Automorphism group of Chein loops

Alexander N. Grishkov, Andrei V. Zavarnitsine
and
Maria de Lourdes Merlini Giuliani

Abstract

In this paper we describe the automorphism group of Chein loops.

1. Introduction

First, we recall the definition of Chein loops (see [1]). Let G be a group and the element u be an indeterminate. Let $M(G, 2) = G \cup Gu$ be the disjoint union of G and Gu and extend the operation on G to an operation $(.)$ on $M(G, 2)$ by the rules

$$
g.(hu) = (hg)u, \quad (gu).h = (gh^{-1})u, \quad (gu).(hu) = h^{-1}g \quad \forall g, h \in G.
$$

Then $M(G, 2)$ is a Moufang loop, which is a group if and only if G is an abelian group. Moufang loops of this type are called Chein loops.

We mostly use standard notation. If G is a group then we consider the natural action of $\text{Aut}G$ on G. This define a semidirect product $\text{Aut}G \times G$ which is called the Holomorph of G and denoted by $\text{Hol}G$. For $g \in G$ and $\varphi \in \text{Aut}G$ we write g^φ for the image of g under φ.

The set

$$
\text{Stab}_{\text{Aut}G}(g) = \{ \varphi \in \text{Aut}G; g^\varphi = g \}
$$

is a subgroup of $\text{Aut}G$, called the stabilizer of g in $\text{Aut}G$. For any $g, h \in G$ we write $[g, h] = g^{-1}h^{-1}gh$.
2. The automorphisms

Consider $\psi \in \text{Aut}(G)$, we extend ψ to $a_\psi : M(G, 2) \rightarrow M(G, 2)$ as follows

$$a_\psi(gu^\lambda) = g\psi u^\lambda, \quad \lambda = 0, 1.$$

Now consider an element $t \in G$ and let

$$d_t(gu) = g(tu) = (tg)u, \quad d_t(g) = g, \quad \forall g \in G.$$

Lemma 1. The set $A = \{a_\psi \mid \psi \in \text{Aut}G\}$ is a subgroup of $\text{Aut}M(G, 2)$ isomorphic to $\text{Aut}(G)$ and the set $D = \{d_t \mid t \in G\}$ is a subgroup of $\text{Aut}M(G, 2)$ isomorphic to G. Moreover, $[A, D] = D, \quad A \cap D = 1$ and the semidirect splitting extension AD is isomorphic to $\text{Hol}(G)$.

Proof. By definition of the operation $(.)$ in $M(G, 2)$ we have

$$a_\psi(g.(hu)) = a_\psi((hg)u) = (hg)^\psi u
\quad a_\psi(g).a_\psi(hu) = g^\psi.(h^\psi u) = (h^\psi g^\psi)u = (hg)^\psi u.$$ \hspace{1cm} (1)

$$d_t(g.(hu)) = d_t((hg)u) = (thg)u,
\quad d_t(g).d_t(hu)) = g.((th)u) = (thg)u.$$ \hspace{1cm} (2)

Analogously, we get

$$a_\psi(gu.h) = a_\psi((gh^{-1})u) = (gh^{-1})^\psi u
\quad a_\psi(gu).a_\psi(h) = g^\psi.u.h^\psi = (g^\psi h^{-\psi})u = (gh^{-1})^\psi u.$$ \hspace{1cm} (3)

$$d_t(gu.h) = d_t((gh^{-1})u) = (tgh^{-1})u
\quad d_t(gu).d_t(h) = (tg)u.h = (thg^{-1})u.$$ \hspace{1cm} (4)

Finally,

$$a_\psi(gu.hu) = a_\psi(h^{-1}g) = (h^{-1})^\psi
\quad a_\psi(gu).a_\psi(hu) = g^\psi.u.h^\psi = (h^{-\psi}g^\psi = (h^{-1})^\psi.$$ \hspace{1cm} (5)

$$d_t(gu.hu) = d_t(h^{-1}g) = h^{-1}g
\quad d_t(gu).d_t(hu) = (tg)u.(th)u = (th)^{-1}tg = h^{-1}g.$$ \hspace{1cm} (6)

Hence a_ψ and d_t are automorphisms. It is easy to see that

$$a_\psi \circ a_\psi = a_{\psi \psi} \quad \text{and} \quad d_t \circ d_h = d_{ht}, \quad a_\psi^{-1} = a_{\psi^{-1}}, \quad d_t^{-1} = d_{t^{-1}}$$
hence \(A = \{a_\psi \mid \psi \in AutG\} \) is a subgroup of \(AutM(G,2) \) isomorphic to \(Aut(G) \) and the set \(D = \{d_t \mid t \in G\} \) is a subgroup of \(AutM(G,2) \) isomorphic to \(G \).

We have \(a_{\psi^{-1}t}d_t a_\psi(h) = h, \ a_{\psi^{-1}t}d_t a_\psi(hu) = t^{\psi^{-1}}h = d_{t^{-1}}(hu). \) Hence \(a_{\psi^{-1}t}d_t a_\psi = d_{t^{-1}}. \) Therefore \(AD \cong Hol(G) \).

Let \(G \) be a generalized dihedral group, i.e. a group such that there exists an abelian subgroup \(G_0 < G \) of index 2 and \(G = G_0 \cup G_0v \), where \(v \not\in G_0, \ v^2 = 1; \ vgv = g^{-1}, \forall g \in G_0. \)

In the Chein loop \(M(G,2) \) we have an abelian subgroup

\[
K = \{1, u, v, w = uv = vu\}
\]

and \(M(G,2) = G_0K. \) For any \(\phi \in AutK = S_3 \) we can define an automorphism of \(M(G,2) \), which we denote by the same letter \(\phi \):

\[
\phi(gx) = gx^\phi \quad \forall x \in K, \ g \in G_0.
\]

We have the following result.

Theorem 1. Let \(G \) be a group. If \(G \) is not a dihedral group, then the automorphism group of the corresponding Chein loop \(M(G,2) \) is \(Hol(G) \). If \(G = G_0 \cup G_0v \) is a dihedral group and \(G_0 \) is not a group of period 2, then \(AutM(G,2) = Hol(G)S_3. \)

Proof. If \(G \) is not a dihedral group then \(G \) is a characteristic subgroup of \(M(G,2) \). Indeed, if for some \(\phi \in AutM(G,2) \) and \(x \in G \) we have \(y = x^\phi \not\in G \), then \(y^2 = 1 \) and \(yy = g^{-1}, \forall g \in G. \)

Let \(G_0 = \{h \in G \mid h^\phi \in G \} \), then \(G_0 \) is a subgroup of index 2 of \(G \) and \(G^\phi = G_0 \cup G_0y \) is a dihedral group, a contradiction, since \(G \) and \(G^\phi \) are isomorphic.

Let \(\phi \in AutM(G,2) \) and choose \(a_\psi \in A \) such that \(\psi(g) = \phi(g), \forall g \in G. \) Then \(\tau = \phi a_\psi^{-1} \in Stab_{AutM(G,2)}G. \) It is clear that \(Stab_{AutM(G,2)}G = D \) and \(AutM(G,2) = AD = Hol(G) \).

Let \(G = G_0 \cup G_0v \) be a dihedral group and \(N_0 = \{x \in M(G,2) \mid x^2 \neq 1\}, \) \(N = \{x \in M(G,2) \mid [x,N_0] = 1\} \). It is obvious that \(N^\phi = N, \) for any \(\phi \in AutM(M,2), \) and \(N = G_0 \) if \(G \) is not of period 2. As above we have \(AD \subset AutM(G,2). \) If \(\phi \in AutM(G,2), \) then \(u^\phi = ga, \ v^\phi = hb, \) where \(g, h \in G_0, \ a, b \in K. \) Note that \(a \neq b. \) Indeed, if \(a = b, \) then \((uv)^\phi = gaha = gh^{-1} \in G_0, \) but \(uv \not\in G_0 \) and \(G_0 \) is a characteristic subgroup, a contradiction.

Then there exists \(\psi \in S_3 \) such that \(u^\psi = a, \ v^\psi = b \) and \(\phi \psi^{-1} \in AD. \) This means that \(AutM(G,2) = ADS_3 = Hol(G)S_3. \)
Remark 1. It is easy to see that $\text{Hol}(G) = \mathcal{W}(G_0)$ is a Mikheev group with triality with respect to the action of S_3 and the corresponding loop is G_0 (see [2]).

References

Received April 26, 2005
Revised October 14, 2005

A.N.Grishkov
Departamento de Matemática, Universidade de São Paulo, Caixa Postal 66281,
São Paulo-SP, Brasil, 05311-970
and
Omsk State University, Russia
e-mail: grishkov@ime.usp.br

A.V.Zavarnitsine
Departamento de Matemática, Universidade de São Paulo, Caixa Postal 66281,
São Paulo-SP, Brasil, 05311-970

M.L. Merlini Giuliani
Departamento de Matemática, Universidade Federal de Santa Maria, Santa Maria-RS,
Brasil
e-mail: lurdinha@ime.usp.br