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Actions of a subgroup of the modular group

on an imaginary quadratic field

Muhammad Ashiq and Qaiser Mushtaq

Abstract

The imaginary quadratic fields are defined by the set {a + by/—n : a,b € Q} and are
denoted by Q(v/—n), where n is a square-free positive integer. In this paper we have
proved that if o = @ € Q" (v/—n) = {@ :a, “2:",0 € Z, ¢ # 0}, then n does
not change its value in the orbit aG, where G =< u,v : ©®> = v® =1 >. Also we show
that the number of orbits of Q*(y/—n) under the action of G are 2[d(n) + 2d(n + 1) — 6]

and 2[d(n) + 2d(n + 1) — 4] according to n is odd or even, except for n = 3 for which

there are exactly eight orbits. Also, the action of G on Q*(1/—n) is always intransitive.

1. Introduction

It is well known [6] that the modular group PSL(2, Z), where Z is the ring of

integers, is generated by the linear-fractional transformations x : z — _71

and y: 2z — Z;—l and has the presentation < z,y: 22 =y3=1>.

Let v = zyz, and u = y. Then (2)v = % and thus u? = v3 = 1. So the
group G =< u,v > is a proper subgroup of the modular group PSL(2,7)
[1].

The algebraic integer of the form a + by/n, where n is square free, forms
a quadratic field and is denoted by Q(y/n). If n > 0, the field is a called real
quadratic field, and if n < 0, it is called an imaginary quadratic field. The
integers in Q(y/1) are simply called the integers. The integers in Q(y/—1)
are called Gaussian integers, and the integers in Q(y/—3) are called Eisen-
stein integers. The algebraic integers in an arbitrary quadratic field do not
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necessarily have unique factorization. For example, the fields Q(1/—5) and
Q(v/—6) are not uniquely factorable. All other quadratic fields Q(y/n) with
n < 7 are uniquely factorizable.

A number is said to be square free if its prime decomposition contains
no repeated factors. All primes are therefore trivially square free.

Let F' be an extension field of degree two over the field @) of rational
numbers. Then any element x € F — @ is of degree two over Q and is a
primitive element of F. Let F(z) = 2% 4 bz + ¢, where b,c € @Q, be the
minimal polynomial of such an element x € F. Then 2z = —b £ Vb2 — 4c
and so F = Q(v/b? — 4c). Here, since b? — 4c is a rational number % = inﬂ?
with [,m € Z, we obtain F' = Q(\/%) with I,m € Z. In fact it is possible
to write ' = Q(y/n) , where n is a square free integer.

The imaginary quadratic fields are usually denoted by Q(v/—n), where
n is a square free positive integer. We shall denote the subset

{a—i-\/—n_a a+n ceZc#O}
C ) C ) )

by Q*(v/—n). The imaginary quadratic fields are very useful in different
branches of mathematics. For example, [3] the Bianchi groups are the
groups PSL,(O,,), where O, is the ring of integers of the imaginary quadratic
number field Q(y/—n). Also it is known that O,, is an Euclidean ring if and
only if n=1,2,3,7 or 11.

In [2, 4], many properties of Q(y/n) have been discussed. Here we discuss
some fundamental results of G =< u,v : u® = v3 =1 > on Q*(v/—n).

2. Coset diagrams

We use coset diagrams, as defined in [4] and [5], for the group G and study
its action on the projective line over imaginary quadratic fields. The coset
diagrams for the group G are defined as follows. The three cycles of the
transformation « are denoted by three unbroken edges of a triangle per-
muted anti-clockwise by u and the three cycles of the transformation v are
denoted by three broken edges of a triangle permuted anti-clockwise by wv.
Fixed points of u and wv, if they exist, are denoted by heavy dots. This
graph can be interpreted as a coset diagram with the vertices identified
with the cosets of Stab,, (G), the stabilizer of some vertex v; of the graph,
or as 1-skeleton of the cover of the fundamental complex of the presentation
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which corresponds to the subgroup Stab,, (G). Let aG denote the orbit of
a in an action of G on Q*(v/—n).

For instance, in the case of G acting on the projective line over the field
Q*(y/n), a fragment of a coset diagram will look as follows:

(1) If & # 1,0, 00 then of the vertices k, ku, ku? of a triangle, in a coset
diagram for the action of G on any subset of the projective line, one
vertex is negative and two are positive.

(2) If k # —1,0, 00 then of the vertices k, kv, kv? of a triangle, in a coset
diagram for the action of G on any subset of the projective line, one
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vertex is positive and two are negative.

_ atv—n .
'I‘hegrem 1. If o = “2—=" € Q*(v/—n), then n does not change its value
in aG.

Proof. Let a = @ and b = “2% Since (a)u = <L =1 —

1
[0} «

1- a+\‘;jn = b_“t” —. Therefore, the new values of a and ¢ for («)u are

b—a and b respectively. The new value of b for (a)u is = —2a+b+c.
1

-1 _ —c _ —a—ct+v/—n
Now (a)v = 77 = TR T hrersa Therefore the new values of a

and c¢ for (a)v are —a — ¢ and 2a + b + ¢ respectively. The new value of

Cac)? .
% = c. Similarly, we can calculate the new values of
2 2

a,b and c for (a)u?, (a)v?, (@)uv, (a)u?v, (a)vu, (a)uv?, (a)vu? and (a)viu
as follows:

(b—a)?4n
b

b for (a)v is

o a b c
(a)u b—a —2a+b+c b

(a)v —a—c c 2a +b+c
(a)u? c—a c —2a+b+c
(a)v? —a—1b 2a+b+c b
(a)uv a—2b b —4da+4b+c
(a)u?v [ 3a—b—2c| —2a+b+c | —4a+b+4c
()vu a+2b da + b+ 4c c
(a)v®u | 3a+2b+c | da+4b+c 20+b+c
(@)uv? | 3a—2b—c | —4a+4b+c| —2a+b+c
(@)vu? | 3a+b+2c| 2a+b+c | da+b+4c

Table 1

From the above information we see that all the elements of aG are in
Q*(v/—n). That is, n does not change its value in aG. O
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As we know from [5] the real quadratic irrational numbers are fixed
points of the elements of PSL(2,Z) =< 2? = y3 = 1 > except for the
group theoretic conjugates of z,y*! and (2y)". Now we want to see that
when imaginary quadratic numbers are fixed points of the elements of G.

3. Existence of fixed points in Q*(1/—3)

Remark 1. Let (2)u = z. Then 221 = 2 gives 22 — 2 +1 = 0. Thus z =

z

&Tm € Q*(v/—3). Similarly, (z)v = z implies % =2.90,2242+1=0
gives z = %‘/_—3 € Q*(v-3).

Theorem 2. The fized points under the action of G on Q*(\/—n) exist only
if n=3.

Proof. Let g be a linear-fractional transformation in G. Then, (2)g can
be taken as Zjis where ad — bc = 1. Let %ig = z which yields us the
quadratic equation cz? + (d — a)z — b = 0. It has the imaginary roots only
if (d—a)?+4bc <0 or (d+a)? —4(ad — be) < 0 or (a+ d)? < 4. That is,
a+d=0,%+1.

If a+d = 0 then g is an involution. But there is no involution in G.
Now, if a + d = £1 then as (trace(g))? = det(g), order of g will be three
and hence it is conjugate to the linear fractional transformations u*! and
v*!. Since the fixed points of the linear fractional transformations u and
v (by Remark 1) are 1i\2/T3 and 7&2‘/7_3 respectively, therefore, the roots
of the quadratic equation cz? + (d — a)z — b = 0 belong to the imaginary
quadratic field Q*(v/=3). If two elements of G are conjugate, then their
corresponding determinants are also equivalent. O

4. Orbits of Q*(\/—n)

Definition 1. If o = “2=" ¢ Q*(y/=n) is such that ac < 0 then «
is called a totally negative imaginary quadratic number and totally positive
mmaginary quadratic number if ac > 0.

As b = ‘IQJ", therefore, be is always positive. So, b and ¢ have same

sign. Hence an imaginary quadratic number o = 2EY=" € Q*(v—n) is
totally negative if either a < 0 and b,¢ > 0 or a > 0 and b, ¢ < 0. Similarly
= atvon Y—" € Q*(v/—n) is totally positive if either a,b,c > 0 or a,b,c < 0.
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Theorem 3.
(1) If « is a totally negative imaginary quadratic number then (a)u and
(a)u? are both totally positive imaginary quadratic numbers.
(13) If v is a totally positive imaginary quadratic number then (a)v and
(a)v? are both totally negative imaginary quadratic numbers.

Proof. (i) Let v = @ be a totally negative imaginary quadratic num-
ber. Here there are two possibilities: either a < 0 and b,¢ > 0 or a > 0 and
b,c < 0.

Let a < 0 and b, c > 0. We can easily tabulate the following information.

a a b c
()u |b—a | —2a+b+c b
(a@)u® | c—a c —2a+b+c

From the above information, we see that the new values of a, b and c for
(a)u and (a)u? are positive. Therefore, (a)u and (a)u? are totally positive
imaginary quadratic numbers.

Now, let @ > 0 and b,c¢ < 0. Then the new values of a,b and c for
(a)u and (a)u? are negative. Therefore, (a)u and (a)u? are totally positive
imaginary quadratic numbers.

(ii) Let a = @ be a totally positive imaginary quadratic number.
Here there are two possibilities: either a,b,c > 0 or a,b,c < 0.

Let a,b,c > 0. Then one can easily tabulate the following information.

o a b c
(v)v | —a—c c 2a+b+c
(@)v? | —a—b|2a+b+c b

From the above information, we see that the new value of a for (a)v
and (a)v? is negative and the new values of b and ¢ for (a)v and (a)v? are
positive. Therefore, (a)v and («)v

2 are totally negative imaginary quadratic
numbers.

Now, let a, b, ¢ < 0. Then the new value of a for (a)v and (a)v? is positive
and the new values of b and ¢ for (a)v and (a)v? are negative. Therefore,
(a)v and (a)v? are totally negative imaginary quadratic numbers. O

Theorem 4.
(i) Ifa= atyv-n Y—" where ¢ > 0 then the numerator of every element in
aG is also positive.

— atv—n

) Ifa==5=

(i1 where ¢ < 0 then the numerator of every element in
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the orbit aG is also negative.

7

Proof. (i) Since o = % with ¢ > 0, therefore, b is also positive. As
b and c always have the same sign. Using this fact we can easily see from
the information given in Table 1 that every element in aG has positive
numerator.

(74) Since o = @ with ¢ < 0, therefore, b is also negative. As b
and c always have the same sign. Using this fact we can easily see from
the information given in Table 2 that every element in oG has negative

numerator. O

For a = “HY=" ¢ Q*(\/=n), we define ||a| = |a].

Theorem 5.
(1) Let v be a totally negative imaginary quadratic number. Then
[(@)ull > [la]l and |[(a)u?|| > |lall, and
(13) Let « be a totally positive imaginary quadratic number. Then
[(a)v]| > [lall and |[(a)o*|| > lla] -

Proof. (i) Let a be a totally negative imaginary quadratic number. Then
either, a < 0 and b,c > 0 or a > 0 and b,c < 0. Let us take a < 0 and
b,c > 0. Then, by Theorem 3(i) (a)u and (a)u? both are totally positive
imaginary quadratic numbers. Thus, ||(a)u| = |b—a| > |a| = ||la], and
H(oz)uQH = |c—a| >= |a| = ||a||. Similarly, we have the same result for
a>0and b, c<O.

(i) Let a be a totally positive imaginary quadratic number. Then
either, a, b, ¢ > 0 or a, b, ¢ < 0. Let us take a,b,c > 0. Now, using the

information given in Table 1, we can easily see that ||(a)v]| = |—a—¢| =
la+¢| > |a| = ||| and H(a)vQH =|-a—0bl =|a+0b| > |a| = || . Simi-
larly, we have the same result for a,b,c < 0. U

Theorem 6. Let o be a totally positive or negative imaginary quadratic

number. Then there exists a sequence a = aq, Qa, ..., .y such that o; is al-
ternately totally negative and totally positive number fori =1,2,3,...,m—1
and ||apm| =0 or 1.

Proof. Let a = a1 be a totally positive imaginary quadratic number. Then,
by Theorem 3(i), (a)u or (a)u? is a totally negative imaginary quadratic
number. If (a)u is a totally negative imaginary quadratic number, then put
as = (a)u and by Theorem 5(i), ||(a1)|| > [Jaz||. Now if (a)u? is a totally
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negative imaginary quadratic number, then put as = (a)u?.

we have also |[(aq)]| > ||z

Now if (a)u a is totally negative imaginary quadratic number, then
(a)uv or (a)uv? is a totally positive imaginary quadratic number. If (a)uv
is a totally positive imaginary quadratic number, put (a)uv = a3 and so by
Theorem 5(ii) || (a)uv|| < ||[(@)u| < [Ja| or |las]| < ||az|| < ||a1]| and contin-
uing in this way we obtain an alternate sequence aq, aa, ..., a, of totally
positive and totally negative numbers such that ||aq| > [|az| > |las|| >
... > |lam]|- Since |Jai]|, [[az]|, |asl|, ..., |[[am] is a decreasing sequence of
non negative integers, therefore, it must terminate and that happens only
when ultimately we reach at an imaginary quadratic number a,, = @
such that ||a.,|| = |a’| =0 or 1. It can be shown diagrammatically as:

“-. r"l N f
(GL')M vgzal G‘.’:gl‘- :
o Y
2 _
Y eu’ = oy
JJ \\
\\.

In this case

Y 552
. .
- -
. -

e = oy o _{ , . _\<
_________ (e Jv [T

Theorem 7. There are exactly eight orbits of Q*(v/—n) under the action
of the group G when n = 3.

Proof. As we have seen in Theorem 6, we get a decreasing sequence of non
negative integers |||, |lazll,||asll,--.,|lam| such that [|ai|| > |az| >
llas|l > ... > |lam|| which must terminate and that happens only when
ultimately we reach at an imaginary quadratic number o, = @ such
that ||y, || = |a'| =0 or 1.

If apy, = &\Q/TS or 7&2*/7_3 then because % are the fixed points
of u and v, therefore, we cannot reach at an imaginary quadratic number

whose norm is equal to zero. So in this case there are four orbits, namely
1+vV/=3 ~ 1—vV/=3,~ —14+/=3 -1-/=3
+2 G, ——G, +2 G and —=—G of Q*(v/—-3).
Now, if we reach at an imaginary quadratic number «,, =

that |la, || = |a/| = 0 then ay, = Y=3 Since ay = Y2 € Q*(v/-3),

c c

therefore, ¢ = 1, £3. That is, ay, = Y72, ¥o2, ¥=3 and 2,

al+v—=3 V=3 Such
C
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V=3

Now, if a = ¥3=, we can easily calculate the new values of a, b, and ¢
as:
« 0 |31
(u | 3 |43
()v | —1]14
(@u?] 1 [1]4
(a)v? | =343

Hence from the above table, we see that /—3, 1+F and _1+4‘/jg lie

in aG.
Similarly, if o = @f, then —/—3, 7”7—}4/?3 and @ lie in aG, if
V=3

a = Y=, then @, H\l/j?’ and 71+1‘/j3 lie in aG, and if a = @;, then
@, 1+j/1j3 and —142\1/?3 lie in aG.

Thus, @, @, @, and @; lie in four different orbits. Hence there
are exactly eight orbits of Q*(v/—n) for n = 3. O

Remark 2.

1. Ifa= @ € Q*(v/—n) then Stab,(G) is non-trivial only if n = 3.
Particularly, if o = =3 then Staba(G) = Cs.

B

_ v—=3
_1 >

2. In Q*(v/—3), there are four elements of norm zero, namely 4=,
3 V=3
-3

ﬁ

Y3 and

3. In Q*(v/—3), there are twelve elements of norm one, namely % V=3
+1EyV=3 g £1EV/3
==, and =F—.

Theorem 8. Let o € Q*(\/—n), where n # 3. Then
(1) if a« =+/—n, then \/—n, liﬁ and _1:ﬁ lie in aG,
(i) if a= @, then Y= @ and _1%\/?” lie in oG,

n

(ii1) if « = Y5, where n is even and ly = 5, then o is the only element
of norm zero in aG,
(iv) if a =¥, where k1 = = and ny # 1, 2 or n, then « is the only

ny
element of norm zero in aG, and

(v) if o= 1=

, where 1 +n =cico and c1 #1 orn+ 1, then « is
the only element of norm one in aG.

Proof. (i) If @ = \/—n, then, we can easily tabulate the following informa-
tion.
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e} 0 n 1
(u | n | n+1 n
()v | —1 1 n+1

N N
—_

()u 1 n+1
(a)v® | —n | n+1 n

Hence from the above table, we see that /—n, 1J;+V T and _1;11_" lie
in aG.

(1) If o« = ¥, then we can calculate the new values of a, b, and ¢ as:

o 0 1 n
()u | 1 |n+1 1
(v | —n| n |n+1
(@)u® | n n n+1
(@)v? | =1 | n+1 1

Hence from the above table, we see that ¥, lJ”l — and 71+1V — lie
in aG.

(ii1) If o = Y57, then we can calculate the new values of a, b, and c as:

« 0 ll 2
a)u ll ll + 2 ll
o | —2 2 L +2
(a)u® | 2 2 | h+2
2l | h+2 I
Hence from the above table, we see that « is the only element of norm

zero in aG.
(iv) Let o = ¥, where k; = = and n; # 1 or n, then
1 ni

« 0 kl nq
(@)u | k1 | ni+k k1
() | =g ny ny + k1
(@)u? | m ny ny + k1
(Oé)U2 —k1 | 1+ Kk k1

Hence from the above table, we see that « is the only element of norm
zero in aG.

(v) Let a = @, where 1 +n = cycp and ¢; # 1 or n + 1, then the
new values of a, b, and ¢ can be calculated as:
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« 1 Co c1
(Wu | ca—1 | =24c1+c2 o
() | =1—¢1 c1 24c1+co
(@)u® | ¢ —1 c1 2+ ¢+
(@)v? | —1—ca | 24c1+eo co

If ¢; = 2, then H(a)uQH = 1 implies that (a)u? = % If q = -2,
then ||(a)v]| = 1 implies that (a)v = %ﬁn That is, 1+‘2/j" and Lo/on

(")

lie in the same orbit, and 1+_V27" and IJE;J:; lie in the same orbit.
(5=

Now if ¢; #£ 1,2 or "Tﬂ,n—i— 1, that is, co #n+1, ”T‘H or 1, then Hcvl_"
lie in aG.

O

Example 1. By using Theorem 8, the orbits of Q*(v/—14) are:

() V=14, By ang ==l e iy /T4G,
(i) Y=H, BVl g =yl g 4y Yo
(i) Yott, VI gng ZlVEU e gy Vol
(iv) \/_%, H\_/;ﬁ and 71+_—‘{7T4 lie in @G,
(v) @ lies in @G,
(vi) @ lies in ‘/:?G,
(vit) @ lies in @G,
(vii) Y=H Ties in Y=HG,
(ix) @ lies in HT\/TMG,
(z) 71%\/74 lies in A%MG,
(x1) @ lies in @G,
(wid) —HELH fjeg in vl
(x1i7) L‘é__m lies in @G,.
(ziv) _HT‘/__M lies in _1%‘/__14(;,

(zv) avesr V5_14 lies in V14 V5_14G7 and
(zvi) =M jes in G
So, there are sixteen orbits of Q*(y/—n).

Remark 3.
1. fa= @ € Q*(v/—n), then aG contains the conjugates of the ele-
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and @ = lie in two different

ments of aG. Since o = V" o =
orbits, therefore, oG and @G are always disjoint.

2. The elements of norm zero and one in Q*(v/—n), play a vital role to
identify the orbits of Q*(1/—n).

Definition 2. If n is a positive integer then d(n) denotes the arithmetic
function defined by the number of positive divisors of n.

For example, d(1) = 1,d(2) = 2,d(3) = 2,d(4) = 3,d(5) = 2 and
d(6) = 4.

Theorem 9. If n # 3, then the total number of orbits of Q*(v/—n) under
the action of G are:

(7) 2[d(n)+2d(n+ 1) — 6] if n is odd, and

(73) 2[d(n)+2d(n+ 1) —4] if n is even.

Proof. First suppose that n is odd, that is n + 1 is even. Let the divisors
of n are +1, £ny, ££no, *+,...,+n and the divisors of n + 1 are +1, £2,
+mq, tmeo, £, ..., i@, +(n+1). Then by Theorem 8(i), there exist two
orbits of @*(y/—n) corresponding to the divisors £1 of n and +(n + 1) of
n + 1. By Theorem 8(i7), there exist two orbits of Q*(y/—n) corresponding
to the divisors +n of n and +1 of n + 1. By Theorem 8(v), there exists
four orbits of @*(v/—n) corresponding to the divisors £2, (%) of n + 1.
Now we are left with 2d(n) — 4 and 4d(n + 1) — 16. Thus total orbits are
2d(n) —4+4d(n+1)—16+8 = 2d(n)+4d(n+1)—12 = 2[d(n)+2d(n+1)—6).

Now if n is even, then the total orbits are [2d(n)—4]+[4d(n+1)—8]+4 =
2d(n) +4d(n+1) — 8 = 2[d(n) + 2d(n + 1) — 4]. O

Example 2. Now, by using Theorem 9,
(i) the orbits of Q*(y/—14) are:
2[d(n) +2d(n+ 1) — 4] = 2[d(14) + 2d(15) — 4] = 2[4 4+ 8 — 4] = 16,
and
(ii) the orbits of Q*(v/—15) are:
2[d(n) +2d(n+ 1) — 6] = 2[d(15) + 2d(16) — 6] = 2[4+ 10— 6] = 16.

Theorem 10. There are 2d(n) elements of Q*(/—n) of norm zero under
the action of G.

Proof. As we have seen in Theorem 6, we get a decreasing sequence of non-
negative integers ||aq]|, |lag ||, ||las ||, - - -, ||am || such that ||ag || > ||ag || >
llas || > ... > ||au, || which must terminate and that happens only when
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ultimately we reach at an imaginary quadratic number a,, = % V=" such
that |l || = |a/| = 0. Thus oy, = Y=, Since a,, = Y= € Q*(v/—n),
therefore, ¢ must be a divisor of n. Hence there are 2d(n) elements of

Q*(v/—n) of norm zero under the action of G. O

Theorem 11. There are 4d(n+1) elements of Q*(v/—n) of norm one under
the action of G.

Proof. As we have seen in Theorem 6, there exists a decreasing sequence

of non-negative integers ||a1]|,||az ||, [|as ||, ..., [[am || such that ||aq || >
|l || > [|as || > ... > ||am || which must terminate and that happens only
when ultimately we reach at an imaginary quadratic number a,,, = @
such that ||ay, | = |a/| = 1. Then a,, = il%ﬁ, where b = “2% = Ln
that is, ¢ must be a divisor of n 4 1. Hence there are 4d(n + 1) elements of
Q*(v/—n) of norm one under the action of G. O

Corollary. The action of G on Q*(\/—n) is intransitive.

Proof. If n is even, then the minimum value of n in Q*(v/—n) is two. So,
by Theorem 9, the total number of orbits are 2[d(n) + 2d(n + 1) — 4] =
2[2 4+ 2(2) — 4] = 4. So, the action of G on Q*(v/—n) must be intransitive.

Now, if n is odd, then the minimum value of n in Q*(y/—n) is five, when
n # 3. So, by Theorem 10, the total number of orbits are 2[d(n) + 2d(n +
1) —6] = 2[2+2(4) — 6] = 8. So, the action of G on Q*(y/—n) is intransitive.

According to Theorem 7, there are exactly eight orbits of Q*(y/—n)
when n = 3 under the action of the group G. Hence the proof. O
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