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Factorization of simple groups

involving the alternating group

Mohammad R. Darafsheh

Abstract

In this paper we will �nd the structure of the �nite simple groups G with two subgroups
A and B such that G = AB, where A is a non-abelian simple group and B is isomorphic
to the alternating group on seven letters.

1. Introduction

Let A and B be subgroups of a group G. If G = AB, then G is called a
factorizable group. We also say G is the product of the two subgroups A and
B, or G is a factorizable group. Since we always have the identity G = AG,
hence in this paper we assume both factors A and B are proper subgroups
of G and we say G = AB a non-trivial factorization of G. If G=̃A × B,
then we call G a factorizable group as well. In [1] page 13 the question of
�nding all the factorizable groups is raised. Of course not all groups are
factorizable, for example by [14] the Conway's simple group Co2 of order
218.36.53.7.11.23 is not a factorizable group. Similarly an in�nite group
whose proper subgroups are �nite does not have a proper factorization.
Therefore we always search for a special kind of factorization.

A factorization G = AB is called maximal if both factors A and B
are maximal subgroups of G. In [14] the authors found all the maximal
factorization of all the �nite simple groups and their automorphism groups.
This special kind of factorization is useful because every factorization of a
�nite group is contained in a maximal factorization. In [2] simple groups G
with factorization G = AB and with the additional condition (|A| , |B|) = 1
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are determined. In this case we also have A ∩ B = 1 the trivial group.
A factorization G = AB with the condition A ∩ B = 1 is called an exact
factorization. In [19] the authors found all the exact factorizations of the
alternating and the symmetric groups. But later in [17] all the factorizations
of the alternating and the symmetric groups were found where both factors
are simple groups. Recently an interesting application of exact factorization
is given in [9]. The authors show that an exact factorization of a �nite group
leads to the construction of a biperfect Hopf algebra, and then they �nd
such a factorization for the Mathieu group M24. This factorization is of the
form M24 = AB, where A=̃M23 and B=̃24 : A7, both perfect groups.

Here we quote some results concerning the involvement of the alternat-
ing or symmetric groups in a factorization. In [13] all �nite groups G = AB,
A=̃B=̃A5 are classi�ed and in [16] factorizable groups where one factor is a
non-abelian simple group and the other factor is isomorphic to the alternat-
ing group on 5 letters are classi�ed. In [18] factorizations of �nite groups
are classi�ed in the case where one factor of a factorizable group is simple
and the other factor is almost simple. In [5] all �nite groups G = AB, where
A=̃A6 and B is isomorphic to the symmetric group on n > 5 letters are
determined. Also in [6] we determined the structure of a �nite factorizable
group with one factor a simple group and the other factor isomorphic to
the symmetric group on 6 letters. In [7] we determined the structure of
factorizable groups G = AB where A=̃A7 and B=̃Sn. Motivated by this
paper here we will �nd the structure of the �nite simple factorizable groups
G = AB such that A is a non-abelian simple group and B=̃A7, the sym-
metric group on seven letters. Through the paper all groups are assumed
to be �nite. Notations for the simple groups is taken from [4].

2. Preliminary results

In the following we quote two Lemmas from [18] which are useful when
dealing with factorizable groups.

Lemma 1. Let A and B be subgroups of a group G. The following state-

ments are equivalent.

(a) G = AB.
(b) A acts transitively on the coset space Ω(G : B) of right coset of B

in G.
(c) B acts transitively on the coset space Ω(G : A) of right coset of A

in G.
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(d) (πA, πB) = 1, where πA and πB are the permutation characters of

G on Ω(G : A) and Ω(G : B) respectively.

Lemma 2. Let G be a permutation group on a set Ω of size n. Suppose the

action of G on Ω is k-homogeneous, 1 6 k 6 n. If a subgroup H of G acts

on Ω k-homogeneously, then G = G(∆)H, where ∆ is a k-subset of Ω and

G(∆) denotes its global stabilizer.

Now it is easy to determine the indices of subgroups of A7 and S7. If
H 6 A7, then [A7 : H] may be one of the following numbers: 1, 7, 15, 21,
35, 42, 70, 105, 120, 126, 140, 210, 252, 280, 315, 360, 420, 504, 630, 840,
1260 or 2520. And if H 6 S7, then [S7 : H] is one of the following numbers:
1, 2, 7, 14, 21, 30, 35, 42, 70, 84, 105, 120, 126, 140, 210, 240, 252, 280, 315,
360, 420, 504, 560, 630, 720, 840, 1008, 1260, 1280, 2520 or 5040. Therefore
if A7 (or S7) acts transitively on a set of size n, then n = [A7 : H] (or
n = [S7 : H]) is one of the above numbers. The action is faithful if and
only if n 6= 1 in the case of A7 and n 6= 1, 2 in the case of S7. It is well-
known that if S7 has a k-homogeneous (k-transitive) action, k > 1, on a
set Ω, then |Ω| = 7 and 2 6 k 6 7, but for A7 we have the same result
in addition with the 2-transitive action of A7 on 15 points, see [3]. Since
we need factorizations of the alternating groups involving S7 or A7, hence
using [14] we will prove the following results.

Lemma 3. Let Am denote the alternating group of degree m. If Am = AB
is a non-trivial factorization of Am, A a non-abelian simple subgroup of Am

and B=̃A7, then one of the following cases occurs:

(a) Am = Am−1A7, where m = 15, 21, 35, 42, 70, 105, 120, 126, 140,

210, 252, 280, 315, 360, 420, 504, 630, 840, 1260 or 2520.

(b) A15 = A13A7,

(c) A8 = L2(7)A7, A9 = L2(8)A7, A11 = M11A7, A12 = M12A7.

Proof. It is obvious that m is at least 8. By [14] either m = 6, 8, 10 or one
of A or B is k-homogeneous on m letters, 1 6 k 6 5. Factorization of Am if
m = 6, 8 or 10 does not involve A7. Therefore we will consider the following
cases.

Case (i). Am−k E A E Sm−k × Sk for some k with 1 6 k 6 5, and B
k-homogeneous on m letters.

Since A is assumed to be simple we obtain Am−k = 1 or A. If Am−k = 1,
then m− k = 1 or 2, hence k = m− 1 or m− 2. But then from 1 6 k 6 5
we will obtain 2 6 m 6 6 or 3 6 m 6 7, a contradiction because m > 8.
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Therefore A = Am−k and B=̃A7 is k-homogeneous on m letters, 1 6 k 6 5.
If k = 1, then the size of the set Ω on which A7 can act transitively is as
stated in the Lemma and all the factorizations in case (a) occur. If k > 2,
then m = 7 or 15. If m = 15, then A7 has a transitive action on 15 letters
and hence A15 = A14A7 and A15 = A13A7 which is case (b).

Case (ii). Am−k E B 6 Sm−k×Sk, 1 6 k 6 5, and A is k-homogeneous
on m letters.

Since B=̃S7, we obtain m−k = 1 or 7. From 1 6 k 6 5 we get 2 6 m 6 6
or 8 6 m 6 12. Therefore only m = 8, 9, 10, 11 or 12 are possible which
correspond to k = 1, 2, 3, 4, 5 respectively. But now from [3] and [12] for
possible (m, k) we obtain:

(m, k) = (8, 1), A8 = L2(7)A7,

(m, k) = (9, 2), A9 = L2(8)A7,

(m, k) = (11, 4), A11 = M11A7,

(m, k) = (12, 5), A12 = M12A7,

and these are all the possibilities in (c) of the Lemma.

Lemma 4. Let Am = AB be a non-trivial factorization of Am, where A
and B are subgroups of Am with A a non-abelian simple group and B=̃S7.
Then

(a) Am = Am−1S7 where m = 14, 21, 30, 35, 42, 70, 84, 105, 120, 126,

140, 210, 240, 252, 280, 315, 360, 420, 504, 560, 630, 720, 840, 1008,

1260, 2520 or 5040.

(b) A9 = L2(8)S7, A11 = M11S7, A12 = M12S7.

Proof. In this case we have m > 9. Using [14] again we obtain the groups
listed in (a) in case B=̃S7 is a k-homogeneous group on m letters. If the
simple group A is k-homogeneous on m−letters again using [3] and [12]
together with Lemma 2 we will obtain the groups listed in (b) and the
Lemma is proved.

Remark 1. The factorizations Am = AB in cases (a), (b) and (c) of Lemma
3 all occur because actually Am has subgroups isomorphic to A and B. The
same is true for case (b) of Lemma 4. But for case (a) of Lemma 4 the
equality Am = Am−1S7 happens only if Am has a subgroup isomorphic to
S7.
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3. Main result

To �nd the structure of the factorizable simple groups G = AB with A
simple and B=̃A7 we need to know about the primitive groups of certain
degrees which are equal to the indices of subgroups of A7. Simple primitive
groups of degree at most 1000 are given in [8] and the index of most of the
subgroups of A7 are less than 1000 except two indices which are 1260 and
2520. Therefore �rst we deal with these indices.

Lemma 5. Let G be a non-abelian simple group which is not an alternating

group. If G is a primitive group of degree 1260 or 2520, then G does not

have a factorization G = AB with A simple and B=̃A7.

Proof. By the classi�cation Theorem for the �nite simple groups, G is iso-
morphic either to a sporadic simple group or a simple group of Lie type.
By [10] there is no factorization as mentioned in the Lemma for a sporadic
group. Therefore we will assume that G is a simple group of Lie type. If
the rank of G is 1 or 2, then by [11] no desired factorization occurs. Hence
we will assume that the Lie rank of G is at least 3. We will use results on
the minimum index of a subgroup of a simple group of Lie type.

Case (a). G = Ln(q), n > 4. In this case the minimum index of

a proper subgroup of G is (qn−1)
(q−1) . If (qn−1)

(q−1) 6 2520, then calculations re-

veal the following possibilities for G: L4(2), L4(3), L4(4), L4(5), L4(7),
L4(8), L4(9), L4(11), L4(13), L5(2), L5(3), L5(4), L5(5), L5(7), L6(2),
L6(3), L6(4), L7(2), L7(3), L8(2), L9(2), L10(2) or L11(2).

By [15], Proposition 4.8, the groups L4(q) with q ≡/ 1(8) are ruled
out because they cannot have A7 in their factorization. Therefore among
the possibilities of the form L4(q) only L4(9) needs examination. As-
sume L4(9) = AA7 where A is a simple non-abelian group. Therefore
|A| = 27.310.5.13.41 |A ∩ A7| . Since A ∩ A7 is a proper subgroup of A7,
hence |A ∩ A7| is one of the numbers: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 18, 20,
21, 24, 36, 60, 72, 120, 168 or 360. But by inspecting the simple groups A
whose orders do not exceed |L4(9)| (at the end of [4] ) with 13, 41| |A| , we
�nd only one possibility for A, namely A = O−8 (3) of order 210.312.5.7.13.41.
But then we must have |A ∩ A7| = 23.32.7 = 504 which is not the case.
Therefore all the possibilities L4(q) are ruled out.

For the groups L5(q), again by [15], Proposition 4.7, if q ≡ 3 (4) there
is no such factorization as mentioned in the Lemma. Hence the groups
L5(3) and L5(7) are ruled out. For the groups L5(2), L5(4) and L5(5)
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similar arguments as used above rule out any factorization of these groups
involving A7 and a simple subgroup. Factorization of the remaining groups
in this case involving A7 are ruled out similarly and we omit the details.

Case (b). G = Un(q), n > 6. In this case a proper subgroup has index

at least (qn−(−1)n)(qn−1−(−1)n−1)
(q2−1)

and if this number is less than or equal to

2520 we obtain only G = U6(2). But by [4] the group U6(2) has no maximal
subgroup of index 1260 or 2520.

Case (c). G = S2m(q), m > 3. In this case if q > 2, then the index of

a proper subgroup of G is at least (q2m−1)
(q−1) and if q = 2 then this number is

2m(2m−1). For these numbers to be less than or equal to 2520 we will obtain
the following groups: S6(2), S6(3), S6(4), S8(2), S10(2) or S12(2). Now using
[4] we see that the groups S6(2), S6(3) and S8(2) do not have maximal
subgroups of index 1260 or 2520. For the groups S6(4), S10(2) and S12(2)
similar arguments as used in case (a) rule out the possibility of factorizing
these groups as product of a simple group and a group isomorphic to A7.

Case (d). G = Oε
2m(q), m > 4, ε = ±. In this case the index of

a proper subgroup is at least (qm−1)(qm−1+1)
(q−1) when ε = +, and is at least

(qm+1)(qm−1−1)
(q−1) when ε = − except in the case (q, ε) = (2,+) where this

index is at least 2m−1(2m − 1). For G = O2m+1(q), m > 3, q odd, q > 3,

the index of a proper subgroup is at least (q2m−1)
(q−1) and if q = 3, this index

is at least (q2m−qm)
(q−1) . Again calculations show that if an index is less than

or equal to 2520, then G = O7(3), O±8 (2), O±8 (3), O±10(2) or O±12(2). Now
again using [4] we ruled out any factorization of these groups involving A7.

Case (e). Finally we may assume that G is an exceptional simple group
of Lie type. In this case by [14] factorizations of G are known and none of
them involves A7. The Lemma is proved now.

Theorem 1. Let G = AB be a non-trivial factorization of a simple group

G with A a simple non-abelian group and B=̃A7. Then one of the following

occurs:

(a) G = Am = Am−1A7, where m = 15, 21, 35, 42, 70, 105, 120,

126, 140, 210, 252, 280, 315, 360, 420, 504, 630, 840, 1260 or 2520.

(b) G = A15 = A13A7

(c) G = A8, A9, A11 or A12 with appropriate factorizations:

A8 = L2(7)A7, A9 = L2(8)A7, A11 = M11A7, A12 = M12A7

(d) G = O+
8 (2) = S6(2)A7.
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Proof. Suppose G = AB is a factorization of a simple group G with A a
simple non-abelian group and B=̃A7. We remind that by a factorization
we mean a non-trivial factorization. If M is a maximal subgroup of G
containing A, then G = AB, hence [G : M ] | [B : B ∩M ]. Since d = [B :
B ∩M ] is equal to the index of a subgroup of A7, therefore G is a primitive
permutation group of degree d. We have d = 1, 7, 15, 21, 35, 42, 70, 105,
120, 126, 140, 210, 252, 280, 315, 360, 420, 504, 630, 840, 1260 or 2520.
Obviously d 6= 1, 7. By Lemma 5 if d = 1260 or 2520, then G is isomorphic
to an alternating group of these degrees. If G is an alternating group, then
by Lemma 3 we obtain the cases (a), (b) and (c) in the Theorem. We will
prove if G is not an alternating group, then G=̃O+

8 (2).
Since the remaining degrees d are less than 1000, hence we may use [8].

By Table I in [7] which is obtained from [8] we need only consider primitive
simple groups G of degree 21, 105, 120, 126, 280, 315 and 840. Now using
[10] and [11] the only cases that we should consider are S6(2), S8(2) or
O+

8 (2).
If S6(2) = AA7, then |A| = 26.32 |A ∩ A7| . But |A| must be divisible by

at least three distinct primes. Therefore if A∩A7 is a proper subgroup of A7

we must have |A ∩ A7| = 5, 10, 20, 60, 360, 7, 21, 168. Hence |A| = 26.32.5,
27.32.5, 28.32.5, 29.33.5, 29.34.5, 26.32.7, 26.33.7, 29.33.7. But by [4] there is
no simple group of the above orders.

If S8(2) = AA7, then |A| = 213.33.5.17 |A ∩ A7| . By [4] there is no
simple group A such that 213.33.5.17 | |A| | |S8(2)| .

If O+
8 (2) = AA7, then |A| = 29.33.5 |A ∩ A7| . Now 29.33.5 | |A| and

|A| |212.35.52.7 =
∣∣O+

8 (2)
∣∣ . By [4] the only possibility is A=̃S6(2). Again by

[4] and using Lemma 1 we obtain O+
8 (2) = S6(2)A9. The intersection of

the two factors is a group H = L2(8) : 3 = PΓL2(8) and since it acts 2-
transitively on 9 points we have A9 = PΓL2(8).A7, hence O+

8 (2) = S6(2)A7

and the Theorem is proved.

In conclusion we will prove the following Corollary.

Corollary. Suppose that G = AB with A a simple group and B isomorphic

to A7. Then, either G = A ⊇ B, G=̃A×B, or G is as in the Theorem 1.

Proof. By induction, if G is not simple, G is not isomorphic to A×B, and
G is a minimal normal subgroup of G, then G

N is simple. By lemma 1 of [17],
|N | divides the order of A7, |N | = 8 ( which is impossible as C(N) = N
and hence, A7 is isomorphic to a subgroup of Aut(N)) or |N | = p where
p is a prime dividing |A7| for which the Sylow subgroup is non-abelian. It
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follows that p = 2 and N = Z(G). Thus, G is a covering group of the simple
group G

N = (AN
N )(BN

N ) which is as in the Theorem 1. But this is impossible
as theorem 10 of [17] shows that G

N cannot be isomorphic to an alternating
group and a simple order argument shows G

N cannot be isomorphic to O+
8 (2).

The result follows.
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