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Loop algebras of loops

whose derived subloop is central

Luiz G. X. de Barros

Abstract

The isomorphism problem for loops, that is, to know under which conditions the loop
algebra isomorphism implies the loop isomorphism, is studied in the semisimple case for
loops whose derived subloop is central. This is done by studying the structure of the
semisimple loop algebra and by proving that it can be decomposed as a direct sum of
an associative and commutative subalgebra with a nonassociative and non-commutative
subalgebra.

1. Nomenclature and Introduction

A loop is a set L with a binary operation · which admits an identity element
1 and that the equations X · a = b and a ·X = b have unique solutions for
all a and b in L.

The unique solution of the equation a · b = (b · a) · X in L is called
the commutator of the elements a and b, while the unique solution of the
equation (a · b) · c = (a · (b · c)) ·X is called the associator of the elements
a,b and c. For a loop L, the subloop L′ generated by all commutators and
all associators is called the derived subloop of L. The quotient loop L/L′ is
an abelian group and L′ is the smallest subloop of L with such property.

The centre of a loop L is the set Z(L) of the elements in L which
commute with any element in L and which associate with any two others
elements in L in any order of association.
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In a loop, the solution of the equation X ·a = 1 is called the left inverse
of the element a and it is denoted by aλ, while the solution of the equation
a ·X = 1 is called the right inverse of a and it is denoted by aρ.

Given an associative and commutative ring R and a loop L, the loop

ring RL is the free R-module with basis L and multiplication de�ned dis-
tributively from the multiplication of L. For a �eld K, the loop algebra KL
is de�ned in the same way.

For a normal subloop N of a loop L , the epimorphism L −→ L/N
extends to the algebra epimorphism KL −→ K[L/N ] whose kernel, denoted
by ∆(L,N), is the ideal of KL generated by the set {n− 1 | n ∈ N}.

We shall denote by [KL, KL] the left ideal of KL generated by all
elements of the form αβ − βα with α, β ∈ KL, and by [KL, KL, KL] the
left ideal of KL generated by all elements of the form αβ · γ − α · βγ with
α, β, γ ∈ KL.

The isomorphism problem for group rings, posed by Graham Higman in
his 1940 thesis, asks if a group is determined by its group ring, that is, given
a ring R and groups G and H, does the ring isomorphism RG ∼= RH imply
the group isomorphism G ∼= H ?

G. Higman himself proved that the integral group ring of a �nite abelian
group determines the group. Later, A. Whitcomb extended this result to
integral group ring of �nite metabelian groups.

The isomorphism problem over �elds was �rst considered in 1950 by S.
Perlis and G.L. Walker who proved that if G is a �nite abelian group then
G is determined its rational group algebra QG. Solutions for many classes
of group, many kinds of rings and �elds are found during this time.

On the '80s, the problem was reposed for loops and expressive results for
RA-loops were obtained. For details, Chapter XI of the book "Alternative

Loop Rings", Elsevier, (1996), by E.G. Goodaire, E. Jespers and C. Polcino
Milies, is recommended.

During the '90s, the author has worked in extending these results to
other classes of loops. In this work, some advances on the loops whose
derived subloop is central are shown. The semisimple case, that is, when the
characteristic of the �eld does not divide the order of the loop, is completely
solved. This is made studying the structure of the loop algebra and proving
that it can be decomposed as a direct sum of an associative and commutative
subalgebra with a non-associative and non-commutative subalgebra.
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2. Loop algebras of loops whose derived subloop

is central

Here we focus our attention on the class L of the �nite loops whose derived
subloop is central. These loops appear very often in the theory of loops.
Code loops [6], RA-loops [5], loops with a unique non-trivial commutator-
associator element [8] are examples of such loops.

Some of the results in this section are extensions of those obtained for
RA-loops in [1] by the author and in [3] by C. Polcino Milies and the author.

This �rst lemma is fundamental for the sequence and extends to loop
algebras of loops in L a very known result of group algebras.

Lemma 2.1. Let K be a �eld and L be a loop in L with derived subloop L′.
Then

[KL, KL] + [KL, KL, KL] = ∆(L,L′).

Proof. First, we observe that [KL, KL] is generated by elements of the
form lm−ml with l,m ∈ L. Since lm = ml · (l, m) we have that

lm−ml = ml · (l, m)−ml = ml · ((l,m)− 1) ∈ ∆(L,L′) .

Also, [KL, KL, KL] is generated by elements of the form lm.n − l.mn
with l,m, n ∈ L. Since, lm.n = (l.mn) · (l, m, n) we have that

lm.n− l.mn = (l.mn) · (l,m, n)− l.mn = (l.mn) · ((l,m, n)−1) ∈ ∆(L,L′) .

Thus [KL, KL] + [KL, KL, KL] ⊂ ∆(L,L′) .
On the other hand, since lm = ml · (l, m) and (l,m) is central, we have

that (l,m) = (ml)λ · lm and (l, m)−1 = (lm)λ ·ml.
Then

1− (l, m) = 1− (ml)λ · lm = (ml)λ ·ml − (ml)λ · lm
= (ml)λ · (ml − lm) ∈ [KL, KL]

and

1− (l,m)−1 = 1− (lm)λ ·ml = (lm)λ · lm− (lm)λ ·ml

= (lm)λ · (lm−ml) ∈ [KL, KL].

Also, since lm.n = (l.mn) ·(l, m, n) and (l, m, n) is central, we have that
(l,m, n) = (l.mn)λ · (lm.n) and (l, m, n)−1 = (lm.n)λ · (l.mn).
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Then

1− (l,m, n) = 1− (l.mn)λ · (lm.n) = (l.mn)λ · (l.mn)− (l.mn)λ · (lm.n)

= (l.mn)λ · (l.mn− lm.n) ∈ [KL, KL, KL]

and

1− (l, m, n)−11− (lm.n)λ · (l.mn) = (lm.n)λ · (lm.n)− lm.n)λ · (l.mn)

= (lm.n)λ · (lm.n− l.mn) ∈ [KL, KL, KL].

An element x ∈ L′ is a product of commutators, associators and their
inverses. The identity 1− cd = (1− c)+(1−d)− (1− c) · (1−d) shows that
1− x can be separated in terms of the form α · (1− c) where α ∈ KL and c
is a commutator (or its inverse) or an associator (or its inverse). Each one
of these terms of the form α · (1− c) belongs to [KL, KL] or [KL, KL, KL].
Thus ∆(L,L′) ⊂ [KL, KL] + [KL, KL, KL]. �

For a future use we recall a classical result about group algebras of �nite
abelian groups due to S. Perlis and G.L. Walker [10],

Theorem 2.2. (Theorem X.2.1, [7]) Let G be a �nite abelian group of order

n and K be �eld whose characteristic does not divide n. Then

KG ∼= ⊕d|nadK(ξd) ,

where ad = nd/[K(ξd) : K], nd denotes the number of elements of order d
in G and ξd denotes a primitive dth root of unity over K.

Using Lemma VI.1.2 of [7], we can prove

Lemma 2.3. Let L be a loop in L and let K be any �eld whose characteristic

does not divide |L′|, the order of L′. De�ne L̂′ = 1
|L′| ·

∑
n∈L′ n. Then

i) L̂′ is a central idempotent in KL,
ii) KL · L̂′ ∼= K[L/L′] and KL · (1− L̂′) ∼= ∆(L,L′),

iii) KL ∼= KL · L̂′ ⊕KL · (1− L̂′) ∼= K[L/L′]⊕∆(L,L′).

The next result is valid for any �eld.

Proposition 2.4. Let L1 and L2 be loops in L and K be any �eld. Sup-

pose that KL1
∼= KL2. Then K[L1/L′

1] ∼= K[L2/L′
2] and ∆(L1, L

′
1) ∼=

∆(L2, L
′
2).
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Proof. Let KL1 −→ K[L1/L′
1] be the natural epimorphism whose kernel

is ∆(L1, L
′
1).

Given an isomorphism Ψ : KL1 −→ KL2, we have

Ψ(∆(L1, L
′
1)) = Ψ([KL1,KL1] + [KL, KL, KL]) =

= [KL2,KL2] + [KL2,KL2,KL2] = ∆(L2, L
′
2).

This shows that Ψ also induces an isomorphism Ψ of the corresponding
factor rings, so

K[L1/L′
1] ∼= KL1/∆(L1, L

′
1) ∼= KL2/∆(L2, L

′
2) ∼= K[L2/L′

2]. �

As a consequence of both results, we obtain the next theorem which is
an extension of Theorem 3.2 in [2] for RA-loops

Theorem 2.5. Let L1 and L2 be loops in L and K be any �eld whose

characteristic does not divide |L′
1| and |L′

2|. Then KL1
∼= KL2 if and only

if K[L1/L′
1] ∼= K[L2/L′

2] and ∆(L1, L
′
1) ∼= ∆(L2, L

′
2).

Using Theorem 2.2 we have

Corollary 2.6. Let L1 and L2 be loops in L and let Q be the rational

�eld. Then QL1
∼= QL2 if and only if L1/L′

1
∼= L2/L′

2 and ∆(L1, L
′
1) ∼=

∆(L2, L
′
2).

3. A subclass of L
In this section we study the class L1 of the �nite loops L such that L/Z(L) ∼=
C2 × C2. These loops appear as groups in the main papers about RA-loops
as [5] and [9].

Proposition 3.1. Let L ∈ L1. Then

i) L′ ⊂ Z(L), that is, L1 ⊂ L,
ii) L2 ⊂ Z(L),

iii) L = < x, y,Z(L) >, the subloop generated by x, y and Z(L), for all

non-central elements x, y ∈ L such that x.Z(L) 6= y.Z(L).

Proof.

i) It comes from the fact that L/Z(L) is an abelian group.
ii) It comes from the fact that the group C2 × C2 has exponent 2.
iii) It comes from the fact that L/Z(L) ∼= C2 × C2 can be generated by
two non-central elements x and y such that x.Z(L) 6= y.Z(L) . �
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Proposition 3.2. Let L =< x, y,Z(L) > a loop in L1. Write Z(L) ∼=
E×A, where E is an abelian 2-group and A is an abelian group of odd order.

Then there exist x0, y0 ∈ L, with x2
0, y

2
0 ∈ E such that L =< x0, y0,Z(L) > .

Proof. Write x2 = x1.x2 and y2 = y1.y2 with x1, y1 ∈ E and x2, y2 ∈ A.
Let x0 = xo(x2) and y0 = yo(y2). It is easy to see that x0 and y0 have the
desired properties. �

Theorem 3.3. Let L be a loop in L1. Then L = M × A, where M is a

2-loop in L1 and A is an abelian group of odd order.

Proof. Write Z(L) ∼= E × A, where E is an abelian 2-group and A is an
abelian group of odd order. By Proposition 3.2 there exist x0, y0 ∈ L , with
x2

0, y
2
0 ∈ E such that L =< x0, y0,Z(L) > . De�ne M =< x0, y0, E >.

Then Z(M) = E and M/Z(M) ∼= C2 × C2. Also L = M ×A. �

Corollary 3.4. Let L be a loop in L1. Write L = M × A, where M is a

2-loop in L1 and A is an abelian group of odd order. Then L′ = M ′.

Proof. Given the elements l = xa
0.y

b
0.zl, m = xc

0.y
d
0 .zm and n = xe

0.y
f
0 .zn in

L with xo, y0 ∈ M and zl, zm, zn ∈ Z(L), observe that

(l, m) = (xa
0.y

b
0.zl , xc

0.y
d
0 .zm) = (xa

0.y
b
0 , xc

0.y
d
0) ∈ M ′

and

(l,m, n) = (xa
0.y

b
0.zl , xc

0.y
d
0 .zm , xc

0.y
d
0 .zn) = (xa

0.y
b
0 , xc

0.y
d
0 , xc

0.y
d
0) ∈ M ′

since zl , zm and zn are central. �

We say that elements a and b of a loop L are conjugate if b = θ(a) for
some θ ∈ Inn(L), the inner mapping group of L. Conjugacy de�nes an
equivalence relation on L. In a loop ring, a (�nite) class sum is the sum of
all the elements in a �nite conjugacy class of L.

The next theorem is a classical result due to R. H. Bruck and it appears
in [7] as Theorem III.1.3

Theorem 3.5. Let L be a loop and R be a commutative and associative

ring. The (�nite) class sums of the loop ring RL form a R-basis for the

centre of RL .

Now we focus our attention to the class L2 of the loops L in L1 with a
unique nonidentity commutator-associator element.

As the Corollary III.1.5 in [7], we can prove
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Corollary 3.6. Let L be a loop in L2 with a unique nonidentity

commutator-associator element s and let R be a commutative and asso-

ciative ring. Then the centre of the loop ring RL is spanned by the centre

of L and those elements of RL of the form l + sl, l ∈ L .

Also, as the Corollary VI.1.3 in [7], we can prove

Lemma 3.7. Let L be a loop in L2 with a unique nonidentity commutator-

associator element s and let K be a �eld whose characteristic does not divide

the order of L. Then Z(∆(L,L′)) ∼= K[Z(L)](1− L̂′), where L̂′ = 1+s
2 .

The next theorem extends Theorem 2.5 of [4] from RA-loops to the class
L2.

Theorem 3.8. Let L1 and L2 be loops in L2 and K be a �eld whose charac-

teristic does not divide the order of either of these loops. For 1 = 1, 2, write
Li = Mi × Ai where Mi is 2-loop in L2 and Ai is an abelian group of odd

order. Then KL1
∼= KL2 if and only if KM1

∼= KM2 and KA1
∼= KA2.

Proof. Suppose �rst that KL1
∼= KL2. By Proposition 2.4, we have

K[L1/L′
1] ∼= K[L2/L′

2]; that is,

K[(M1/M
′
1)×A1] ∼= K[(M2/M

′
2)×A2].

As these group algebras are commutative, using a result due to D. E.
Cohen and which appears as Theorem X.2.5 in [7], we can conclude that

K[M1/M
′
1] ∼= K[M2/M

′
2] and KA1

∼= KA2.

In view of Theorem 2.5, in order to prove that KM1
∼= KM2 as well,

it will su�ce to show that ∆(M1,M
′
1) ∼= ∆(M2,M

′
2) . By Theorem 2.5,

∆(L1, L
′
1) ∼= ∆(L2, L

′
2). Moreover, for i = 1, 2, denoting by L̂′

i = 1
|L′

i|
·∑

n∈L′
i
n the central idempotent in KLi,

∆(Li, L
′
i) = KLi(1− L̂′

i) ∼= (KMi ⊗KAi)(1− L̂′
i) ∼= ∆(Mi,M

′
i)⊗KAi

since L̂′
i ∈ Mi. Thus

∆(M1,M
′
1)⊗KA1

∼= ∆(L1, L
′
1) ∼= ∆(L2, L

′
2) ∼= ∆(M2,M

′
2)⊗KA2.

Using Theorem 2.2, we have that KA1
∼= nK ⊕ (⊕dmdK(ξd)) ∼= KA2,

where ξd is a primitive root of unity of odd order d and d runs over the set
of divisors of |A1| such that K(ξd) 6= K. For i = 1, 2,

∆(Li, L
′
i) ∼= n∆(Mi,M

′
i)⊕ (⊕dmd(∆(Mi,M

′
i)⊗K(ξd))).
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By Lemma 3.7 , Z(∆(Mi,M
′
i)) = K[Z(Mi)](1− L̂′

i). Thus, using again
Theorem 2.2, Z(∆(Mi,M

′
i)) ∼= ⊕jK(ξaj ), where the ξaj are primitive roots

of unity of order 2aj . Consequently,

Z(∆(Mi,M
′
i)⊗K(ξd)) ∼= ⊕jK(ξaj )⊗K(ξd).

Since (d, 2aj ) = 1, we have that

K(ξaj )⊗K(ξd) ∼= K(ξaj )(ξd) = K(ξajd) ,

where ξajd is a primitive root of unity of order 2ajd. We claim that this
�eld is never isomorphic to a �eld of the form K(ξai). In fact, assume that
K(ξajd) ∼= K(ξai). Then K(ξd) ⊂ K(ξai) and so

K(ξai)⊗K K(ξd) ∼= K(ξaid) = K(ξai)(ξd) = K(ξai).

However, as K(ξd) 6= K, the tensor product K(ξai)⊗K K(ξd) has dimen-
sion at least two over the �eld K(ξai), a contradiction. Hence the centre of
the algebra ∆(Mi,M

′
i) is a direct sum of �elds which are all di�erent from

those appearing in the decomposition of the centre of ∆(Mi,M
′
i)⊗K(ξd).

Since

n∆(M1,M
′
1)⊕ (⊕dmd(∆(M1,M

′
1)⊗K(ξd))) ∼=

∼= n∆(M2,M
′
2)⊕ (⊕dmd(∆(M2,M

′
2)⊗K(ξd)))

and because ∆(Mi,M
′
i) is a sum of algebras over �elds of the form K(ξaj )

while Z(∆(Mi,M
′
i)⊗K(ξd)) contains no such direct summands, it follows

that n∆(M1,M
′
1) ∼= n∆(M2,M

′
2). Hence ∆(M1,M

′
1) ∼= ∆(M2,M

′
2), as

desired.

The converse is straightforward. �

Corollary 3.9. Let L1 and L2 be loops in L2 and K be a �eld whose

characteristic does not divide the order of either of these loops. For 1 = 1, 2,
write Li = Mi × Ai where Mi is 2-loop in L2 and Ai is an abelian group

of odd order. Then KL1
∼= KL2 if and only if K[M1/M

′
1] ∼= K[M2/M

′
2],

∆(M1,M
′
1) ∼= ∆(M2,M

′
2) and KA1

∼= KA2.

Corollary 3.10. Let L1 and L2 be loops in L2 and Q be the �eld of ra-

tionals. For 1 = 1, 2, write Li = Mi × Ai where Mi is 2-loop in L2 and

Ai is an abelian group of odd order. Then QL1
∼= QL2 if and only if

M1/M
′
1
∼= M2/M

′
2 , ∆(M1,M

′
1) ∼= ∆(M2,M

′
2) and A1

∼= A2.
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