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On medial-like identities

Mirko Polonijo

Abstract

The description of the quasigroups that satisfy the identities of the form (a · b) · (c · d) =

(π(a) ·π(b)) · (π(c) ·π(d)), where π is a certain permutation on {a, b, c, d}, is given. Those
quasigroups include internally medial (ab ·cd = ac ·bd), externally medial (ab ·cd = db ·ca)
and palindromic (ab · cd = dc · ba) quasigroups. There are six identities that are the
equivalents of commutativity, and fourteen identities are the equivalents of commutative
mediality.

It is well-known that a groupoid (Q, ·) is medial ([1]; entropic in [5]) if
it satis�es

(a · b) · (c · d) = (a · c) · (b · d) (M)

i.e.
ab · cd = ac · bd (M)

for all a, b, c, d ∈ Q. In the identity (M) we interchange the internal pair of
the variables and now we could look for the identity in which the external
pair is interchanged

ab · cd = db · ca (Me)

or the identity in which the both pairs are interchanged

ab · cd = dc · ba . (P )

Therefore, we could call (M) internal mediality and (Me) external medi-

ality (paramediality in [2], [3]). The identity (P ) we shall call palindromity.

Proposition 1. For any groupoid (Q, ·), any two of the three identities

(M), (Me) and (P ) imply the third one.
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Proof. ((M)&(Me) ⇒ (P )) ab · cd = ac · bd = dc · ba.
((P )&(Me) ⇒ (M)) ab · cd = dc · ba = ac · bd.

((P )&(M) ⇒ (Me)) ab · cd = dc · ba = db · ca.

Proposition 2. Let (Q, ·) be a commutative groupoid. Then (Q, ·) is palin-

dromic. Further, the constraints (M) and (Me) are equivalent, i.e. a com-

mutative groupoid (Q, ·) is internally medial if and only if it is externally

medial.

Proof. The �rst statement is obvious, and the second one follows from the
previous proposition.

Proposition 3. Let (Q, ·) be an idempotent groupoid. If it is externally

medial or palindromic, then it is commutative.

Proof. Any externally medial groupoid satis�es xx · yy = yx · yx, and for
palindromic quasigroup xx ·yy = yy ·xx is valid. Therefore, if the groupoid
is idempotent, i.e. xx = x holds for all x ∈ Q, it is commutative.

Remark 1. There are idempotent internally medial groupoids (moreover
quasigroups) which are not commutative. For instance, take Z3 and de�ne
multiplication by x · y = x+ 2y.

Proposition 4. Let (Q, ·) be an internally medial or externally medial or

palindromic quasigroup. Its center is empty or Q.

Proof. The center is the set of all c ∈ Q which commutes with all elements
of Q. Therefore, if the center is not empty and c is in the center, then any
a, b ∈ Q can be written in the form a = cx = xc, b = cy = yc for some
x, y ∈ Q. Then (M) implies ab = cx · yc = cy · xc = ba, (Me) implies
ab = xc · cy = yc · cx = ba, (P ) implies ab = cx · yc = cy · xc = ba, i.e. in
any case (Q, ·) is commutative.

Proposition 5. A loop is internally medial or externally medial if and only

if it is an abelian group.

Proof. (⇒) If (Q, ·) is internally medial or externally medial loop it is
commutative, since a loop has nonempty center. Now, put the unit element
for b and associativity follows. Su�ciency (⇐) is obvious.
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Proposition 6. A loop is palindromic if and only if it is commutative.

Proof. Notice that a loop has nonempty center.

Corollary 1. A group is internally medial or externally medial or palin-

dromic if and only if it is an abelian group.

Remark 2. As we know, every commutative quasigroup (groupoid) is
palindromic, but the converse is not true. If we take an abelian group
(Q,+), then quasigroup (Q,−) satis�es (P ), but is not commutative. Notice
that (Q,−) is internally medial and externally medial.

Proposition 7. A quasigroup (Q, ·) is palindromic if and only if exists its

automorphism α such that

α(x · y) = y · x

holds for all x, y ∈ Q.

Proof. (⇒) For arbitrary a, b ∈ Q put ab = u, ba = v and take permutation
α = L−1

v Ru (where Lv is left translation for v and Ru is right translation
for u i.e. Lv(x) = v · x and Ru(x) = x · u, for any x ∈ Q).

Then we have Lvα(xy) = Ru(xy) = xy · ab = ba · yx = Lv(yx) and
therefore α(xy) = yx. Further, for any x, y ∈ Q taking x = x1x2, y = y1y2

we have α(xy) = yx = y1y2 · x1x2 = x2x1 · y2y1 = α(x1x2) · α(y1y2) =
α(x) · α(y) i.e. α is an automorphism.

(⇐) If α is an automorphism such that α(x · y) = y · x then follows
ab·cd = α(cd·ab) = α(cd)·α(ab) = dc·ba i.e. quasigroup is palindromic.

Proposition 8. If (Q, ·) is internally or externally medial quasigroup, then

it satis�es Thomsen's closure condition, i.e.

x1y2 = x2y1 and x1y3 = x3y1 imply x2y3 = x3y2

for all x1, x2, x3, y1, y2, y3 ∈ Q. Therefore, any internally and any externally

medial quasigroup is an abelian group isotope.

Proof. Let us suppose x1y2 = x2y1 and x1y3 = x3y1 hold and take z ∈ Q.
Now, for internally medial quasigroup we get

x2y3 · y1z = x2y1 · y3z = x1y2 · y3z = x1y3 · y2z = x3y1 · y2z = x3y2 · y1z
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and for externally medial quasigroup we have

x2y3 · zx1 = x1y3 · zx2 = x3y1 · zx2 = x2y1 · zx3 = x1y2 · zx3 = x3y2 · zx1.

Hence, in both cases, x2y3 = x3y2.
Since Thomsen's closure condition is valid in (Q, ·) it follows that (Q, ·)

is isotopic to an abelian group (cf. [1], [5]).

Proposition 9. For a quasigroup (Q, ·) and e, f ∈ Q let us de�ne binary

operation + on Q by

xe + fy = xy

for all x, y ∈ Q. If (Q, ·) is internally or externally medial quasigroup, then

(Q,+) is an abelian group.

Proof. It is well-known (and easy to check) that (Q,+) is a loop (with the
unity 0 = fe). If (Q, ·) is internally or externally medial quasigroup then
it is isotopic to an abelian group and therefore loop (Q,+) is an abelian
group isotope too. Because of Albert's theorem (cf. [1]), (Q,+) is an abelian
group.

Proposition 10. ([6], [4]) Let (Q, ·) be internally or externally medial

quasigroup. Then there is an abelian group (Q,+), an element q ∈ Q and

group automorphisms α, β such that

x · y = α(x) + β(y) + q

for all x, y ∈ Q. For internally medial quasigroup αβ = βα is ful�lled, and

for externally medial quasigroup αα = ββ.

Proof. Let (Q,+) be the abelian group de�ned in the previous proposition
and ϕ(x) = Re(x) = xe, ψ(x) = Lf (x) = fx for all x ∈ Q. For internally
medial quasigroup and externally medial quasigroup we get respectively

ϕ(ϕ(a) + ψ(b)) + ψ(ϕ(c) + ψ(d)) = ϕ(ϕ(a) + ψ(c)) + ψ(ϕ(b) + ψ(d)),

ϕ(ϕ(a) + ψ(b)) + ψ(ϕ(c) + ψ(d)) = ϕ(ϕ(d) + ψ(b)) + ψ(ϕ(c) + ψ(a)).

The �rst equality implies

ϕ(a+ b) + ψ(ϕ(0) + ψ(0)) = ϕ(a+ ψ(0)) + ψ(ϕψ−1(b) + ψ(0)),

ϕ(ϕ(0) + ψ(0)) + ψ(c+ d) = ϕ(ϕ(0) + ψϕ−1(c)) + ψ(ϕ(0) + d),
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and the second one gives

ϕ(a+ b) + ψ(ϕ(0) + ψ(0)) = ϕ(ϕ(0) + b) + ψ(ϕ(0) + ψϕ−1(a)),

ϕ(ϕ(0) + ψ(0)) + ψ(c+ d) = ϕ(ϕψ−1(d) + ψ(0)) + ψ(c+ ψ(0)).

In both cases it follows that there are such permutations ϕ1, ϕ2, ψ1, ψ2

on Q for which

ϕ(a+ b) = ϕ1(a) + ϕ2(b), ψ(c+ d) = ψ1(c) + ψ2(d).

Hence, ϕ and ψ are quasi-automorphisms of the abelian group (Q,+). It
implies that there are automorphisms α, β of (Q,+) and q1, q2 ∈ Q such
that

ϕ(x) = α(x) + q1, ψ(x) = β(x) + q2 .

Therefore, putting q = q1 + q2 we have

x · y = α(x) + β(y) + q .

Now, for internally medial quasigroup we get

α(α(a) + β(b)) + β(α(c) + β(d)) = α(α(a) + β(c)) + β(α(b) + β(d))

and putting a = c = d = 0 we obtain αβ = βα.
For externally medial quasigroup we have

α(α(a) + β(c)) + β(α(b) + β(d)) = α(α(d) + β(c)) + β(α(b) + β(a))

and putting b = c = d = 0 it follows αα = ββ.

Remark 3. It is widely known that K. Toyoda (cf. [6]) proved the pre-
viously mentioned proposition for internally medial quasigroups, which is
commonly named Toyoda's theorem (see also [1], [5]). The proposition was
proved in [4] for externally medial quasigroups (see also [2], [3]). We gave
the above proof to stress that it is the same for both types of quasigroups,
as is expected.

Any of the identities (M), (Me), (P ) is of the form

ab · cd = (π(a) · π(b)) · (π(c) · π(d))

where π is a certain permutation on {a, b, c, d}. Therefore we would like to
look on such identities on the quasigroups for any permutation π. Beside the
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identities (M), (Me), (P ) and trivial identity ab·cd = ab·cd which is ful�lled
in any groupoid, we have the following twenty "medial-like" identities more:

ab · cd = ab · dc (C1), ab · cd = ba · cd (C2),

ab · cd = ba · dc (C3), ab · cd = cd · ab (C4),

ab · cd = cd · ba (C5), ab · cd = dc · ab (C6),

ab · cd = ac · db (CM1), ab · cd = ad · bc (CM2),

ab · cd = ad · cb (CM3), ab · cd = bc · ad (CM4),

ab · cd = bc · da (CM5), ab · cd = bd · ac (CM6),

ab · cd = bd · ca (CM7), ab · cd = ca · bd (CM8),

ab · cd = ca · db (CM9), ab · cd = cb · ad (CM10),

ab · cd = cb · da (CM11), ab · cd = da · bc (CM12),

ab · cd = da · cb (CM13), ab · cd = db · ac (CM14).

Proposition 11. For a quasigroup (Q, ·) and i ∈ {1, 2, . . . , 6}, (Ci) is valid
if and only if the quasigroup is commutative.

Proof. (⇐) is obvious. (⇒) is evident for (C1), (C2), (C4). For (C3) put
c = d; for (C5) put c = b, d = a; for (C6) put c = a, d = b.

Proposition 12. For a quasigroup (Q, ·) and i ∈ {1, 2, . . . , 14}, (CMi)
holds if and only if the quasigroup is both commutative and internally medial.

Proof. ((CM1),⇐) is obvious.

((CM1),⇒) Put c = b and commutativity follows; hence (M).

((CM2),⇐) ab · cd = ba · cd = bc · ad = ad · bc.

((CM2),⇒) Put d = b and commutativity follows; therefore ab · cd =
ba · cd = bd · ac = ac · bd.

((CM3),⇐) Commutative internally medial quasigroup satis�es (CM2),
hence (CM3) follows.

((CM3),⇒) Put c = a and commutativity follows; hence (CM2) and
therefore (M).
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((CM4),⇐) Commutative internally medial quasigroup satis�es (CM2),
hence (CM4) follows.

((CM4),⇒) Put c = a and commutativity follows; hence (CM2) and
therefore (M).

((CM5),⇐) Commutative internally medial quasigroup satis�es (CM2),
hence (CM5) follows.

((CM5),⇒) Because of ab · cd = bc · da = cd · ab commutativity follows;
hence (CM2) and therefore (M).

((CM6),⇐) is obvious.

((CM6),⇒) Put c = b and commutativity follows; hence (M).

((CM7),⇐) is obvious.

((CM7),⇒) Put d = a and commutativity follows; hence (M).

((CM8),⇐) is obvious.

((CM8),⇒) Put c = b and commutativity follows; hence (M).

((CM9),⇐) is obvious.

((CM9),⇒) Put d = a and commutativity follows; hence (M).

((CM10),⇐) Commutative internally medial quasigroup satis�es (CM2),
hence (CM10) follows.

((CM10),⇒) Put d = b and commutativity follows; hence (CM2) and
therefore (M).

((CM11),⇐) Commutative internally medial quasigroup satis�es (CM2),
hence (CM11) follows.

((CM11),⇒) Put c = a and commutativity follows; hence (CM2) and
therefore (M).

((CM12),⇐) Commutative internally medial quasigroup satis�es (CM2),
hence (CM12) follows.

((CM12),⇒) Because of ab · cd = da · bc = cd ·ab commutativity follows;
hence (CM2) and therefore (M).

((CM13),⇐) Commutative internally medial quasigroup satis�es (CM2),
hence (CM13) follows.
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((CM13),⇒) Put d = b and commutativity follows; hence (CM2) and
therefore (M).

((CM14),⇐) is obvious.

((CM14),⇒) Put d = a and commutativity follows; hence (M).

Corollary 2. For a quasigroup (Q, ·) and i ∈ {1, 2, . . . , 14}, (CMi) is valid

if and only if the quasigroup is both commutative and externally medial.

Corollary 3. ([3]) If (CMi) is ful�lled in a quasigroup (Q, ·) for some

i ∈ {1, 2, . . . , 14}, i.e. if (Q, ·) is internally or externally medial quasigroup

which is commutative, then there is an abelian group (Q,+), an element

q ∈ Q and group automorphisms α such that

x · y = α(x+ y) + q

is valid for all x, y ∈ Q.
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