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Conjugate invariant quasigroups

Zoran Stojakovi¢ and Wieslaw A. Dudek

Abstract

Some properties of conjugate invariant quasigroups and their relations to various combi-

natorial and algebraic structures are described.

1. Introduction

The theory of quasigroups, although older than the theory of groups, is often
considered as a minor offshoot of the later (which can be witnessed by AMS
Subject Classification 20N05 where quasigroups and loops are considered
as just one of "other generalizations of groups"). What is neglected in this
consideration are numerous applications of quasigroups in other branches
of mathematics and not only mathematics. This paper aims to give a brief
presentation of some applications of quasigroups in combinatorics, namely
the connection of so called conjugate (parastrophy) invariant quasigroups
and some combinatorial structures and also to describe some algebraic prop-
erties of such quasigroups.

2. Preliminaries

Although we shall consider binary and n-ary quasigroups, we shall give
basic definition and notions for n-ary case, which for n = 2 give the usual
definitions in the binary case.

The sequence T, Tym41, - - ., Ty we denote by a7, or {z;}7, . If m >n
then z7}!, will be considered empty.
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An n-ary groupoid (n-groupoid) (@, f) is called an n-quasigroup if the
equation A(ail_l, r,aj, 1) = an41 has a unique solution x for every a?“ €qQ
and every i € {1,...,n}. An n-quasigroup (Q, f) is called idempotent if for
every x € Q f(z,x,...,z) =z. An element z € @ is called an idempotent
it f(z,x,...,x)==.

An n-quasigroup (Q, f) is called (i, j)-associative iff the following iden-
tity holds

. o _ i1 i+n—1 —
P fa ), ey = fla] T f ), e,

An n-quasigroup which is (i, j)-associative for all 7,5 € N,, is called an
n-group.

By S, we denote the symmetric group of degree n and by A,, its alter-
nating subgroup.

If G is a group and S C G, by I'{S} we denote the subgroup of G
generated by S.

A Steiner system S(t, k,v) is a pair (S,T), where S is a v-set and T is a
family of k-subsets of S such that every t-subset of S is contained in exactly
one element of T. An S(2,3,v) is called a Steiner triple system (STS) and an
S(3,4,v) is called a Steiner quadruple system (SQS). Ordered analogues of
Steiner systems are Mendelsohn systems. A Mendelsohn system M (t,k,v)
is a pair (S,7) where S is a v-set and T is a family of cyclic k-tuples
(a1,...,ar), ai,...,a distinct elements of S, such that every ordered pair
of distinct elements from S belongs to exactly one element of T. A cyclic
k-tuple (aq,...,a) is the following set of k ordered pairs: (aq,...,ax) =
{(a1,a2), (az,as), ..., (ax—1,ax), (ak,a1)}. An M(2,3,v) and an M(3,4,v)
are called a Mendelsohn triple system (MTS) and a Mendelsohn quadruple
system (MQS), respectively.

3. Quasigroup conjugates

Here we give some basic properties of quasigroup conjugates [2].
If (S, f) is an n-quasigroup and o € S,,11, then the n-quasigroup (@, )
defined by

F7{Zo() tiz1) = Tomer) = f(21) = Tnta
is called a o-conjugate (or simply conjugate) of f. A conjugate (Stein [19]) is

also called parastrophe (after A. Sade [18]), the later is also used in Russian
literature (Belousov, [1], [2], [3]).
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Let f, g, h be n-ary quasigroup operations defined on the same set Q. If
h is a conjugate of g and g is a conjugate of f, then A is a conjugate of f.
If f7=gand h =g, then h = (f7)" = f7.

If f=f7, then (Q, f) is called o-permutable. If H C S, 41 and f = f°
for all o0 € H, then (Q, f) is called H-permutable. H-permutable quasi-
groups are also called conjugate invariant quasigroups.

The set H of all ¢ € S,4+1 such that f = f is a subgroup of S,
which is denoted by II(f). A H-permutable n-quasigroup (Q, f) such that
H =TI(f) is called ezactly H-permutable n-quasigroup.

An n-quasigroup (Q, f) is called totally symmetric (TS) if (Q, f) is
Sp+1-permutable, alternating symmetric (AS) if it is A,,41-permutable ([21],
[28]) and cyclic if it is C)41-permutable, where C,41 is a cyclic subgroup
of Sp41 generated by the cycle (12...n + 1) (|20]). Binary quasigroups
which are o-permutable for different values of o are commutative quasi-
groups, semisymmetric quasigroups (satisfying the identity (zy)y = y), to-
tally symmetric quasigroups, quasigroups satisfying Sade’s left "key’s" law
(x(xy)=y) and Sade’s right "key’s" law ((xy)y=x) |7].

For each subgroup H of S, 1 we define A(H), the spectrum of H, to
be the set of all positive integers ¢ for which there exists an n-quasigroup
(Q, f) of order g with TI(f) = H.

4. H-permutable n-groupoids

Although for arbitrary n-groupoids conjugates can not be always defined,
the definition of o-permutability can be extended to n-groupoids.

Definition 1. Let 0 € Q+1. An n-groupoid (Q, f) is o-permutable if for
all Tet1 € S

f(ljll) = Tptl < f({xa(z)};n:l) = To(n+1)-

As before, the set of all ¢ € S,4; for which an n-groupoid is o-
permutable is a subgroup of Sy,+1. If H C S,,41, and an n-groupoid (S, f)
is o-permutable for all o € H, then it is H-permutable.

Let (@, f) be an m-groupoid, H a subgroup of S,+1 and T' a set of
generators of H. It is not difficult to see that f is H-permutable if and only
if f is o-permutable for every o € I'.

Theorem 1. [22]| Let H be a nontrivial subgroup of the symmetric group
Sn+1. Bvery H-permutable n-groupoid is an n-quasigroup if and only if H
1S a transitive permutation group.
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Proof. 1If H is a transitive subgroup of 5,11, then it is easy to see that every
H-permutable n-groupoid is an n-quasigroup.

Now we assume that H is not a transitive subgroup of S,41. If for
every k € N1, there exists 0 € H such that ok =n + 1, then H must be
transitive. Hence there exists k£ € N,, 1 such that there is no permutation
in H which maps k to n + 1.

Let P={o(k) |oc € H} and R = N,,;1\ P and let (@, +) be a nontrivial
commutative group. If we denote P = {ai,...,a;}, R = {b1,...,bm},
bm = n+ 1, and if a € @ is an arbitrary element, then we define an

n-groupoid (Q, f) by
f((l??) = =Ty, — "+ — Tp,,_, Ta

Now we shall show that f is an H-permutable n-groupoid which is not an
n-quasigroup. Since |P| > 1, f is not an n-quasigroup. If for some o € H
and some a; € P, o(aj) = bs, then since there exists 7 € H such that
7(k) = aj, it follows o7 (k) = bs, which is a contradiction. Hence for every
o € H and every x € P, o(x) € P. Also for every ¢ € H and every
y € R, o(y) € R (since o(b,) = a, implies 0~ (a,) = by, and that case was
considered earlier). So, (@, f) is an H-permutable n-groupoid. O

A question of the existence of exactly H-permutable n-quasigroups for
different subgroups H of S,y; is considered in [16] where the existence of
such quasigroups for some composite orders is established:

Theorem 2. |16] For every m > n, p > 2, and every subgroup H of Sy41
there exists a H-permutable n-quasigroups of order mp, such that H = TI(f).

Proof. Let M and P be finite Abelian groups of orders m and p, respectively.
We construct an n-quasigroup f on @ = M x P as follows: Choose n + 1
distinct elements aq, a9, . . ., any1 in M, choose a pair b, ¢ of distinct elements
from P, and let s=ay +as+ -+ ant1-

Now let 1, z9,...,2n+1 € M, y1,y2, ..., Ynt1 € P. We define

f((ml’ y1)7 (1:27 y2)a SER) (xna yn)) = ("EnJrla yn+1)

iff the following two conditions hold:

(1) z1 422+ + Tpg1 = s,

(2) if for some o € H, (z1,%2,...,Tn41) = (A(1), Ae(2), - - - > Co(n+1))s
then y; +y2 +-- -+ yp+1 = b. Otherwise, y1 +y2+-- -+ ynt1 = c. It is easy
to check that (@, f) is an n-quasigroup such that II(f) = H. O
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In [16] the following conjecture was made:

For each subgroup H of Sp+1, A(H) consists of all but finitely many
positive integers.

Some constructions of exactly H-permutable n-quasigroups of prime
orders were given in |22], which can be easily extended to some composite
orders.

Theorem 3. [22] Let H be a subgroup of Spi1. If there exist disjoint sets
Ry, ..., Ry € Ny such that for every o € H, 0(R;) = R;, 1 =1,...,k, for
every x € Nypy1 \ (R1U---URy), o(x) =z, and H contains all permuta-
tions from Sp41 with the given properties, then there exists an H-permutable
n-quasigroup (Q, f) of order p, where p > n + 1 is any prime, such that
I(f) = H.

In [22] the spectrum of cyclic n-quasigroups (@, f) ([20]) with the prop-
erty that II(f) = Cp4+1, where C, 41 a subgroup of S, ;1 generated by the
cycle (12...n 4+ 1), was investigated.

5. Steiner and Mendelsohn systems

H-permutable n-quasigroups are closely related to some combinatorial
structures. First we shall consider binary case. It is well known that fi-
nite idempotent T'S and semisymmetric quasigroups are equivalent to STSs
and MTSs, respectively ([6], [14]).

Let (@, *) be a finite idempotent TS quasigroup. If we define

T={{zyzxy}|z,y€Q, z#uy}

then (Q,T) is a STS, Conversely, if (Q,T) is a STS, then if we define a
binary operation * on @ for all x,y € Q, = # y, by

xxy=z < {x,y,2} €T,

and
TxxT =1,

then (@, *) is an idempotent T'S quasigroup.

This is not the only way of turning quasigroups into ST'Ss and vice versa.
It can be shown analogously that idempotent TS loops of order v 4+ 1 are
equivalent to STS of order v.
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MTS are also equivalent to a class of H-permutable quasigroups. If
(Q,T) is a MTS, and if we define a binary operation * on @ by

Txy =2z = (z,y) € (x,9,2), v #y,

and z xx = x for all z € @), we get an idempotent quasigroup (Q, *) such
that * = x(123). Conversely, if (Q, #) is a finite idempotent quasigroup and
s« = x123) then (Q,T) where

T={(r,y,xxy) | z,y€Q, z #y}

is a MTS. Here the quasigroup (Q, *) is H-permutable, where H is a cyclic
subgroup of S3 generated by (123) (semisymmetric quasigroup).

Previous results can be naturally generalized to ternary case.

If (Q, f) is a finite ternary TS quasigroup, then by

TZ{{x,y,z,f(a:,y,z)} ’ x,Y,z € Q,x#y#z;&x},

a SQS (Q,T) is defined.
If (Q,T) is an SQS and a ternary operation f is defined on @ for distinct
elements z,y, z € @ by

f(z,y,2) =u <= {z,y,z,u} €T,

and f(z,z,y) = f(z,y,z) = f(y,z,x) = y (generalized idempotence (GI))
otherwise, then (@, f) is a GITS quasigroup.

MQS are also equivalent to a class of ternary quasigroups. If (Q,T) is
a MQS, then if for distinct elements x,y, z € QQ we define

f(x7y7z) =u < <$7y7z7u> ET

and f(z,z,y) = f(z,y,2) = f(y,z,xz) = y otherwise, we obtain a GI H-
permutable ternary quasigroup (Q, f), where H = I'{(1234)}. Conversely,
if (@, f) is a finite GI ternary H-quasigroup, where H = I'{(1234)}, then
by

T={{z,y,2 f(x,y,2)} | 2,9,2 € Q,x #£ y # 2 # x},
a MQS (Q,T) is defined.
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6. Other quadruple systems

We have seen that finite idempotent Ss-permutable (TS) quasigroups and
Cs-permutable (semisymmetric) quasigroups are equivalent to STSs and
MTSs, respectively. This was naturally generalized to the ternary case,
where finite GI Sy-permutable 3-quasigroups and GI Cy-permutable 3-
quasigroups are equivalent to SQSs and MQSs, respectively. But in the
ternary case besides these two classes of GI H-permutable 3-quasigroups,
there exist many other GI H-permutable 3-quasigroups and to each such
class of GI H-permutable 3-quasigroups a class of quadruple systems can be
associated, analogously as it is done for Steiner and Mendelsohn quadruple
systems.

Among these quadruple systems so called tetrahedral quadruple systems
were first introduced and studied in [28| and they represent another gener-
alization of MTSs.

Definition 2. Let Q) be a finite set of v elements. A directed quadruple
(abcd), where a,b, c,d are distinct elements of @, is the following set of 12
ordered triples

(abed) = {(abc), (adb), (acd), (bdc),
(bca), (dba), (cda), (dcb),
(cab), (bad), (dac), (cbd)}.

Definition 3. A tetrahedral quadruple system (TQS) of order v is a pair
(Q,T) where T is a collection of directed quadruples of elements of @, such
that every ordered triple of distinct elements of @) belongs to exactly one
directed quadruple from Q).

Directed quadruples are obtained from 4-element subsets of @ by an
orientation which can be represented by the following diagram (Figure 1).
If the elements a,b,c,d of a directed quadruple (abed) are represented as
the vertices of the tetrahedron as in Figure 1, then the vertices of each face
of the tetrahedron are cyclically ordered in positive direction observed from
the interior of the tetrahedron.

So, TQSs can be considered as a 3-dimensional analogue of MTSs. If
(abc) is a directed triple from an MTS, then the orientation of the pairs
which belong to that triple is shown in Figure 2.
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Figure 1. Figure 2.

That TQSs are a generalization of MTSs will follow from the algebraic
characterization of TQS which will be given later.

Let (Q,T) be a TQS of order v. We define a ternary operation f on Q.
If (abc) is an ordered triple of distinct elements from @), then it belongs to
exactly one directed quadruple from T'. If d is the fourth element in that
quadruple, then we define f(a,b,c) = d. If for all z,y € Q f(x,z,y) =
f(z,y,x) = f(y,x,z) = y then (Q, f) is a GIAS-3-quasigroup.

Now let (@, f) be a finite GIAS-3-quasigroup. Let (abc) be an ordered
triple of distinct elements of @ and f(a, b, c) = d. Suppose d € {a,b, c}, say
d = a, then since (Q, f) is AS, f(a,b,c) = d implies f(a,a,b) = ¢ and since
(Q, f) is GI we get ¢ = a which is a contradiction. Hence d & {a, b, c}.

Now, for every ordered triple (abc) of distinct elements from @, we
define a directed quadruple (abcf(a,b,c)) and denote by 7' the family of
such directed quadruples. Since (Q, f) is AS, it follows that for every four
distinct elements a,b, ¢, d € @ such that (abed) € T

(abed) = (bcad) = (cabd) =
= (adbc) = (dbac) = (badc) =
= (acdb) = (cdab) = (dacb) =
= (bdca) = (dcba) = (cbda).

This means that every ordered triple of distinct elements from @ belongs
to exactly one directed quadruple from 7', hence (Q,T) is a TQS.

We have seen that TQSs are equivalent to GIAS-3-quasigroups, but since
in the binary case the alternating subgroup As of the symmetric group S is
in fact cyclic group Cs, it follows that TQSs are a generalization of MTSs.
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The spectrum of TQSs was determined in [28], [15] where it was proved
that the spectrum consists of all n =1,2,4,5,8,10 (mod 12).

Similarly, we can define quadruple systems for other subgroups H of Sjy.
In [30] the spectrum of GI H-permutable 3-quasigroups where H is Dy (the
dihedral group), K4 (Klein group) and I'{(13)(24)} was determined. The
spectrum A(Dyg) = {1} U{2n | n € N} and A(K}4) consists of all n =0, 1,2
(mod 4).

7. Identities

It is easy to see that Definition 1 can be given in another equivalent form.

Definition 4. Let 0 € Qpt1. If 0(k) = n + 1 for some k € N,,, then an
n-groupoid (Q, f) is o-permutable if for all .CC?—H €eqQ

f({'xa(z) ?:_117 ('x?f)a {xa(i)}?:lwrl) = Zg(n+1)-
If o(n+1) =n+ 1, then (Q, f) is o-permutable if for all 27+ € S

f{zo@ tic) = f).

We see that the class of all H-permutable n-groupoids is a variety.

When applied to n-quasigroups, this definition is equivalent to the pre-
viously given definition of o-permutability.

Consequently, every H-permutable n-quasigroup can be defined as an
n-quasigroup satisfying a system of identities.

For example, a 3-groupoid (Q, f) is a GIAS-3-quasigroups if and only if
the following identities hold

f(x)yvy) =,
f(x,y, Z) = f(y,z,x),
f(y7f('r7y7 2)72) =X.

The second of the given identities is equivalent to f = f (123) "and the third
is equivalent to f = f124. I'{(123), (124)} is a generating set of the group
Ay, hence (Q, f) is a GIAS-3-quasigroup.

Besides identities obtained from the equality of conjugates f = f7,
some other identities can be also used to define varieties of H-permutable
n-groupoids. A question is what is the minimal set of identities in a base of
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such variety. It can be shown that many of these varieties are single based
18], [9], [27], [24].

For example, the following two theorems ([24]) show that the varieties
of GI-Cy-permutable 3-groupiods and GI-Ss-permutable 3-groupoids (which
are necessarily 3-quasigroups and in the finte case are equivalent to MQSs
and STQs, respectively) are single based.

Theorem 4. A 3-groupoid (Q, f) is a GI-Cy-permutable 3-groupoid iff the
following identity is satisfied

FF @y, fu, o0, [0, F(f(z,8,8),p,9),w), 2,9) = 2. (1)

Proof. The following notation will be used. If (Q, f) is a 3-groupoid, then
the translation maps Tj(a,b), Ta(a,b), T3(a,b) are defined by

Tl(yvz)(x) = T2($,Z)(y) = Tg(x,y)(z) = f(ac,y, Z)'

If (Q, f) is a GI-Cy-permutable 3-groupoid, then it is easy to see that
(1) is satisfied.

Now, let (Q, f) be a 3-groupoid such that (1) is valid. Since a 3-groupoid
(Q, f) is a GI-Cy-permutable iff the following identities are satisfied

f(f(z,y,2),7,y) = 2, (2)

f(:z:,:r:,y) =Y, (3)

we shall prove that (1) implies (2) and (3).
(1) can be written by

T (z, y)T5(x, y) To(u, u)T3(v, v) T3(p, ) T1(p, @) T (¢, t) = 1, (4)

where I is the identity mapping of Q. From (4) we get that T7(¢,¢) is 1 — 1
and T} (z,y) is onto, hence for all t € Q T (t,t) is a bijection, which implies

Tl (.'177 y)T3 (.’L’, y)TQ (U, 'LL)T3('U7 U)T?) (p7 Q)Tl (pv q) = ,I’]__1 (t7 t)
The last equality implies that T (z,y) is a bijection and
Ty, y)To(u, u)Ts(v,0)Ts(p, q) = Ty (o, y) Ty ()T (9, q)-

By the similar argument we obtain that T3(x,y) is a bijection for all
x,y € Q, which gives

To(u,u) = Tg_l(ﬂs?y)Tl_l(x,y)Tl_l(t,t)Tl_l(p, q)T3_1(p, q)Tgl(v,v).
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Hence Ty (u,u) is a bijection for all u € Q.
From (4) we get that for all z,y,u,v,p,q,t, 7,5 € Q

Ty (2, y) T3z, y) Ta(u, w)T3(v, 0)T3(p, ) T1(p, ) Ta (¢, 1) =

=T (r, s)T3(r, s)Ta(u, u) T3 (v, v)T5(p, q)T1 (p, ¢) T1 (¢, 1),

and
Ti(z,y)T5(w,y) = Ti(r, s)T5(r, ),
that is,
f(f(x7y?z)7x7y):f(f(T7S?Z)?T7S)' (5)
By an analogous procedure it follows that for all z,y € @
E($a:ﬁ) :Tl(yvy)’ 1=1,2,3,
that is,

f(z,x,x):f(z,y,y), f(x,z,x):f(y,z,y), f(w,x,z):f(y,y,z). (6)

Putting in (6) y = z, one gets

f(z,x,2) = f(z,z,2) = f(z,x,2) = f(z,2,2). (7)

Ifin (5) we put x = f(z,2,2), y =1 =s = z, using (7) it follows

f(f(f(z,z,z),z,z),f(z,z,z),z) = f(f('z"zvz)vzaz) = f(Z,f(Z,Z, Z)a Z)'

Since T (x,y) is a bijection from the preceding equality we get

f(f(z,2,2),2,2) = 2. (8)

If now we put in (5) r = s = z, it follows

f(f(x,y,z),a:,y) = f(f(zvz7z)7zvz) =z,
hence identity (2) is valid. So we have proved that for all z,y € @
Ty (z,y)T5(x,y) = I. But identity (2) is equivalent to
f(wvyv f(Za%y)) =z,

which means that for all z,y € Q T3(x,y)T1(z,y) = I. Therefore, (4)
becomes
TZ(“? U)Tg(’l), U)Tl (tv t) =1,
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that is,
flu, f(v, v, f(2,8,1)),u) = 2.
Putting in the preceding identity w = v = t = z and using (7) and (8)
we get
f(z7 Z’ 'Z) = z?
which by (7) gives
f(Z,,fE,LE):f(.ZE,Z,fL'):f(l',QE,Z):Z. D

Theorem 5. A 3-groupoid (Q, f) is a GI-Sy-permutable 3-groupoid iff the
following identity is satisfied

f(f(‘r’% f(u7 f(va v, f(pa q, f(f(zvt7t)v Qap)))v u)),a:,y) =z (9)

These results can be extended to other GI-H-permutable 3-groupoids.
In [27] it is proved that the variety of GI-H-permutable 3-groupoids can be
defined by a single identity for every subgroup H of S4 which contains at
least one permutation o such that o(4) # 4.

8. Algebraic properties

Conjugate invariant quasigroups have many combinatorial applications, but
it is also interesting to consider algebraic properties of these quasigroups.
We shall illustrate some of these properties on GIAS-3-quasigroups [23].
We have seen that the class of all GIAS-3-groupoids is a variety, and every
GIAS-3-groupoid is necessarily a GIAS-3-quasigroup.

Theorem 6. Let U = (Q; f) be a GIAS-3-groupoid and let C(U) be the
congruence lattice of U. Then

a) If 0 € C(U), then each 0-class is a subalgebra of U,

b) U has permutable congruences,

¢) U has regqular congruences,
d) U has uniform congruences,

e) U has coherent congruences.

Proof. a) Obvious.

b) Follows from Mal'cev’s theorem (a variety has permutable congru-
ences iff it has a ternary polynomial f(x,y,z) such that f(x,y,y) =
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fly,y,z) = ).

c) Let [a]0, 0 € C(U), be a O-class. If v = y (0) then f(z,y,a) =
f(y,y,a) (0), hence a = f(x,y,a) (0). Conversely, 1fa = f(x,y,a) (6), then
fla,z,a) = f(f(z,y,a),x,a) (§) and since U is AS f(f(x,y, ), ,a) =y,
hence z = y (#). We have proved that for all z,y € Q, x = y () iff
a = f(x,y,a) (f), so one #-class defines the whole congruence.

d) Let 6 € C(U), a,b € @, a#b(0). The mapping ¢ : [a]d — [b]# de-
fined by ¢(z) = f(z,a,b) is a bijection. ¢ is obviously 1 —1, and if y € []6,
then z = f(y,b,a) € [a]@ is such that p(z) = f(f(y,b,a),a,b) = y.

e) Let B = (B; f) be a subalgebra of U which contains a congruence
class C' = [a]f. If we assume that there exist elements p € Q\B, ¢ € B\C,
such that p = ¢ (), and if r is an arbitrary element from C|, then since the
mapping f : [r]0 — [¢]0 defined by = — f(x,r,q) is a bijection, it follows
that there exist an element ry € C such that f(r1,r,q) = p. But, since B
is a subalgebra, p € B, which is a contradiction. Hence all elements con-
gruent to an element of B belong to B, i.e. a subalgebra which contains a
congruence class must be a union of congruence classes. O

We have proved that if a GIAS-3-groupoid has a nontrivial congruence,
then that congruence is uniform and each congruence class is a subalge-
bra. Since factor algebra is also a GIAS-3-groupoid we have the following
corollary.

Corollary 1. A necessary condition that a finite GIAS-3-groupoid of order
v has nontrivial congruences, is that v = viva, where vi,v2 are integers
greater than 1 such that vi,vy =1,2,4,5,8,10 (mod 12).

In [13] Fraser and Horn studied varieties V' with the property that for
every A, B € V each congruence 0 of A x B is a product congruence 6 x 5.
A variety V of algebras has the Fraser-Horn property if for every A, B € V
all congruences of A x B are product congruences. A congruence of a direct
product which is not a product congruence is called skew.

Theorem 7. A wvariety of GIAS-3-groupoids does not have the Fraser-Horn
property.

Proof. In [17] it is proved that the variety which coordinatizes Steiner
quadruple systems has a skew congruence. Since this variety is a subva-
riety of the variety V of all GIAS-3-groupoids, it follows that V' does not
have the Fraser-Horn property. O
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Using a theorem of Birkhoff ([5]) which states that if every algebra from
a variety has permutable congruences and singleton subalgebras, then every
finite algebra from that variety has a decomposition into a direct product
of directly irreducible algebras which is unique up to isomorphism of the
factors and up to their sequence, by Theorem 6 we get the next theorem.

Theorem 8. Fach finite GIAS-3-groupoid has a decomposition into a direct
product of directly irreducible factors which is unique up to isomorphism of
the factors and up to their sequence.

9. H-permutable n-groups

Various classes of H-permutable n-groups were considered in [11], [12], [21],
[29], |26]. Here we shall describe some of them.

Theorem 9. Let (Q, f) be an n-group. (Q, f) is AS iff there exists an
Abelian group (Q,+) such that x = —x for all x € Q, and

f(ﬂf?) :in_‘_ca
1

where ¢ is a fized element from Q.

Proof. Let (@, f) be an AS-n-group. Then by Hosszu-Gluskin theorem
there exist a group (@,-), its automorphism 6 and an element ¢ € @ such
that

@) = 2102260%25 ... 0" Laye,

where fc = ¢ and for all x € Q 0" 'z = cxc™!. fis AS, hence f = f°,
where 0 = (1,2,n + 1), and the following identity is valid

f(zo, f(27), %) = 21,
that is

n n

290(x10220% 23 ... 0" Trye)0?as .. 0" e = 2. (10)

If we put in the preceding equality x1 = e, i = 1,...,n, where e is the
unit of (Q, ), we get that ¢? = e. Now putting in (10) z; =e, i =1,...,n,
it follows fx1 = x1, i. e. 6 is the identity mapping of Q. If in (10) we
put 1 =e,i=1,3,...,n, we obtain #%zy = 1‘2_1 which means that for all
r €Q, r=ax"" Hence (Q,-) is an Abelian group and

f(@l) = xixe. .. 2pe.

The converse part of the theorem is obvious. O
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Since the group (Q,-) such that z = z~! for all x € Q is of order 2¢,
t € N, and for every t € N there exists such group of order 2!, we have the
following corollary.

Corollary 2. There exists a nontrivial finite AS-n-group (Q, f) of order q
iff q=2% teN.

Cyclic n-groups have similar structure. Some properties of such n-
groups are given in the following theorems ([29]).

Theorem 10. Let (Q, f) be an (i, j)-associative cyclic n-quasigroup, where
j — i is relatively prime to n. Then (Q, f) is an n-group.

Theorem 11. Let (Q, f) be an n-group, where n = 2k, k € N. (Q, f)
is cyclic iff there exists an Abelian group (Q,+) such that x = —z for all
x €Q, and

fat) =) mi+e,
1
where ¢ is a fized element from Q.

Theorem 12. Let (Q, f) be an n-group, where n =2k + 1, k € N. (Q, f)
is cyclic iff there exists an Abelian group (Q,+) such that

f@l)=az1—zo+a3— -+ 25+ (11)
where ¢ = —c s a fired element from Q.

Corollary 3. When n is even, there exists a nontrivial finite cyclic n-group
(Q, f) of order q iff g =2, t € N. When n is odd, a nontrivial finite cyclic
n-group (Q, f) of order q exists for every q € N and every such group is
represented by (11).

Further investigation of H-permutable n-groups is done in [26] where
some necessary and sufficient conditions for an n-group to be o-permutable
are determined and several conditions under which such n-groups are de-
rived from binary groups are given.

10. Other applications

We have described some properties of conjugate invariant quasigroups, but
there are many other applications of such quasigroup which could not be
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presented here. For example, orthogonality of quasigroup conjugates have
been extensively investigated, a survey of that research can be found in
[4]. Close to that are permutable orthogonal arrays, some classes of graphs,
codes and other structures.
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