
Quasigroups and Related Systems 13 (2005), 237− 244

Maple implementation of the ElGamal public key

encryption scheme working in SMG(pm)

Czesªaw Ko±cielny

Abstract

It has been shown [2, 3, 4] that in ElGamal public key encryption scheme [6, 7, 8]
working over SMG(pm), the need of �nding primitive elements of GF (pm), necessary
if the system works traditionally but unfeasible in the case of huge �elds, is eliminated.
Thus, the discussed system is user-friendly, giving the possibility of very strong encryption
with the key of order 10.000 bits and more. The construction of such cryptosystem is
of great practical importance, therefore, the paper informs the reader in detail how to
resolve this problem using Maple.

1. Introduction

Recall that algorithms describing ElGamal public-key encryption scheme
[3, 4, 5] adapted for working in SMG(pm) are as follows:

Key generation: Each entity creates its public key and the corresponding
private key. So each entity N ought to do the following:

• Choose an arbitrary polynomial f(x) of the degree m over GF (p) and
construct a spurious multiplicative group of GF (pm) that is SMG(pm),
consisting of the set G = {1, . . . , pm−1} and of the operation of mul-
tiplication of elements from this set, which is performed by means of
a function M_(x, y), x, y ∈ G. The function P_(x, k), carrying

2000 Mathematics Subject Classi�cation: 94A60, 20N
Keywords: cryptography, public-key ciphers, spurious multiplicative group of Galois
�eld, Maple.



238 C. Ko±cielny

out the operation of rising any element x from G to a kth power,
pm − 1 6 k 6 −pm + 1, is also de�ned.

• Select a random invertible element α ∈ SMG(pm), α 6= 1.

• Choose a random integer a ∈ G, 2 6 a 6 pm − 2, and compute the
element β = P_(α, a).

• N 's public key is α and β, together with f(N) and the functionsM_
and P_, if these last three parameters are not common to all the
entities.

• X 's private key is a.

Encryption: Entity B encrypts a message m for A, which A decrypts.
Thus B should make the following steps:

• Obtain A's authentic public key α, β, and f(x) together with the
functions M_ and P_ if these parameters are not common.

• Represent the message m as a number from the set G.

• Choose a random integer k ∈ G.

• Determine numbers c1 =P_(α, k) and c2 =M_(m, P_(β, k)).

• Send the ciphertext c = (c1, c2) to A.

Decryption: To �nd plaintext m from the ciphertext c = (c1, c2), A
should perform the following operations:

• Use the private key a to compute g = P_(c1, a) and then retrieve
the plaintext by computing m = M_(P_(g, −1), c2).

2. Maple routines as elements of an application

for very secure encrypting of electronic mail

using ElGamal algorithm working in SMG(pm)

The application discussed will realize a practical task, so it is assumed that
the public, key, secret key, plain text and cryptogram will be �les. Therefore,
the routines for converting �le into number and number into �le, denoted
as f2n and n2f, correspondingly, are needed �rst. Here they are:



Maple implementation of the ElGamal public key . . . 239

> f2n := proc(fn::string)

local l2n, f2l;

l2n := proc(l::list)

local t, m;

t := modp1(ConvertIn(l, x), nn^2);

subs(x = 256, t)

end proc;

f2l := proc(fn::string)

local l, f, fs;

f := fopen(fn, READ, BINARY);

fs := filepos(f, infinity);

filepos(f, 0);

l := readbytes(f, fs);

fclose(f);

l

end proc;

l2n(f2l(fn))

end proc:

> n2f := proc(n::nonnegint, fn::string)

local l2f, n2l;

l2f := proc(l::list, fn::string)

local f;

f := fopen(fn, WRITE, BINARY);

writebytes(f, l);

fclose(f)

end proc;

n2l := proc(nn::nonnegint)

if nn = 0 then [0]

else convert(nn, base, 256)

end if

end proc;

l2f(n2l(n), fn)

end proc:

The formal parameter fn of the procedure f2n represents the name of the
�le, which will be converted into a number, and formal parameters of the
routine n2f denote the number n which will be converted into the �le named



240 C. Ko±cielny

fn. The variable nn appearing in the routine f2n is global, and it is com-
puted by the routine

> INIT_ := proc(pn::posint, fx::polynom)

global ext, n, nn;

nn := pn^degree(fx);

ext := modp1(ConvertIn(modp(fx, pn), x), pn);

n := pn

end proc:

which initializes calculations in SMG(pm) and returns, in addition, global
variables n and ext, necessary for routines M_, P_ and MI_. These three rou-
tines (contained in [5], Appendix C) are also indispensable. They perform
multiplication, raising to a power and �nding the multiplicative inverse in
SMG(pm), respectively.

The fundamental task in the algorithm of key generations ful�lls the
routine

> frel := proc()

local alpha, beta, a, l, res, si, i;

randomize;

res := "*";

while res = "*" do

alpha := rand(rand((nn-1)/2)() .. nn - 1)();

try res := MI_(alpha) catch: res := "*" end try

end do;

a := rand(2 .. nn - 2)();

beta := P_(alpha, a);

alpha, beta, a

end proc:

which returns a random invertible element α and an appropriate element
β from SMG(pm) being the components of a public key, and an integer
a, playing the role of a secret key. It is evident that there exist many
procedures able to do this task.

At last the encryption routine

> ElGEnc := proc(ptfn, c1fn, c2fn::string, alpha, beta)

local c1, c2, k, m;

m := f2n(ptfn);



Maple implementation of the ElGamal public key . . . 241

k := rand(2 .. nn - 2)();

c1 := P_(alpha, k);

c2 := M_(m, P_(beta, k));

n2f(c1, c1fn);

n2f(c2, c2fn)

end proc:

and the decryption routine

> ElGDec := proc(c1fn, c2fn, rptfn::string, a::posint)

local c1, c2, g, ig, m;

c1 := f2n(c1fn);

c2 := f2n(c2fn);

g := P_(c1, a);

m := M_(P_(g, -1), c2);

n2f(m, rptfn)

end proc:

acting according to the description given in Section 1, will be necessary.
The ElGEnc procedure enciphers the plaintext �le having the �lename ptfn
taking into account the public key components alpha and beta and creates
two cryptogram �les named as c1fn and c2fn. The ElGDec procedure
deciphers cryptogram �les c1fn and c2fn and creates the retrieved plaintext
�le rptfn taking into account the secret key a.

From the above 9 blocks a practiced programmer will easily assemble
a user-friendly application for encrypting the electronic mail in the Maple
environment. As an example, the author, using the above bricks, has built
an application consisting of three procedures:

• KeyGen(plaintextf_file_size, degree_of_fx),

• Encrypting(plaintextf_file, smg_data_file),

• Decrypting(c1_file, c2_file, smg_data_file).

The KeyGen procedure automatically chooses a Mersenne prime p in such a
way that the cryptosystem could process �les of the desired size. Doing this
it must take into account the degree of the polynomial f(x) over GF (p).
Next the routine randomly generates this polynomial, computes the integer
n = pdeg(f(x)) and generates a random cryptographic key. The public and
private keys in the �les pkf and skf are stored, correspondingly, while n
and f(x) to the �le nfx.smg are written.



242 C. Ko±cielny

The Encrypting procedure takes f(x) and n from the �le nfx.smg and
the public key of the desired correspondent form the �le pkf. These data
are su�cient to encrypt a plaintext �le. It is assumed that the name of
a plaintext �le consists of one character and exactly of three characters
of extension. Assuming that the name of a plaintext �le is "n.eee", the
generated cryptogram is written to the �les c1neee.cry and c2neee.cry.
The contents of the plaintext �le may be arbitrary (text, voice, picture,
etc.), but, evidently, the �le could not contain leading 0 bytes.

The Decrypting procedure takes f(x) and n from the �le nfx.smg,
an appropriate secret key from the �le skf and decrypts the crytogram
�les c1neee.cry and c2neee.cry (assuming that the �le n.eee has been
enciphered). The retrieved plaintext in the �le nr.eee, having the proper
extension, is stored.

If, for example, we want to process plaintext �les of size 1.300 Bytes us-
ing f(x) of degree 5, we ought to execute three statements. Under the above
assumption a typical use and output of this application is the following:

> KeyGen(1300, 5);

KEY GENERATION:

Maximal plaintext file size = 1376 bytes.

Keys computed in 7 s and saved.

Public key file name: "pkf".

Private key file name: "skf".

Required for encryption/decryption data,

i.e. n and f(x) saved in the file "nfx.smg".

> Encrypting("m.txt", "nfx.smg");

ENCRYPTING:

Plaintext file size = 1301 bytes.

Plaintex file name: "m.txt".

Public key file name: "pkf".

Cryptogram files named "c1mtxt.cry"

and "c2mtxt.cry" computed in 14 s and saved.

> Decrypting("c1mtxt.cry", "c2mtxt.cry", "nfx.smg");

DECRYPTING:

Secret key taken from the file "skf".

SMG data taken from the file: "nfx.smg".



Maple implementation of the ElGamal public key . . . 243

Cryptogram files named: "c1mtxt.cry" and "c2mtxt.cry".

Recovered plaintext file named "mr.txt"

computed in 7 s and saved.

We see that the program informs the user about the stages of processing.
In the case considered the computations are performed on integers having
3316 decimal digits. The secret key is an integer belonging to the set of
order 0.7004904817 · 103316, therefore, the cryptographic key of the system
equals exactly to 10.007 bits.

The three discussed procedures are not listed here, because they occupy
place without making a contribution to the main problem of the paper. But
if the reader wants to see them, the author willingly realizes his wish by
email (joczeko@poczta.onet.pl).

3. Conclusions

In the paper it has been proved that ElGamal public key encryption scheme
working in SMG(pm) may be easily implemented in Maple. It is obvi-
ous that each elementary routine mentioned in Section 2 and needed for
this implementation can be, without di�culty, translated into any com-
piled language. Such translation allows to considerably accelerate encryp-
tion/decryption rate. Thus, the discussed cryptosystem is suitable not only
for encrypting keys for symmetric cipher but also for direct encryption of
messages.

It is worth noticing that ElGamal public key encryption may also work
in the multiplicative system of gff(nm) [5].

References

[1] N. Ferguson, B. Schneier: Practical Cryptography, John Wiley & Sons,
2003.

[2] C. Ko±cielny: A New Approach to the ElGamal Encryption Scheme, Int. J.
Appl. Math. Comput. Sci. 14 (2004), 101− 103.

[3] C. Ko±cielny: User-Friendly ElGamal Public-Key Encryption Scheme,
http://www.mapleapps.com, 2003.

[4] C. Ko±cielny: Spurious multiplicative group of GF (pm): a new tool for

cryptography, Quasigroups and Related Systems 12 (2004), 61− 73.



244 C. Ko±cielny

[5] C. Ko±cielny: Computing in GF (pm) and in gff(nm) using Maple, Quasi-
groups and Related Systems 13 (2005), 245− 264.

[6] A. J. Menezes, P. C. van Oorschot, S. A. Vanstone: Handbook of

Applied Cryptography, CRC Press, 1998.

[7] B. Schneier: Applied Cryptography, (Second Edition): Protocols, Algo-
rithms, and Cource Code in C, John Wiley & Sons, 1996.

[8] D. R. Stinson: Cryptography � Theory and Practice, CRC Press, 1995.

Received June 6, 2005

Academy of Management in Legnica
Faculty of Computer Science
ul. Reymonta 21
59-220 Legnica
Poland
e-mail: c.koscielny@wsm.edu.pl


