
Quasigroups and Related Systems 14 (2006), 157− 162

Finite hexagonal quasigroups

Mea Bombardelli

Abstract

In this article some examples of �nite hexagonal (idempotent, medial and semisymmetric)
quasigroups are given. The main goal is to determine the set of possible orders of �nite
hexagonal quasigroups.

1. Introduction

Hexagonal quasigroups are de�ned by V. Volenec in [1] as follows:

De�nition. A quasigroup (Q, ·) is said to be hexagonal if it is idempotent,
medial and semisymmetric, i.e., if the equalities

a · a = a,

ab · cd = ac · bd,

a · ba = ab · a = b

hold for all its elements.
Study of hexagonal quasigroups in [1] and [2] is motivated by

Example 1. On the set C of complex numbers the operation ∗ is de�ned
by:

a ∗ b =
1− i

√
3

2
a +

1 + i
√

3
2

b.

If we identify the complex numbers with the points of the Euclidean
plane, the points a, b and a ∗ b are the vertices of a positively oriented
equilateral triangle.
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In this paper, we'll give some examples of �nite hexagonal quasigroups,
and answer the question: for which positive integers n there exists a hexag-

onal quasigroup of order n?

We'll need some elementary results.

Lemma 1. Let (Q1, ·1), (Q2, ·2), . . . , (Qn, ·n) be hexagonal quasigroups, and

let ◦ be the operation de�ned on Q = Q1 ×Q2 × . . .×Qn by:

(x1, x2, . . . , xn) ◦ (y1, y2, . . . , yn) = (x1 ·1 y1, x2 ·2 y2, . . . , xn ·n yn).

Then (Q, ◦) is a hexagonal quasigroup.

Therefore, if a hexagonal quasigroup of order m exists, then there exists
hexagonal quasigroup of order mn, for each n ∈ N. If hexagonal quasigroups
of orders k1, k2,. . . kn exist, then a hexagonal quasigroup of order k1k2 · · · kn

exists.

A subquasigroup of the quasigroup (Q, ·) is any subset S ⊂ Q such
that (S, ·) is a quasigroup. Obviously, any subquasigroup of a hexagonal
quasigroup is hexagonal.

For any quasigroup (Q, ·) and its subset A, the smallest quasigroup that
contains A is the intersection of all subquasigroups of Q that contain A.

Example 2. Let (D, ∗) be the smallest subquasigroup of (C, ∗) (as in
Example 1) that contains 0 and 1. D can be represent by triangular lattice
with the same operation as in (C, ∗): the product of two points a and b is
the third vertex of regular triangle with vertices a and b.

If q = 1
2 + i

√
3

2 , then D = {x + qy : x, y ∈ Z}, and it can be identi�ed
with the set {(x, y) : x, y ∈ Z}. It's easy to verify:

(x1, y1) ∗ (x2, y2) = (1− q)(x1 + qy1) + q(x2 + qy2)

= (x1 + y1 − y2, x2 + y2 − x1).

We obtained an important example of hexagonal quasigroup:

Theorem 1. Let (G, +) be a commutative group. The set G×G with the

operation

(x1, y1) · (x2, y2) = (x1 + y1 − y2, x2 + y2 − x1)

is a hexagonal quasigroup.

Therefore, a hexagonal quasigroup of order n2 exists for any n ∈ N.

The following characterization of hexagonal quasigroups was given in
[1].
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Theorem 2. A hexagonal quasigroup on the set Q exists if and only if on

the same set exists commutative group with automorphism ϕ satisfying

(ϕ ◦ ϕ)(a)− ϕ(a) + a = 0 (1)

for all a ∈ Q.

Given such commutative group (Q,+), the quasigroup is obtained by

a · b = a + ϕ(b− a). (2)

Note that from (1) it follows

ϕ3(x) = ϕ(ϕ(x)− x) = ϕ ◦ ϕ(x)− ϕ(x) = (ϕ(x)− x)− ϕ(x) = −x

and ϕ6(x) = x for all x ∈ Q.

2. Commutative hexagonal quasigroups

Let us use the Theorem 2 to study commutative hexagonal quasigroups.
We wish to �nd all commutative groups Q which have an automorphism ϕ
that satis�es (1), with additional condition that the operation · de�ned by
(2) is commutative. In other words,

a + ϕ(b− a) = b + ϕ(a− b),

ϕ(b− a)− ϕ(a− b) = b− a

for all a, b ∈ Q. Therefore

ϕ(x) + ϕ(x) = x (3)

must hold for all x ∈ Q.

From (1) it follows ϕ(ϕ(x)) + ϕ(ϕ(x)) + x + x = ϕ(x) + ϕ(x) and
using (3) we obtain ϕ(x) + x + x = ϕ(x) + ϕ(x) = x. It follows

ϕ(x) + x = 0 and ϕ(x) = x + x.

Therefore, x + x + x = 0 for all x ∈ Q, i.e., each element of the group G
is of order 3 or 1. The only �nite groups which satisfy that condition are
(Z3)n, and the group of order 1.
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On the other hand, if x + x + x = 0, ∀x ∈ Q, then ϕ(x) = x + x = −x
is an automorphism that satis�es (1), and the operation de�ned by (2) is
commutative.

We have proved:

Theorem 3. The only �nite commutative hexagonal quasigroups with more

than one element, are the quasigroups obtained in the way described in The-

orem 2 from the group (Z3)n, for some n ∈ N.

From each group (Z3)n we obtain unique hexagonal quasigroup of order
3n.

Example 3. From (Z3)2 we obtain hexagonal quasigroup of order 9:

· 0 1 2 3 4 5 6 7 8

0 0 2 1 6 8 7 3 5 4
1 2 1 0 8 7 6 5 4 3
2 1 0 2 7 6 8 4 3 5
3 6 8 7 3 5 4 0 2 1
4 8 7 6 5 4 3 2 1 0
5 7 6 8 4 3 5 1 0 2
6 3 5 4 0 2 1 6 8 7
7 5 4 3 2 1 0 8 7 6
8 4 3 5 1 0 2 7 6 8

3. Cyclic groups

The automorphism ϕ(x) = kx (k is relatively prime to n) of the group Zn

satis�es (1) if and only if k2 − k + 1 ≡ 0(mod n).
We need to determine for which n ∈ N the obtained quadratic con-

gruence has solution k (in that case k and n are relatively prime), or to
determine the possible factors of k2 − k + 1 for k ∈ Z.

Evidently, since k2 − k + 1 is odd, n cannot be even.

Let us determine all odd primes p for which p | k2−k+1, for some k ∈ Z.
If p | k2−k+1, then so do p divides the number 4(k2−k+1) = (2k−1)2+3,
that is p | a2 +3 where a = 2k−1 is an odd integer. It su�ces to determine
for which p exists x ∈ Z such that x2 ≡ −3(mod p) (if such an even integer
x exists, then x + p is odd integer that satis�es the condition).

It is equivalent to
(
−3
p

)
= 1, which (since p is an odd integer) is equiv-

alent to
(p

3

)
= 1, i.e., p ≡ 0(mod 3) or p ≡ 1(mod 3). The solutions are
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p = 3 and all primes of the form p = 6l + 1, l ∈ Z. Factors of k2 − k + 1
cannot be primes of the form 6l − 1.

This proves the following:

Theorem 4. The cyclic group Zn has an automorphism that satis�es (1)
if and only if its order n is a product of primes from the set {3} ∪ {6l + 1 :
l ∈ Z}, i.e., if and only if n is an odd integer without any prime factor that

is congruent to −1 modulo 6.

Example 4. Group Z7 has two such automorphisms, ϕ(x) = 3x and
ϕ(x) = 5x. So we obtain two hexagonal quasigroups of order 7.

· 0 1 2 3 4 5 6

0 0 3 6 2 5 1 4
1 5 1 4 0 3 6 2
2 3 6 2 5 1 4 0
3 1 4 0 3 6 2 5
4 6 2 5 1 4 0 3
5 4 0 3 6 2 5 1
6 2 5 1 4 0 3 6

· 0 1 2 3 4 5 6

0 0 5 3 1 6 4 2
1 3 1 6 4 2 0 5
2 6 4 2 0 5 3 1
3 2 0 5 3 1 6 4
4 5 3 1 6 4 2 0
5 1 6 4 2 0 5 3
6 4 2 0 5 3 1 6

4. Conclusion

The following theorem is well-known.

Theorem 5. Let m1 and m2 be relatively prime positive integers, and G
be commutative group of order m1m2, whose automorphism ϕ satis�es (1).
Then there exist groups G1 and G2 such that G = G1 × G2, |G1| = m1,

|G2| = m2, with automorphisms that satisfy (1).

Theorem 5 allows us to deal with groups of order pk only, in order to
determine which groups have "good" automorphism.

So far, we know that �nite hexagonal quasigroup can have orders p2k

for any prime p, 3k, and pk where p is a prime of the form 6l + 1.
Let G be �nite commutative group with automorphism ϕ which satis�es

(1). For x ∈ G let us denote

Sx = {x, ϕ(x), ϕ2(x), ϕ3(x), ϕ4(x), ϕ5(x), . . .}.

It is clear that {Sx : x ∈ G} is a partition of the set G. Since ϕ6(x) = x,
for all x ∈ G, the set Sx has 6 elements at most, i.e., it may have 1, 2, 3 or
6 elements. The only x for which CardSx = 1 is x = 0.
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CardSx = 2 when x = ϕ2(x), that is when x + x + x = 0.
CardSx = 3 when x = ϕ3(x), i.e., x = −x.
Let

a = Card {Sx : x ∈ G, |Sx| = 2},

b = Card {Sx : x ∈ G, |Sx| = 3},

c = Card {Sx : x ∈ G, |Sx| = 6}.

The number of elements of G equals |G| = 1 + 2a + 3b + 6c.
Now we can �nally solve remaining problems: the existence of hexagonal

quasigroup of order 22m−1, or of order p2m−1 for p prime of the form 6l− 1.
Suppose the group G of order 22m−1 has an automorphism that satis�es

(1). Since its order is not divisible by 3, a = 0, and |G| = 1 + 3b + 6c ≡
1(mod 3). But, 22m−1 ≡ 2(mod 3), which is a contradiction.

Let now p be a prime number of the form 6l−1, and let G be the group
of order p2m−1, with an automorphism which satis�es (1). That group has
no element of order two, and no element of order three, so a = 0 and b = 0.
It follows p2m−1 = 1 + 6c, which is impossible since p2m−1 ≡ −1(mod 6).

This �nally proves:

Theorem 6. A �nite hexagonal quasigroup of order n = m · l2, where m
is square-free, exists if and only if m is an odd integer with no prime factor

congruent to −1 modulo 6.
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