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On primal ideals over semigroups

Shahabaddin Ebrahimi Atani and Ahmad Youse�an Darani

Abstract

Let S be a commutative cancellation torsion-free additive semigroup with identity 0 and
let S 6= {0}. This paper is devoted to study some properties of primal ideals and quasi-
primary ideals of the semigroup S. First, a number of results concerning of these ideals
are given. Second, we characterize primal ideals and quasi-primary ideals of a Prüfer
semigroup and show that in such semigroup, the three concepts: primary, quasi-primary,
and primal coincide.

1. Introduction

Throughout this paper S will be a commutative cancellation torsion-free
additive semigroup with identity 0 and let S 6= {0}. We will study the
structure of primal ideals and quasi-primary ideals of S. Our interest is
motivated by the work [2].

Fuchs in [1] introduced the concept of a primal ideal, where a proper
ideal I of S is said to be primal if the elements of S which are not prime to
I form an ideal (see section 3). Fuchs and Mosteig proved in [2] that in a
Prüfer domain of �nite character every non-zero ideal is the intersection of
a �nite number of primal ideals, and moreover, the P -primal ideals form a
semigroup under ideal multiplication. A similar result is established for de-
composition into the intersection (even into the products) of quasi-primary
ideals. The purpose of this paper is to explore some basic facts of these
class of ideals of a semigroup. In the second section we characterize the
semigroups in which every ideal is prime and prove that a semigroup is a
group if and only if every its proper ideal is prime. We show also that ev-
ery ideal over a Prüfer semigroup is quasi-primary and characterize primal
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ideals of a Prüfer semigroup. Connection between the primal ideals, the
quasi-primary and the primary ideals of such semigroups are studied too.

Before we state some results let us introduce some notation and termi-
nologies. Let S be a semigroup. Then G = {a−b : a, b ∈ S} is a torsion-free
ablian group with respect to the addition and S is a subsemigroup of G.
G is called the quotient group of S. Any semigroup T between S and G is
called an oversemigroup of S (see [3]).

By an ideal of S we mean a non-empty subset I of S such that for all
a ∈ I and for all b ∈ S we have a + b ∈ I, that is, I + S = I. Thus for
x ∈ S, x + S = {x + y : y ∈ S} is the principal ideal generated by x. If
I, J are ideals of S, then I + J = (I + S) + (J + S) = (I + J) + S is an
ideal of S too. For a ∈ S and an ideal I of S, by a + I, we mean the sum
a + I = (a + S) + (I + S), which is an ideal of S. A proper ideal I of a
semigroup S is called maximal if there does not exist an ideal J of S with
I ⊂ J ⊂ S, where ⊂ denotes the strict inclusion. An element a ∈ S is
called a unit if a + b = 0 for some b ∈ S. If U(S) is the set of units in S
and 0 ∈ U(S), then U(S) is a subgroup of G and M = S − U(S) 6= ∅ is a
maximal ideal of S. A prime ideal in a semigroup S is any proper ideal P
of S such that for a, b ∈ S a + b ∈ P implies either a ∈ P or b ∈ P . The
maximal ideal is a prime ideal (see [3]).

Let I be an ideal of S. The set

rad(I) = {a ∈ S : na ∈ I for some positive integer n}

is an ideal of S. It is called the radical of I. A proper ideal I of S is primary

if for a, b ∈ S a + b ∈ I implies either a ∈ I or b ∈ rad(I). If I is primary,
then P = rad(I) is a prime ideal of S and I is called a P -primary ideal of
S. The set {a ∈ S : a + J ⊆ I}, where I, J are ideals, is denoted by (I : J).

A non-empty subset T of a semigroup S is called an additive system of
S if a, b ∈ T implies a + b ∈ T and 0 ∈ T . ST = {s − t : s ∈ S, t ∈ T} is
an oversemigroup of S which is called the quotient semigroup of S. If P is
a prime ideal of S, then T = S − P is an additive system of S. In this case
the quotient semigroup ST is denoted by SP .

Throughout this paper we shall assume unless otherwise stated, that S
is a semigroup with the maximal ideal M = S − U(S) 6= ∅.

Let S be a semigroup with quotient group G. We say that S is a
valuation semigroup if g ∈ S or −g ∈ S for each g ∈ G, so its ideals are
linearly ordered by inclusion (see [3, Lemma 4]). We say that S is a Prüfer

semigroup if SP is a valuation semigroup for every prime ideal P of S. An
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ideal of a semigroups S is irreducible if, for ideals J and K of S, I = J ∩K
implies that either I = J or I = K.

2. Quasi-primary ideals

An ideal of S is called quasi-primary if its radical is a prime ideal of S.

Lemma 2.1. Let I be an ideal of a semigroup S. Then:

(i) if I contains a unit of S, then I = S,

(ii) S is a subgroup of G if and only if S has exactly one ideal.

Proof. (i) Let a be a unit of S such that a ∈ I. Then a + b = 0 for some
b ∈ S, so 0 = a + b ∈ I + S = I. If z ∈ S, then z = 0 + z ∈ I + S = I.
Therefore I = S.

(ii) Let S be a subgroup of G and let I be an ideal of S. Then there
exists a ∈ I such that a is a unit of S; hence I = S by (i). Conversely, it
is enough to show that every element of S is a unit. Suppose that c ∈ S.
Then c + S 6= ∅ is an ideal of S, so c + S = S; whence c + d = 0 for some
d ∈ S. It is easy to see that S is a subgroup of G.

Theorem 2.2. Let S be a semigroup. Then S is a subgroup of G if and

only if every proper ideal of S is prime.

Proof. If S is a subgroup of G, then the result is clear. Conversely, let a
be a non-zero and non-unit element of S. By assumption, a + a + S = I,
where I is prime, and so a+a ∈ I implies a ∈ I. Thus a = a+0 = a+a+ b
for some b ∈ S, and since S is a cancellation semigroup, we can cancel a to
obtain a + b = 0, showing that a is unit, as required.

Lemma 2.3. Let I, J and K be ideals of a semigroup S. Then:

(i) I = (I + SM ) ∩ S,

(ii) K = I ∩ J if and only if K + SM = (I + SM ) ∩ (J + SM ).

Proof. (i) Since I ⊆ (I + SM ) ∩ S is trivial, we will prove the reverse
inclusion. Let u ∈ (I + SM ) ∩ S. There exist a ∈ I and t ∈ S − M such
that u = a − t, so u + t = a ∈ I and t + b = 0 for some b ∈ S; hence
u = u + t + b ∈ I + S = I, as required.

(ii) Suppose �rst that K = I∩J . Clearly, K+SM ⊆ (I+SM )∩(J+SM ).
For the reverse inclusion, assume that z ∈ (I +SM )∩ (J +SM ). Then there
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are elements a ∈ I, b ∈ J and t, u ∈ S −M such that z = a− t = b− u, so
a + u = (a− t) + u + t = (b− u) + u + t = b + t ∈ I ∩ J since t, u are units
of S; hence z = a− t = (a + u)− (t + u) ∈ K + SM , as needed. The reverse
implication follows from (i).

Lemma 2.4. For ideals I and J of a semigroup S the following statements

hold:

(i) rad(I + J) = rad(I) ∩ rad(J) = rad(I ∩ J). Moreover, I + J = S

if and only if rad(I) + rad(J) = S.

(ii) If N is an additive system of S, then I + SN = SN if and only if

I ∩N 6= ∅.
(iii) If N is an additive system of S, then rad(I + SN ) = rad(I) + SN .

Proof. (i) Is straightforward.

(ii) If I + SN = SN , then 0 ∈ I + SN , so 0 = a− t for some a ∈ I and
t ∈ N ; hence a = t ∈ I ∩N . Conversely, assume that u ∈ I ∩N . As u is a
unit of SN , I + SN = SN by Lemma 2.1.

(iii) Since rad(I) + SN ⊆ rad(I + SN ) is trivial, we will prove the
reverse inclusion. Suppose that z ∈ rad(I+SN ). Then there exist a positive
integer n such that nz ∈ I + SN , so nz = a − t for some a ∈ I, t ∈ N .
As n(z + t) = a + (n − 1)t ∈ I, we get z + t ∈ rad(I). It follows that
z = z + t− t ∈ rad(I) + SN , as required.

Lemma 2.5. Let I be an ideal of S with rad(I) = M . Then I is M -pri-

mary.

Proof. Since I ⊆ M 6= S, an ideal I is proper. Let a, b ∈ S be such that
a + b ∈ I but b /∈ rad(I). But M is maximal and b /∈ M , so must be
M + (b + S) = S. Then from Lemma 2.4 it follows I + (b + S) = S, i.e.,
0 = c + (b + s) for some c ∈ I, s ∈ S. Therefore, we have a = a + 0 =
a + b + c + s ∈ I + S = I, as needed.

Proposition 2.6. Let P be a prime ideal of a semigroup S, and let I
be a quasi-primary ideal of SP with a prime radical Q. Then I ∩ S is a

quasi-primary ideal of S with a prime radical Q ∩ S.

Proof. Since Q is a prime ideal of SP , Q′ = Q ∩ S is a prime ideal of S
with Q′ ⊆ P and Q′ + SP = Q by [3, Proposition 2], so all that remains
to be veri�ed that Q′ is the radical of I ∩ S. Let a ∈ rad(I ∩ S). Then
na ∈ I for some positive integer n; hence a ∈ Q. Thus, a ∈ Q′. Conversely,
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if b ∈ Q′, then mb ∈ I ∩ S for some positive integer m; so b ∈ rad(I ∩ S),
as required.

Proposition 2.7. Let I be a quasi-primary ideal of a semigroup S with a

prime radical P . Then I + SP is a primary ideal (so quasi-primary) of SP .

In particular, (I + SP ) ∩ S is a quasi-primary ideal of S.

Proof. By Lemma 2.4 we have rad(I+SP ) = P +SP , so it is a maximal ideal
of SP by [3, Corollary 3]. Now Lemma 2.5 shows that I + SP is primary.
The last claim follows from Proposition 2.6.

Proposition 2.8. Every ideal of a valuation semigroup S is quasi-primary.

Proof. Let I be an ideal of S with radical P . Let a, b ∈ S such that a+b ∈ P .
Then there exists a positive integer n such that n(a + b) ∈ I. Since S is a
valuation semigroup, either a+S ⊆ b+S or b+S ⊆ a+S. We may assume
that a + S ⊆ b + S. Then there is an element c ∈ S such that a = b + c, so
2na = na + nb + nc ∈ I + S = I; hence a ∈ P .

Theorem 2.9. Every ideal of a Prüfer semigroup S is quasi-primary.

Proof. Let I be an ideal of S. By Theorem 2.8, the ideal I + SM of the
valuation semigroup SM is quasi-primary; hence Proposition 2.6 and Lemma
2.3 imply that I = (I + SM ) ∩ S is quasi-primary.

3. Primal ideals

An element s ∈ S is called prime to I if (r + s) ∈ I (r ∈ S) implies that
r ∈ I, that is, (I : s) = (I : (s)) = I. An ideal I of S is called primal if the
elements of S that are not prime to I form an ideal (see [1]).

Lemma 3.1. Let I be an ideal of a semigroup S and let P be the set of

elements of S which are not prime to I. If P is an ideal of S, then P is

prime.

Proof. Let a, b ∈ S − P . Then (I : a) = (I : b) = I. If s ∈ (I : a + b),
then a + b + s ∈ I, whence s + a ∈ (I : b) = I. Therefore s ∈ (I : a) = I,
consequently (I : a + b) = I. Thus a + b /∈ P.
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If I is a primal ideal of S, then, by Lemma 3.1, P is a prime ideal of
S called the adjoint prime ideal of I. In this case we also say that I is a
P -primal ideal.

Theorem 3.2. For an ideal I of a semigroup S, the following statements

are equivalent.

(i) I is primal with the adjoint prime ideal P ,

(ii) If a + b ∈ I and b /∈ I, then a ∈ P and conversely, for every a ∈ P
there exists an element b ∈ S − I such that a + b ∈ I.

Proof. (i) ⇒ (ii) Let a + b ∈ I with b /∈ I. Then b ∈ (I : a) − I; hence
a ∈ P . If a ∈ P , then I ⊂ (I : a) because I is primal. So, there is an
element x of (I : a) which is not in I. Thus a + x ∈ I and x /∈ I.

(ii) ⇒ (i) It is enough to show that P + S ⊆ P . Let x + y ∈ P + S
where x ∈ P, y ∈ S. Then there exists c /∈ I such that x + c ∈ I by (ii),
and hence x + y + c ∈ I with c /∈ I. Thus x + y ∈ P by (ii).

Lemma 3.3 Let Q be a P -primary ideal of a semigroup S, and let a ∈ S.

(i) If a ∈ Q, then (Q : a) = S.

(ii) If a /∈ Q, then (Q : a) is P -primary.

(iii) If a /∈ P , then (Q : a) = Q.

Proof. The proof is straightforward.

Proposition 3.4. A P -primary ideal is primal.

Proof. It is enough to show that the set of elements of S which are not
prime to Q is just P . Suppose that s is such element of S which is not
prime to Q. Then Q ⊂ (Q : s). Hence there exists a ∈ (Q : s) with a /∈ Q
and a+s ∈ Q. Therefore, s ∈ P because Q is primary. Conversely, if s /∈ P ,
then (Q : s) = Q by Lemma 3.3.

Proposition 3.5. Let I be a Q-primal ideal of a semigroup S, and let P
be a prime ideal of S. Then:

(i) I = (I + SP ) ∩ S for Q ⊆ P ,

(ii) I ⊂ (I + SP ) ∩ S for Q * P .

Proof. (i) Clearly, I ⊆ (I + SP ) ∩ S. For x ∈ (I + SP ) ∩ S we have
x = c − d ∈ S for some c ∈ I and d /∈ P . Therefore, x + d = c ∈ I. As
d /∈ Q, d is prime to I; hence x ∈ I.
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(ii) Since Q * P , there is y ∈ Q such that y /∈ P . So y + u ∈ I for
some u /∈ I by Theorem 3.2. Then u = (y + u) − y ∈ (I + SP ) ∩ S. But
u /∈ I, so I ⊂ (I + SP ) ∩ I.

Corollary 3.6. Let I be a Q-primal ideal of a semigroup S, and let T be a

quotient semigroup of S. Then either I = (I + T ) ∩ S or I ⊂ (I + T ) ∩ S.

Proof. By [3, Proposition 2], T = SP for some prime ideal P of S. The rest
follows from Proposition 3.5.

Proposition 3.7. Let P be a prime ideal of a semigroup S, and let I be

a Q-primal ideal of SP . Then I ∩ S is a primal ideal of S with the adjoint

prime ideal Q ∩ S.

Proof. As Q is prime ideal of SP , by [3, Proposition 2], Q′ = Q ∩ S is a
prime ideal of S with Q′ ⊆ P and Q′ +SP = Q. To prove that Q′ is exactly
the set of elements non-prime to I ∩ S let z /∈ Q ∩ S. Then z /∈ Q, so
(I :SP

z) = I. Thus (I ∩ S : z) = I ∩ S, whence z is prime to I ∩ S. If
z ∈ Q ∩ S, then z ∈ Q, so there exists u ∈ SP with z + u ∈ I and u /∈ I by
Theorem 3.2. We can write u = x− y for some x ∈ S, y ∈ S − P . If x ∈ I,
then x = u+y ∈ I with y /∈ Q, so u ∈ I, a contradiction. So we can assume
that x /∈ I. Since z + u ∈ I implies z + x ∈ I ∩ S, we get x ∈ (I ∩ S : z).
But x /∈ I, so z is not prime to I ∩ S.

Corollary 3.8. Let I be a Q-primal ideal of a quotient semigroup T of S.
Then I ∩ S is a primal ideal of S with the adjoint prime ideal Q ∩ S.

Proof. Follows from [3, Proposition 2] and Proposition 3.7.

Proposition 3.9. Let I be an ideal of a semigroup S such that (I : a) = P
is a prime ideal of S for some a ∈ S − I. Then (I + SP ) ∩ S is a P -primal

ideal of S.

Proof. Let J = (I + SP ) ∩ S. First, we show that (J : a) = P . If t ∈ P =
(I : a), then t + a ∈ I ⊆ J ; hence t ∈ (J : a). For the reverse inclusion,
assume that u ∈ (J : a), so u + a = c− d ∈ J for some c ∈ I, d /∈ P . Thus
u + a + d = c ∈ I. Consequently u + d ∈ (I : a) = P. So, u ∈ P since P is
prime. As P 6= S, we get a /∈ J . Therefore, in P no elements prime to J .

Let us show that every b /∈ P is prime to J . Clearly, J ⊆ (J : b). To
prove (J : b) ⊆ J , assume that c ∈ (J : b), so c + b = e − f ∈ I for some
e ∈ I, f /∈ P ; hence c = e− (b+f) ∈ J since (b+f) /∈ P . Thus, (J : b) ⊆ J ,
which completes the proof.
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Lemma 3.10. Every irreducible ideal of a semigroup S is primal.

Proof. Let I be an irreducible ideal of S. Assume that P is the set of
elements of S which are not prime to I. To prove that P + S ⊆ P let
a+s ∈ P +S where a ∈ P , s ∈ S. Then I ⊂ (I : a) because a ∈ P . Clearly,
I ⊆ (I : a) ∩ (I : s) ⊆ (I : a + s). If I = (I : a) ∩ (I : s), then I = (I : s)
since I is irreducible. Let t ∈ (I : a + s). Then t + a ∈ (I : s) = I, so
t ∈ (I : a); hence I ⊂ (I : a) = (I : a+ s). If I 6= (I : a)∩ (I : s), then again
I ⊂ (I : a + s), that is, a + s is not prime to I. Thus a + s ∈ P .

Proposition 3.11. An ideal I of a Prüfer semigroup is irreducible if and

only if it is primal.

Proof. By Lemma 3.10, it is su�cient to show that if I is P -primal, then I is
irreducible. If I = J∩K for ideals J, K, then I+SM = (J +SM )∩(K+SM )
by Lemma 2.3. Since SM is a valuation semigroup, either I +SM = J +SM

or I + SM = K + SM . Because M contains P then by Proposition 3.5
I + SM = J + SM gives I = (I + SM ) ∩ S = (J + SM ) ∩ S. Hence
J ⊆ (J + SM ) ∩ S = I. The case I + SM = K + SM is similar. So, I is
irreducible.

Proposition 3.12. An ideal I of a valuation semigroup S is a primal ideal

of S with the adjoint prime ideal P = {a ∈ S : (a + S) + I ⊂ I}.

Proof. Let I = J ∩K for ideals J,K of S. Then either J ⊆ K or K ⊆ J
because S is a valuation semigroup. So either I = J or I = K. Therefore,
I is irreducible, and hence I is primal by Proposition 3.10. Let us show
that P is an ideal of S. Let a + s ∈ P + S where a ∈ P , s ∈ S. Then
(a+S)+I ⊂ I; hence (a+s)+S +I ⊆ (a+S)+I ⊂ I, so a+s ∈ P . Thus,
P is an ideal of S. To prove that P is prime let x + y ∈ P with x /∈ P .
Then (x+S)+ I = I and (y +S)+ I = (x+ y +S)+ I ⊂ I, whence y ∈ P .

To prove that P is the set of elements of S which are not prime to I
consider u ∈ P. Then (u + S) + I ⊂ I ⊆ (I : u). Suppose that (I : u) = I.
If v ∈ (I : u) = I, then u+ v ∈ I, so v ∈ (u+S)+ I; hence I = (u+S)+ I,
a contradiction.

Corollary 3.13. Every ideal of a oversemigroup of a valuation semigroup

is primal.

Proof. This follows from [3, Lemma 4] and Proposition 2.12.
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Theorem 3.14. Every ideal of a Prüfer semigroup is primal.

Proof. If I is an ideal of a Prüfer semigroup S, then I = (I + SM ) ∩ S
by Lemma 2.3, so, by Proposition 3.12, the ideal I + SM of SM is primal.
Proposition 3.7 completes the proof.

Corollary 3.15 An ideal of a Prüfer semigroup is primal (resp. quasi-

primary) if and only if it is primary.

Proof. Follows from Theorem 2.9 and Theorem 3.14.
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