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Ideals in AG-band and AG∗-groupoid

Qaiser Mushtaq and Madad Khan

Abstract

We have shown that an ideal I of an AG-band is prime i� ideal (S) is totally ordered; it
is prime i� it is strongly irreducible. The set of ideals of S form a semilattice structure.
We have proved that if a belongs to the centre of S, then S is zero-simple if and only if
(Sa)S = S, for every a in S\{0}. Ideal structure in an AG∗-groupoid S has also been
investigated. It has been shown that if I is a minimal right ideal of S then Ia is a minimal
left ideal of S, for all a in S. It has been shown also that every ideal of an AG∗-groupoid
S is prime if and only if it is idempotent and ideal (S) is totally ordered.

1. Introduction

A groupoid S is called an Abel-Grassmann's groupoid, abbreviated as an
AG-groupoid, if its elements satisfy the left invertive law [4, 5], that is:

(ab)c = (cb)a (1)

for all a, b, c ∈ S.
Several examples and interesting properties of AG-groupoids can be

found in [5], [6], [7] and [8]. It has been shown in [5] that if an AG-groupoid
contains a left identity then it is unique. It has been proved also that an AG-
groupoid with right identity is a commutative monoid, that is, a semigroup
with identity element.

It is also known [4] that in an AG-groupoid S, the medial law, that is,

(ab)(cd) = (ac)(bd) (2)

for all a, b, c, d ∈ S holds.
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2. AG-band

An AG-groupoid whose all elements are idempotents is called an AG-band.
It is easy to see that in an AG-band S for any a, b, c ∈ S, (ab)a = a(ba) and
(ab)c = (ac)(bc), (ab)b = ba.

Theorem 1. If an AG-band S contains a left identity e then S becomes a

semilattice with identity e.

Proof. Let x ∈ S. Then

xe = (xx)e = (ex)x = xx = x

implies that x is the right identity for S and so by [5], the AG-bandS
becomes a commutative monoid, that is, a semilattice with identity e.

Due to Theorem 1, an AG-band with left identity becomes a semigroup
with identity. So we cannot include automatically the left identity in an
AG-band.

In an AG-band every congruence relation is trivially separative.

Theorem 2. If S is an AG-band and a is a �xed element in S then

H(a) = {x ∈ S : xa = x}

is a commutative subsemigroup with identity a.

Proof. Since a ∈ H(a) we conclude that H(a) is non-empty.

Let x, y, z ∈ H(a), then

xy = (xa)(ya) = (xy)(aa) = (xy)a

implies that H(a) is a groupoid.

Now

xy = (xa)y = (ya)x = yx

shows that H(a) is commutative and so it becomes associative. Also

ax = (aa)x = (xa)a = xa = x,

imply that H(a) is a commutative subsemigroup of idempotents with iden-
tity a in S.
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Example 1. Let S = {1, 2, 3, 4, 5, 6} and a binary operation be de�ned in
S as follows:

· 1 2 3 4 5 6
1 1 2 2 5 6 4
2 2 2 2 5 6 4
3 2 2 3 5 6 4
4 6 6 6 4 2 5
5 4 4 4 6 5 2
6 5 5 5 2 4 6

Then, as in [11] , (S, ·) is an AG-band and H(1) = {1, 2} is a semilattice
with identity 1.

The following de�nitions are given in [10]. If S is an AG-groupoid and
A,B ⊆ S, then A and B are called right connected sets if AS ⊆ B and
BS ⊆ A. Similarly, if S is an AG-groupoid and A, B ⊆ S, then A and B
are called left connected if SA ⊆ B and SB ⊆ A. Also A and B are called
connected sets if they are both left and right connected.

A subset I of an AG-groupoid S is said to be right (left) ideal if IS ⊆ I
(SI ⊆ I). As usual I is said to be an ideal if it is both right and left ideal.

Proposition 1. If A and B are left connected sets of an AG-band S and

A is an ideal, then S(A ∪B) ⊆ A.

Lemma 1. If A and B are ideals of an AG-band S, then AB and BA are

right and left connected sets.

Proof. Using identity (1), we get

(AB)S = (SB)A ⊆ BA.

Similarly
(BA)S ⊆ AB.

This shows that AB and BA are right connected. Using identity (1),
we get

S(BA) = (SS)(BA) = ((BA)S)S = ((SA)B)S ⊆ AB.

Also
S(AB) ⊆ BA.

This implies that AB and BA are left connected.
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Proposition 2. A proper subset I of an AG-band S is a right ideal if and

only if it is left.

Proof. Let I be a right ideal of an AG-band S. Then IS ⊆ S, that is, ix ∈ I
for all i ∈ I and x ∈ S. Hence

(xi) = (xx)i = (ix)x ∈ (IS)S ⊆ IS ⊆ I

shows that SI ⊆ I, that is, I is a left ideal of S. The converse can be proved
similarly.

It can easily be seen from Proposition 2, that SI ⊆ IS.

An ideal P of an AG-groupoid S is prime (semiprime) if for any other
ideals A, B of S, AB ⊆ P (A2 ⊆ P ) implies either A ⊆ P or B ⊆ P
(A ⊆ P ). A groupoid S is called fully semiprime if every ideal of S is
semiprime. If S is an AG-band then trivially S is completely semiprime.

Lemma 2. For every ideal I of an AG-band S we have

{x ∈ S | ax = x for a ∈ I} ⊆ I and {x ∈ S | ax = x for a ∈ I} ⊆ I.

An AG-groupoid S is called totally ordered if for all ideals A, B of S
either A ⊆ B or B ⊆ A.

Theorem 3. Every ideal of an AG-band S is prime if and only if the set

of all ideals of S is totally ordered.

Proof. Assume that every ideal of an AG-band S is prime. Let P , Q be the
ideals of S. Then PQ ⊆ P and PQ ⊆ Q imply that PQ ⊆ P ∩ Q. Since
P ∩Q is prime, so P ⊆ P ∩Q or Q ⊆ P ∩Q imply that P ⊆ Q or Q ⊆ P .
Hence the set of all ideals of S is totally ordered.

Conversely, let I, J and P be ideals of an AG-band S such that IJ ⊆ P .
Being ideals of S they are totally ordered and that I ⊆ J . Thus P is
prime.

Theorem 4. If I and J are ideals of an AG-band S then IJ = I ∩ J .

Proof. Let I and J be ideals of an AG-band S. Obviously, IJ ⊆ I ∩ J .
Since I ∩ J ⊆ I, I ∩ J ⊆ J , therefore (I ∩ J)2 ⊆ IJ .

By Theorem 4, IJ = JI. Therefore the following Lemma is an easy
consequence.
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Lemma 3. The set of ideals of an AG-band S form a semilattice structure.

An ideal I of an AG-groupoid S is said to be strongly irreducible if and
only if for ideals H and K of S, H ∩ K ⊆ I implies that H ⊆ I or K ⊆ I.
This leads to the following important theorem with a rather straight forward
proof.

Theorem 5. In an AG-band every ideal is strongly irreducible if and only

if it is a prime ideal.

An AG-groupoid S is (left, right) simple, if S contains no proper (left,
right) ideals. Left simple, right simple and simple AG-bands coincide. The
AG-band from Example 1 is not simple because {2, 4, 5, 6} is a proper ideal
of S.

An AG-groupoid S with zero is called zero-simple if {0} and S are its
only ideals and S2 6= {0}.

Example 2. Let S = {1, 2, 3, 4} and the operation be de�ned on S as
follows:

· 1 2 3 4
1 1 4 2 3
2 3 2 4 1
3 4 1 3 2
4 2 3 1 4

Then, as in [11], (S, ·) is a simple AG-band. If we adjoin 0 in S then it
become a zero-simple AG-band.

Theorem 6. If aS = Sa for all non-zero a in an AG-band S, then S is

zero-simple if and only if (Sa)S = S.

Proof. Clearly S2 6= {0} and S3 = S. Now for any a in S\{0} the subset
(Sa)S of S is an ideal of S. Therefore either (Sa)S = S or (Sa)S = {0}. If
(Sa)S = {0}, then the set I = {x ∈ S : (Sx)S = {0}} contains an element
other than zero, and I becomes an ideal of S. As S is zero-simple so by
de�nition I = S, that is, (Sx)S = {0} for every x in S. This implies that
S3 = {0}. But this is a contradiction to the fact that S = S3. Hence
(Sa)S = S.

Conversely, assume that, (Sa)S = S for every a in S\{0}. Also if A is
an ideal of S containing a, then (SA)S ⊆ A implies (Sa)S ⊆ A.

Corollary 1. S is simple if and only if (Sa)S = S.
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Proof. If S is a simple AG-band, then (Sa)S is an ideal of S and so (Sa)S =
S. Conversely, if (Sa)S = S for all a ∈ S, then we need to show that S is
simple. Let A be an ideal of S and a ∈ A. Then (SA)S ⊆ A implies that
(Sa)S ⊆ A. Now, if 0 ∈ S, then (S0)S = {0} 6= S. As (Sa)S = S holds for
all a ∈ S, it means that 0 /∈ S. Hence S without zero has no ideal except S
itself.

An ideal M in an AG-groupoid S with zero is called zero-minimal if it
is minimal in the set of all non-zero ideals.

Proposition 3. If M is a zero-minimal ideal of an AG-band S such that

aS = Sa for all non-zero a ∈ S, then M is a zero-simple AG-band.

Proof. Clearly M = M3 and if a ∈ M\{0}, then (Sa)S is an ideal of S
contained in M . It is non-zero, since it contains a, and so (Sa)S = M .
Thus using (2) and (1) we get

(Ma)M ⊆ (Sa)S = M = M3 = (M((Sa)S))M ⊆ (Ma)M,

which implies (Ma)M = M . By Theorem 6, M is zero-simple.

Proposition 4. Let S be an AG-band without zero. If K is a minimal ideal

of S, then K is a simple AG-band.

Proof. Note that 0 /∈ S implies 0 /∈ K. As K is uniquely minimum so it
cannot contain any other ideal of S. Hence K is a simple AG-band.

3. Ideals in an AG∗-groupoid

An AG-groupoid S is called an AG∗-groupoid if it satis�es one of the fol-
lowing equivalent weak associative laws [10]:

(ab)c = b(ac), (3)

(ab)c = b(ca). (4)

From (3) and (4), we obtain

b(ac) = b(ca) (5)

for all a, b, c ∈ S.
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If all elements of an AG∗-groupoid S are idempotent, then S = S2. This
further implies that S is a commutative semigroup [10].

If S is an AG∗-groupoid and a = a2 (for a �xed element a ∈ S) then,
as it is proved in [10], aS = Sa and (xa)y = x(ay) for any x, y ∈ S. If a
belongs to Sa = aS, then Sa = aS is a semilattice.

A non-associative left simple (right simple, simple) AG∗-groupoid does
not exist [9]. SA is a left ideal of an AG∗-groupoid S for all subsets A of S.

Lemma 4. If I is a right ideal of an AG∗-groupoid S and J is a subset of

S then IJ is a left ideal of S and it is a right ideal if IJ = JI, and a(IJ)
{(JI)a} becomes a left (right) ideal of S.

Proof. The proof is straight forward.

By K we shall mean the set of all ideals of an AG∗-groupoid S.

Proposition 5. In any AG∗-groupoid:

(i) K has associative powers,

(ii) ImIn = Im+n, for all I ∈ K,

(iii) (Im)n = Imn, for all I ∈ K and all positive integers m, n,

(iv) (AB)n = AnBn for n > 1 and (AB)n = BnAn for n > 2, ∀A,B ∈ K.

Proof. The proof is obvious.

Lemma 5. If I is an ideal of an AG∗-groupoid S then so is In for n > 2.

Proof. Let I be a right ideal of an AG∗-groupoid S and x = ij ∈ I2 where
i, j ∈ I. Using identity (3), we get

s(ij) = (is)j ⊆ II = I2,

(ij)s = j(is) ⊆ II = I2,

which shows that I2 is an ideal of S. Now suppose that In−1 is an ideal.
Then using (1), (3), and Proposition 5(ii), we get

InS = (In−1I)S = (SI)In−1 ⊆ IIn−1 = In,

SIn = S(In−1I) = (IS)In−1 ⊆ In,

which completes the proof.
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Lemma 6. If I is an ideal of an AG∗-groupoid S and a = a2, then aI2 is

an ideal of S.

Proof. Using Proposition 5(iv) and identity (3), we get I2a = aI2. Then it
is not di�cult to see that aI2 is an ideal.

An ideal I of an AG-groupoid S is called minimal if and only if it does
not contain any ideal of S other than itself.

Theorem 7. If I is a minimal right ideal of an AG∗-groupoid S then for

all a ∈ S Ia is a minimal left ideal of S.

Proof. Let I be the minimal right ideal of an AG∗-groupoid S and x = ia ∈
Ia, where i ∈ I. Then using identity (3) we get sx = s(ia) = (is)a ∈ Ia
which shows that Ia is a left ideal of S. Let H be a non-empty left ideal of
S properly contained in Ia. De�ne H ′ = {r ∈ I : ra ∈ H}. If y ∈ H ′, then
ya ∈ H, and so (ys)a = s(ya) ∈ SH ⊆ H, imply that H ′ is a right ideal of
S properly contained in I. This is a contradiction to the minimality of I.
Hence Ia is a minimal left ideal of S.

Theorem 8. If I is a minimal left ideal of an AG∗-groupoid S then aI
(a2 = a) is a minimal right ideal of S.

Proof. Let ai ∈ aI where I is a minimal left ideal of an AG∗-groupoid S.
Then using identities (3) and (2) we get

ia = i(aa) = (ai)a = (ai)(aa) = (aa)(ia) = a(ia) = (aa)i = ai.

Also (ai)s = (ia)s = a(is) ∈ aI, shows that aI is a right ideal of S.
Let H be a non-empty right ideal of S properly contained in aI. De�ne
H ′ = {r : ar ∈ I}. Then a(sy) = (sy)a = (ay)s ∈ HS ⊆ H imply that H ′

is a left ideal of S properly contained in I. But this is a contradiction to
the minimality of I. Hence aI is a minimal left ideal of S.

Theorem 9. Every ideal of an AG∗-groupoid S is prime if and only if it is

idempotent and the set of all ideals of S is totally ordered.

Proof. Let every ideal of S be prime. Assume that I is any ideal of S. Then
I2 is an ideal of S by Lemma 5. Also I2 ⊆ I implies that I ⊆ I2 or I = I2.
If P and Q are any ideals of S then, PS ⊆ P and SQ ⊆ Q implies that
PQ ⊆ P and PQ ⊆ Q, and so PQ ⊆ P ∩Q. Since intersection of two prime
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ideals is prime. So, P ⊆ P ∩Q or Q ⊆ P ∩Q. This implies that P ⊆ Q or
Q ⊆ P . Hence the set of all ideals of S is totally ordered.

Conversely, assume that every ideal of S is idempotent and the set of
all ideals of S is totally ordered. Let I, J and P be any ideals of S such
that IJ ⊆ P with I ⊆ J . Then I = I2 = II ⊆ IJ ⊆ P , implies that every
ideal of S is prime.
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