup.Besides identities obtained from the equality of 
onjugates f = fσ,some other identities 
an be also used to de�ne varieties of H-permutable
n-groupoids. A question is what is the minimal set of identities in a base of
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h variety. It 
an be shown that many of these varieties are single based[8℄, [9℄, [27℄, [24℄.For example, the following two theorems ([24℄) show that the varietiesof GI-C4-permutable 3-groupiods and GI-S4-permutable 3-groupoids (whi
hare ne
essarily 3-quasigroups and in the �nte 
ase are equivalent to MQSsand STQs, respe
tively) are single based.Theorem 4. A 3-groupoid (Q, f) is a GI-C4-permutable 3-groupoid i� thefollowing identity is satis�ed
f(f(x, y, f(u, f(v, v, f(p, q, f(f(z, t, t), p, q))), u)), x, y) = z. (1)Proof. The following notation will be used. If (Q, f) is a 3-groupoid, thenthe translation maps T1(a, b), T2(a, b), T3(a, b) are de�ned by

T1(y, z)(x) = T2(x, z)(y) = T3(x, y)(z) = f(x, y, z).If (Q, f) is a GI-C4-permutable 3-groupoid, then it is easy to see that(1) is satis�ed.Now, let (Q, f) be a 3-groupoid su
h that (1) is valid. Sin
e a 3-groupoid
(Q, f) is a GI-C4-permutable i� the following identities are satis�ed

f(f(x, y, z), x, y) = z, (2)
f(x, x, y) = y, (3)we shall prove that (1) implies (2) and (3).(1) 
an be written by

T1(x, y)T3(x, y)T2(u, u)T3(v, v)T3(p, q)T1(p, q)T1(t, t) = I, (4)where I is the identity mapping of Q. From (4) we get that T1(t, t) is 1− 1and T1(x, y) is onto, hen
e for all t ∈ Q T1(t, t) is a bije
tion, whi
h implies
T1(x, y)T3(x, y)T2(u, u)T3(v, v)T3(p, q)T1(p, q) = T−1

1 (t, t).The last equality implies that T1(x, y) is a bije
tion and
T3(x, y)T2(u, u)T3(v, v)T3(p, q) = T−1

1 (x, y)T−1
1 (t, t)T−1

1 (p, q).By the similar argument we obtain that T3(x, y) is a bije
tion for all
x, y ∈ Q, whi
h gives

T2(u, u) = T−1
3 (x, y)T−1

1 (x, y)T−1
1 (t, t)T−1

1 (p, q)T−1
3 (p, q)T−1

3 (v, v).



Conjugate invariant quasigroups 167Hen
e T2(u, u) is a bije
tion for all u ∈ Q.From (4) we get that for all x, y, u, v, p, q, t, r, s ∈ Q

T1(x, y)T3(x, y)T2(u, u)T3(v, v)T3(p, q)T1(p, q)T1(t, t) =

= T1(r, s)T3(r, s)T2(u, u)T3(v, v)T3(p, q)T1(p, q)T1(t, t),and
T1(x, y)T3(x, y) = T1(r, s)T3(r, s),that is,

f(f(x, y, z), x, y) = f(f(r, s, z), r, s). (5)By an analogous pro
edure it follows that for all x, y ∈ Q

Ti(x, x) = Ti(y, y), i = 1, 2, 3,that is,
f(z, x, x) = f(z, y, y), f(x, z, x) = f(y, z, y), f(x, x, z) = f(y, y, z). (6)Putting in (6) y = z, one gets

f(z, x, x) = f(x, z, x) = f(x, x, z) = f(z, z, z). (7)If in (5) we put x = f(z, z, z), y = r = s = z, using (7) it follows
f(f(f(z, z, z), z, z), f(z, z, z), z) = f(f(z, z, z), z, z) = f(z, f(z, z, z), z).Sin
e T1(x, y) is a bije
tion from the pre
eding equality we get

f(f(z, z, z), z, z) = z. (8)If now we put in (5) r = s = z, it follows
f(f(x, y, z), x, y) = f(f(z, z, z), z, z) = z,hen
e identity (2) is valid. So we have proved that for all x, y ∈ Q

T1(x, y)T3(x, y) = I. But identity (2) is equivalent to
f(x, y, f(z, x, y)) = z,whi
h means that for all x, y ∈ Q T3(x, y)T1(x, y) = I. Therefore, (4)be
omes

T2(u, u)T3(v, v)T1(t, t) = I,
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f(u, f(v, v, f(z, t, t)), u) = z.Putting in the pre
eding identity u = v = t = z and using (7) and (8)we get

f(z, z, z) = z,whi
h by (7) gives
f(z, x, x) = f(x, z, x) = f(x, x, z) = z.Theorem 5. A 3-groupoid (Q, f) is a GI-S4-permutable 3-groupoid i� thefollowing identity is satis�ed

f(f(x, y, f(u, f(v, v, f(p, q, f(f(z, t, t), q, p))), u)), x, y) = z. (9)These results 
an be extended to other GI-H-permutable 3-groupoids.In [27℄ it is proved that the variety of GI-H-permutable 3-groupoids 
an bede�ned by a single identity for every subgroup H of S4 whi
h 
ontains atleast one permutation σ su
h that σ(4) 6= 4.8. Algebrai
 propertiesConjugate invariant quasigroups have many 
ombinatorial appli
ations, butit is also interesting to 
onsider algebrai
 properties of these quasigroups.We shall illustrate some of these properties on GIAS-3-quasigroups [23℄.We have seen that the 
lass of all GIAS-3-groupoids is a variety, and everyGIAS-3-groupoid is ne
essarily a GIAS-3-quasigroup.Theorem 6. Let U = (Q; f) be a GIAS-3-groupoid and let C(U) be the
ongruen
e latti
e of U . Then
a) If θ ∈ C(U), then ea
h θ-
lass is a subalgebra of U ,
b) U has permutable 
ongruen
es,
c) U has regular 
ongruen
es,
d) U has uniform 
ongruen
es,
e) U has 
oherent 
ongruen
es.Proof. a) Obvious.
b) Follows from Mal'
ev's theorem (a variety has permutable 
ongru-en
es i� it has a ternary polynomial f(x, y, z) su
h that f(x, y, y) =
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f(y, y, x) = x).

c) Let [a]θ, θ ∈ C(U), be a θ-
lass. If x ≡ y (θ) then f(x, y, a) ≡
f(y, y, a) (θ), hen
e a ≡ f(x, y, a) (θ). Conversely, if a ≡ f(x, y, a) (θ), then
f(a, x, a) ≡ f(f(x, y, a), x, a) (θ) and sin
e U is AS f(f(x, y, a), x, a) = y,hen
e x ≡ y (θ). We have proved that for all x, y ∈ Q, x ≡ y (θ) i�
a ≡ f(x, y, a) (θ), so one θ-
lass de�nes the whole 
ongruen
e.

d) Let θ ∈ C(U), a, b ∈ Q, a 6≡ b (θ). The mapping ϕ : [a]θ → [b]θ de-�ned by ϕ(x) = f(x, a, b) is a bije
tion. ϕ is obviously 1−1, and if y ∈ [b]θ,then x = f(y, b, a) ∈ [a]θ is su
h that ϕ(x) = f(f(y, b, a), a, b) = y.
e) Let B = (B; f) be a subalgebra of U whi
h 
ontains a 
ongruen
e
lass C = [a]θ. If we assume that there exist elements p ∈ Q\B, q ∈ B\C,su
h that p ≡ q (θ), and if r is an arbitrary element from C, then sin
e themapping f : [r]θ → [q]θ de�ned by x 7→ f(x, r, q) is a bije
tion, it followsthat there exist an element r1 ∈ C su
h that f(r1, r, q) = p. But, sin
e Bis a subalgebra, p ∈ B, whi
h is a 
ontradi
tion. Hen
e all elements 
on-gruent to an element of B belong to B, i.e. a subalgebra whi
h 
ontains a
ongruen
e 
lass must be a union of 
ongruen
e 
lasses.We have proved that if a GIAS-3-groupoid has a nontrivial 
ongruen
e,then that 
ongruen
e is uniform and ea
h 
ongruen
e 
lass is a subalge-bra. Sin
e fa
tor algebra is also a GIAS-3-groupoid we have the following
orollary.Corollary 1. A ne
essary 
ondition that a �nite GIAS-3-groupoid of order

v has nontrivial 
ongruen
es, is that v ≡ v1v2, where v1, v2 are integersgreater than 1 su
h that v1, v2 ≡ 1, 2, 4, 5, 8, 10 (mod 12).In [13℄ Fraser and Horn studied varieties V with the property that forevery A,B ∈ V ea
h 
ongruen
e θ of A×B is a produ
t 
ongruen
e θ1×θ2.A variety V of algebras has the Fraser-Horn property if for every A,B ∈ Vall 
ongruen
es of A×B are produ
t 
ongruen
es. A 
ongruen
e of a dire
tprodu
t whi
h is not a produ
t 
ongruen
e is 
alled skew.Theorem 7. A variety of GIAS-3-groupoids does not have the Fraser-Hornproperty.Proof. In [17℄ it is proved that the variety whi
h 
oordinatizes Steinerquadruple systems has a skew 
ongruen
e. Sin
e this variety is a subva-riety of the variety V of all GIAS-3-groupoids, it follows that V does nothave the Fraser-Horn property.
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h states that if every algebra froma variety has permutable 
ongruen
es and singleton subalgebras, then every�nite algebra from that variety has a de
omposition into a dire
t produ
tof dire
tly irredu
ible algebras whi
h is unique up to isomorphism of thefa
tors and up to their sequen
e, by Theorem 6 we get the next theorem.Theorem 8. Ea
h �nite GIAS-3-groupoid has a de
omposition into a dire
tprodu
t of dire
tly irredu
ible fa
tors whi
h is unique up to isomorphism ofthe fa
tors and up to their sequen
e.9. H-permutable n-groupsVarious 
lasses of H-permutable n-groups were 
onsidered in [11℄, [12℄, [21℄,[29℄, [26℄. Here we shall des
ribe some of them.Theorem 9. Let (Q, f) be an n-group. (Q, f) is AS i� there exists anAbelian group (Q,+) su
h that x = −x for all x ∈ Q, and
f(xn

1 ) =
n

∑

1

xi + c,where c is a �xed element from Q.Proof. Let (Q, f) be an AS-n-group. Then by Hosszú-Gluskin theoremthere exist a group (Q, ·), its automorphism θ and an element c ∈ Q su
hthat
f(xn

1 ) = x1θx2θ
2x3 . . . θn−1xnc,where θc = c and for all x ∈ Q θn−1x = cxc−1. f is AS, hen
e f = fσ,where σ = (1, 2, n + 1), and the following identity is valid

f(x2, f(xn
1 ), xn

3 ) = x1,that is
x2θ(x1θx2θ

2x3 . . . θn−1xnc)θ2x3 . . . θn−1xnc = x1. (10)If we put in the pre
eding equality x1 = e, i = 1, . . . , n, where e is theunit of (Q, ·), we get that c2 = e. Now putting in (10) xi = e, i = 1, . . . , n,it follows θx1 = x1, i. e. θ is the identity mapping of Q. If in (10) weput x1 = e, i = 1, 3, . . . , n, we obtain θ2x2 = x−1
2 whi
h means that for all

x ∈ Q, x = x−1. Hen
e (Q, ·) is an Abelian group and
f(xn

1 ) = x1x2 . . . xnc.The 
onverse part of the theorem is obvious.
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e the group (Q, ·) su
h that x = x−1 for all x ∈ Q is of order 2t,
t ∈ N, and for every t ∈ N there exists su
h group of order 2t, we have thefollowing 
orollary.Corollary 2. There exists a nontrivial �nite AS-n-group (Q, f) of order qi� q = 2t, t ∈ N.Cy
li
 n-groups have similar stru
ture. Some properties of su
h n-groups are given in the following theorems ([29℄).Theorem 10. Let (Q, f) be an (i, j)-asso
iative 
y
li
 n-quasigroup, where
j − i is relatively prime to n. Then (Q, f) is an n-group.Theorem 11. Let (Q, f) be an n-group, where n = 2k, k ∈ N. (Q, f)is 
y
li
 i� there exists an Abelian group (Q,+) su
h that x = −x for all
x ∈ Q, and

f(xn
1 ) =

n
∑

1

xi + c,where c is a �xed element from Q.Theorem 12. Let (Q, f) be an n-group, where n = 2k + 1, k ∈ N. (Q, f)is 
y
li
 i� there exists an Abelian group (Q,+) su
h that
f(xn

1 ) = x1 − x2 + x3 − · · · + xn + c, (11)where c = −c is a �xed element from Q.Corollary 3. When n is even, there exists a nontrivial �nite 
y
li
 n-group
(Q, f) of order q i� q = 2t, t ∈ N. When n is odd, a nontrivial �nite 
y
li

n-group (Q, f) of order q exists for every q ∈ N and every su
h group isrepresented by (11).Further investigation of H-permutable n-groups is done in [26℄ wheresome ne
essary and su�
ient 
onditions for an n-group to be σ-permutableare determined and several 
onditions under whi
h su
h n-groups are de-rived from binary groups are given.10. Other appli
ationsWe have des
ribed some properties of 
onjugate invariant quasigroups, butthere are many other appli
ations of su
h quasigroup whi
h 
ould not be
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