Quasigroups and Related Systems 14 (2006), 157 — 162

Finite hexagonal quasigroups
Mea Bombardelli

Abstract

In this article some examples of finite hexagonal (idempotent, medial and semisymmetric)
quasigroups are given. The main goal is to determine the set of possible orders of finite

hexagonal quasigroups.

1. Introduction

Hexagonal quasigroups are defined by V. Volenec in [1] as follows:

Definition. A quasigroup (Q, -) is said to be hezagonal if it is idempotent,
medial and semisymmetric, i.e., if the equalities

a-a=a,
ab-cd=ac-bd,

a-ba=ab-a=0

hold for all its elements.
Study of hexagonal quasigroups in [1| and [2] is motivated by

Example 1. On the set C of complex numbers the operation * is defined

by:
= 1-iv3 a+ 1+iv3 b.
2 2
If we identify the complex numbers with the points of the Euclidean
plane, the points a, b and a * b are the vertices of a positively oriented
equilateral triangle.
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In this paper, we’ll give some examples of finite hexagonal quasigroups,
and answer the question: for which positive integers n there exists a hexag-
onal quasigroup of order n?

We’ll need some elementary results.

Lemma 1. Let (Q1,1), (Q2,2)s- -, (Qn,n) be hexagonal quasigroups, and
let o be the operation defined on Q = Q1 X Q2 X ... X Qn by:

(1,22, ..., Tn) 0 (Y1, Y2, -, Un) = (X1 1 Y1, L2292, -+ -, Tn n Yn)-

Then (Q, o) is a hexagonal quasigroup.

Therefore, if a hexagonal quasigroup of order m exists, then there exists
hexagonal quasigroup of order m™, for each n € N. If hexagonal quasigroups
of orders ki, ko,. . . ky, exist, then a hexagonal quasigroup of order kiks - - -k,
exists.

A subquasigroup of the quasigroup (Q,-) is any subset S C @ such
that (S,-) is a quasigroup. Obviously, any subquasigroup of a hexagonal
quasigroup is hexagonal.

For any quasigroup (@, -) and its subset A, the smallest quasigroup that
contains A is the intersection of all subquasigroups of @) that contain A.

Example 2. Let (D,*) be the smallest subquasigroup of (C,x*) (as in
Example 1) that contains 0 and 1. D can be represent by triangular lattice
with the same operation as in (C,x*): the product of two points a and b is
the third vertex of regular triangle with vertices a and b.

If ¢ = % + i@, then D = {z + qy : =,y € Z}, and it can be identified
with the set {(x,y) : z,y € Z}. It’s easy to verify:
(z1,91) * (22, 92) = (1 — @) (21 + qy1) + q(z2 + qy2)
= (z1+y1 — Y2, 22 + Y2 — 71).
We obtained an important example of hexagonal quasigroup:

Theorem 1. Let (G,+) be a commutative group. The set G x G with the
operation

(z1,91) - (72,92) = (1 + y1 — Y2, 72 + Y2 — 1)
18 a hexagonal quasigroup.

Therefore, a hexagonal quasigroup of order n? exists for any n € N.

The following characterization of hexagonal quasigroups was given in

[1].
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Theorem 2. A hezagonal quasigroup on the set Q exists if and only if on
the same set exists commutative group with automorphism @ satisfying

(po@)(a) —pla) +a=0 (1)
forall a € Q.
Given such commutative group (@, +), the quasigroup is obtained by
a-b=a+ p(b-a). (2)
Note that from (1) it follows
P’(2) = p(p(x) —x) = p o p(z) — () = (p(z) — 2) — p(z) = —x

and f(x) = z for all € Q.

2. Commutative hexagonal quasigroups

Let us use the Theorem 2 to study commutative hexagonal quasigroups.
We wish to find all commutative groups ) which have an automorphism ¢
that satisfies (1), with additional condition that the operation - defined by
(2) is commutative. In other words,

a+pb—a)=b+ pla—0>),
pb—a)—pla—b)=b—a

for all a,b € Q. Therefore

plz) +o(z) == (3)

must hold for all x € Q.
From (1) it follows ¢(p(x)) + p(e(z)) + * + x = @(x) + ¢(x) and
using (3) we obtain ¢(z) + =+ z = p(z) + ¢(x) = z. It follows

ox)+x=0 and o(r) =2+ .

Therefore, x + x + = = 0 for all z € @, i.e., each element of the group G
is of order 3 or 1. The only finite groups which satisfy that condition are
(Z3)™, and the group of order 1.
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On the other hand, if z + x + x = 0, Vz € @, then p(z) =z +2 = —=x
is an automorphism that satisfies (1), and the operation defined by (2) is
commutative.

We have proved:

Theorem 3. The only finite commutative hexagonal quasigroups with more
than one element, are the quasigroups obtained in the way described in The-
orem 2 from the group (Z3)"™, for some n € N.

From each group (Z3)™ we obtain unique hexagonal quasigroup of order
3".

Example 3. From (Z3)? we obtain hexagonal quasigroup of order 9:

W UTO ~1 00O R N+
LW 00 O ~1 N O |
— N O R Ul W ~] 00 O W
O =N W UL =1 00 i
O Ot W 00 O =1t
00 O R N O R UlwW o
100 O — MW R Ol =T
0O~ O R UlwW

0O~ O UL i WO N —= O
= Ot W ~J 00 O — N OO

3. Cyclic groups

The automorphism ¢(x) = kx (k is relatively prime to n) of the group Z,
satisfies (1) if and only if k% — k + 1 = 0(mod n).

We need to determine for which n € N the obtained quadratic con-
gruence has solution %k (in that case k and n are relatively prime), or to
determine the possible factors of k* — k + 1 for k € Z.

Evidently, since k? — k + 1 is odd, n cannot be even.

Let us determine all odd primes p for which p | k2—k+1, for some k € Z.
If p | k2 —k+1, then so do p divides the number 4(k? —k+1) = (2k—1)2+3,
that is p | a® +3 where a = 2k — 1 is an odd integer. It suffices to determine
for which p exists = € Z such that 22 = —3(mod p) (if such an even integer
x exists, then z + p is odd integer that satisfies the condition).

It is equivalent to <_73> = 1, which (since p is an odd integer) is equiv-

alent to (8) =1, i.e., p = 0(mod 3) or p = 1(mod 3). The solutions are
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p = 3 and all primes of the form p = 6]+ 1, | € Z. Factors of k2 — k + 1
cannot be primes of the form 6/ — 1.
This proves the following:

Theorem 4. The cyclic group Z,, has an automorphism that satisfies (1)
if and only if its order n is a product of primes from the set {3} U {6l +1:
l € Z}, i.e., if and only if n is an odd integer without any prime factor that
1s congruent to —1 modulo 6.

Example 4. Group Z; has two such automorphisms, ¢(x) = 3z and
o(z) = 5x. So we obtain two hexagonal quasigroups of order 7.

-0 1 2 3 4 5 6 -0 1 2 3 4 5 6
0|0 3 6 2 5 1 4 0|0 5 3 1 6 4 2
115 1 4 0 3 6 2 113 1 6 4 2 0 5
213 6 2 5 1 4 0 216 4 2 0 5 3 1
311 4 0 3 6 2 5 312 0 5 3 1 6 4
416 2 5 1 4 0 3 415 3 1 6 4 2 0
514 0 3 6 2 5 1 51 6 4 2 0 5 3
6|2 5 1 4 0 3 6 64 2 0 5 3 1 6

4. Conclusion

The following theorem is well-known.

Theorem 5. Let m; and mo be relatively prime positive integers, and G
be commutative group of order myma, whose automorphism ¢ satisfies (1).
Then there exist groups G1 and Go such that G = Gy X Ga, |G1| = mq,
|G2| = ma, with automorphisms that satisfy (1).

Theorem 5 allows us to deal with groups of order p* only, in order to
determine which groups have "good" automorphism.

So far, we know that finite hexagonal quasigroup can have orders p?*
for any prime p, 3%, and p* where p is a prime of the form 61 + 1.

Let G be finite commutative group with automorphism ¢ which satisfies
(1). For € G let us denote

Sy = {l‘, gO(fL‘), 902('7;)’ 903('7;)’ 904('7;)’ 905('7;)’ o }

It is clear that {S, : # € G} is a partition of the set G. Since ©5(z) = =,
for all x € G, the set S, has 6 elements at most, i.e., it may have 1, 2, 3 or
6 elements. The only x for which Card S, =1 is x = 0.
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Card S, = 2 when z = ¢?(z), that is when 2 + 2 + 2 = 0.
Card S, = 3 when = = ¢3(z), i.e.,, z = —1.
Let

a = Card{S; : z € G, |S;| = 2},

b= Card{S, :z € G,|S,| = 3},
c=Card{S; : v € G, |5S;| = 6}.

The number of elements of G equals |G| =1+ 2a + 3b + 6e.

Now we can finally solve remaining problems: the existence of hexagonal
quasigroup of order 22™~1 or of order p?>™~! for p prime of the form 61 — 1.

Suppose the group G of order 22~ has an automorphism that satisfies
(1). Since its order is not divisible by 3, a = 0, and |G| = 1+ 3b + 6¢ =
1(mod 3). But, 22m~! = 2(mod 3), which is a contradiction.

Let now p be a prime number of the form 6/ — 1, and let G be the group
of order p?™~!, with an automorphism which satisfies (1). That group has
no element of order two, and no element of order three, so a = 0 and b = 0.
It follows p?™~! = 1 + 6¢, which is impossible since p*™~! = —1(mod 6).

This finally proves:

Theorem 6. A finite hezagonal quasigroup of order n = m - 12, where m
18 square-free, exists if and only if m is an odd integer with no prime factor
congruent to —1 modulo 6.
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