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Abstract

When 〈G; �〉 is a groupoid with binary operation � : G2 → G, and when k ∈ N :=
{1, 2, 3, . . .}, then F σ(k) denotes the set of all formal products u on k independent vari-
ables. It is well known that |F σ(k)| = C(k), where C(k) is the kth Catalan number.

Each word u ∈ F σ(k) induces a function u : Gk → G given by u : ~g 7→ u(�, ~g),
where u(�, ~g) is the interpretation in 〈G; �〉 of u as a ��product of the sequence ~g :=
〈g0, g1, . . . , gk−1〉 ∈ Gk.

Write u =� v for {u,v} ⊆ F σ(k) i� u(�, ~g) = v(�, ~g) whenever ~g ∈ Gk. This
=� is an equivalence relation on the set F σ :=

⋃
{F σ(k) : k ∈ N}. The sequence

SaT(〈G; �〉) := 〈|F σ(k)/ =� |〉∞k=2 presents the subassociativity types of 〈G; �〉.
We calculate SaT(G) for a few evocative groupoids G := 〈G; �〉, and we initiate a

study of the partitions F σ(k)/ =�. Each equivalence class of the completely free groupoid
F σ is a singleton, and so F σ realizes the theoretical minimum k�associativity for each
k ∈ N. We propose for each k a minimally k�associative class of �nite groupoids.

Introduction

Given a set G and a binary operation � : G×G → G on G, it is customary
to write �(x, y) in the form x � y when 〈x, y〉 ∈ G2 := G × G. The pair
〈G; �〉 is said to be a groupoid.

We say that a triple 〈g0, g1, g2〉 ∈ G3 of elements in G associates under
the binary operation � i� (g0 � g1) � g2 = g0 � (g1 � g2). If every triple of
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elements in G associates under �, the binary operation � itself is said to be
associative, and the groupoid 〈G; �〉 is called a semigroup.

For 〈G; �〉 a semigroup, each �nite sequence g0, g1, . . . , gk−1 of elements
in G determines under � a unique element in G as its product. We can write
this product in the simpli�ed form g0 � g1 � · · · � gk−1 because parentheses
are not needed to avoid ambiguity.

Of course, the great majority of groupoids are not semigroups. Each
such nonsemigroup has at least one triple of elements which fails to as-
sociate. This failure of some triples to associate induces diversity among
products of the longer strings as well.

Our paper's principal focus is upon this diversity of products.

For instance, if 〈G; �〉 is not a semigroup then we expect that some
quadruples 〈g0, g1, g2, g3〉 ∈ G4 may in a general sense also fail to associate.
However, whereas there are at most two potentially distinct products for a
triple of elements in a groupoid, there are �ve potentially distinct products
of a quadruple of such elements, fourteen potentially distinct 5�tuple prod-
ucts, and in general there are C(k) potentially distinct k�products, where
C(k) is the kth Catalan number.

That is, when the binary operation � of a groupoid lacks 3�associativity,
then � may lack k�associativity for sundry integers k > 4 as well.

In �1 we introduce Reverse Polish Notation, which provides a convenient
tool for specifying the potentially di�erent k�products under � of a length k
sequence of elements in G. This leads to our presentation in �2 of the notion
of a formal k�product, and of a completely free groupoid in which every
formal k�product of a length k sequence in G produces a de facto distinct
element in the groupoid, and enables our development in �3 of a measure
of the subassociativity of an arbitrary groupoid; this measure is given as
an in�nite sequence of positive integers which we call the subassociativity
type of the groupoid. In �3 we calculate the subassociativity type of each of
several important nonassociative groupoids, including that of the groupoid
of integers under subtraction. Related to the subassociativity type of a
groupoid is its size sequence, which appears interestingly complicated even
when the subassociativity type of the groupoid is regular and simple in
form.

�4 concentrates upon those groupoids in which k�associativity is mini-
mal for every integer k > 3.

Our paper presents a variety of natural problems.
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1. Reverse Polish Notation

For a nonassociative binary operation �, if ~g := 〈g0, g1, . . . , gk−1〉 is a �nite
sequence of elements in G then it may happen that w(�, ~g) 6= v(�, ~g), where
w and v are some two �appropriate parenthesizations� of the augmented
sequence �(~g) := 〈g0, �, g1, �, · · · , �, gk−1〉.

We call a parenthesization of �(~g) appropriate if it enables the k − 1
occurrences of the symbol � unambiguously to serve as a binary operation in
�(~g). For instance, the two parenthesizations in (1), below, are appropriate;
and, if � is associative, then we can believe that

((g0 � (g1 � g2)) � (g3 � g4)) = ((g0 � g1) � ((g2 � g3) � g4)). (1)

We have enclosed each of the two expressions, balanced by the = sign in
(1), with an external, conventionally unnecessary, parenthesis pair, whose
purpose is to assure that each ��multiplication is consistent in its form;
namely, (a � b), instead of a � b as sometimes abbreviated. Our reason for
this ostensible redundancy of parentheses should become clear after our
discussion, in the next few paragraphs, of Reverse Polish Notation (RPN).

RPN is sometimes more convenient than parenthesized expressions of
the sort in (1). For people who are uneasy with RPN we provide a gradual
approach to this, parenthesis-free, notation. In two steps we will convert
the usual-form equality (1) into its equivalent RPN version, (3).

First, we remove left parentheses from (1). A routine proof shows that
there is exactly one way to restore left parentheses to the resulting left-
parenthesis deprived expression, (2), so as to regain an appropriately paren-
thesized augmented sequence. Here then is (2):

g0 � g1 � g2)) � g3 � g4)) = g0 � g1) � g2 � g3) � g4)) (2)

Each of the = expressions in (1) and (2) has 5 terms, gi, which are
elements in G. It is no accident that each of those expressions has also
exactly 4 occurrences of � and exactly 4 right parentheses. In order to create
from the expressions in (2) their equivalent RPN expressions we merely
eliminate the 4 occurrences in (2) of �, and then in the ��free resulting
expression we replace each right parenthesis with a new occurrence of �.
Thus, �nally, we obtain the RPN equation which is equivalent to (1):

g0g1g2 � �g3g4 � � = g0g1 � g2g3 � g4 � �. (3)
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Comparing (1) and (3), we see that (3) is shorter than (1). RPN is an
e�cient way of representing lengthy ��products. One can safely remove all
parentheses from (1) and maintain a bona �de equality if and only if � is
associative. But with the RPN expression, (3), there are no parentheses
to remove, and when � is associative then every RPN product constructed
from the sequence 〈g0, g1, g2, g3, g4〉 ∈ G5 is equal to that given by

g0g1g2g3g4 �4 .

This too is shorter than the usual product expression

g0 � g1 � g2 � g3 � g4.

RPN confers a more important advantage: It facilitates our classi�cation
of the �subassociativity� of groupoids.

2. Formal Products

We will de�ne a groupoid, F σ, inspired by the idea of the �completely free�
groupoid F := F (x, •) generated by a two-letter alphabet, {x, •}.

F ⊂ {x, •}∗, where {x, •}∗ is the semigroup under concatenation of all
�nite words with letters in {x, •}.

We write a = b to say that the word a is spelled the same as the word
b, for {a,b} ⊆ F .

#(u, z) denotes the number of occurrences of a letter z in the word u.
A nonempty word w ∈ {•, x}∗ is an element in F if and only if

(i) #(w, x)−#(w, •) = 1.

(ii) If p is a nonempty pre�x of w then #(p, x) > #(p, •).

It is easy to see that x ∈ F , and that {u,v} ⊆ F ⇒ uv• ∈ F .
Thus • serves in F as an operator symbol, providing a binary operation
• : 〈u,v〉 7→ uv• for F in RPN format.

The relevant property of the groupoid 〈F, •〉 is that if 〈p, s〉 6= 〈p′, s′〉
with {p,p′, s, s′} ⊂ F then ps 6= p′s′. An easy related fact is that the
binary operation • is antiassociative; i.e., that no triples in F associate:

Theorem 2.1. Let 〈a,b, c〉 ∈ F 3. Then abc • • 6= ab • c •.
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Proof. Clearly the �free� semigroup {x, •}∗ has the cancellation property.
Thus, if abc • • = ab • c • then c • • = • c •. But c • • 6= • c •, since x is a
pre�x of c and since x 6= •.

Notice that, if w ∈ F , then either w = x or there exists exactly one
pair 〈p, s〉 ∈ F × F such that w = ps•.

Henceforth ~x := 〈x0, x1, x2, . . .〉 is a sequence of distinct variables, and
• is an operator symbol. Let k be a positive integer. We now modify F :

De�nition 2.2. By a formal k�product we mean any word w of length
2k − 1 in the alphabet {x0, x1, . . . , xk−1, •}, satisfying three conditions:

(i) x0x1 . . . xk−1 is a subword of w.

(ii) w has exactly k − 1 occurrences of the operator symbol • .

(iii) If p is a nonempty pre�x of w then p has fewer occurrences of the
operator symbol • than it has of variable symbols xi.

As usual N := {1, 2, 3, . . .}. For k ∈ N the expression F σ(k) denotes
the set of all formal k�products. Finally, we de�ne the in�nite set F σ by

F σ :=
⋃
{F σ(k) : k ∈ N}.

It is well-known, viz [1, 2, 3, 4], that for each k ∈ N the number |F σ(k)| is
the kth term of the Catalan sequence, which is to say that

|F σ(k)| = C(k) :=
1

2k − 1

(
2k − 1

k

)
.

Henceforth ω := N ∪ {0}, and k := {0, 1, . . . , k − 1} when k ∈ N.

For 〈k, j〉 ∈ N× ω and w ∈ F σ(k), the expression wj denotes the word
obtained by replacing the letter xi in w with the letter xj+i for each i ∈ k.
We write F σ

j (k) := {uj : u ∈ F σ(k)}.

Illustrative Example 1: When w := x0x1 • x2x3 • x4 • • then w ∈ F σ(5),
and w13 = x13x14 • x15x16 • x17 • • ∈ F σ

13(5) .

Observe that 〈F σ;�〉 is a groupoid where the binary operation � is
de�ned thus: When 〈u,v〉 ∈ F σ(k)×F σ(j), then uv� := uvk • . It is easy
to see that then uv� ∈ F σ(k + j).
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Indeed, F σ(1) = {x0}, while for 2 6 k ∈ N one could show that

F σ(k) =
⋃
{F σ(i)F σ(k − i)� : 1 6 i 6 k − 1} ,

where F σ(i)F σ(k − i)� := {uv� : u ∈ F σ(i) ∧ v ∈ F σ(k − i)}.

Illustrative Example 2: When u := x0x1 • x2x3 • • ∈ F σ(4), and when
v := x0x1x2x3 • x4 • • • ∈ F σ(5), we have that

uv� = x0x1 • x2x3 • • x0x1x2x3 • x4 • • • �
= x0x1 • x2x3 • •x4+0x4+1x4+2x4+3 • x4+4 • • • •
= x0x1 • x2x3 • •x4x5x6x7 • x8 • • • • ∈ F σ(4 + 5) .

Theorem 2.3. If 〈a,b, c〉 ∈ (F σ)3 then ab� c� 6= abc�� .

Proof. 〈a,b, c〉 ∈ F σ(i) × F σ(j) × F σ(t) for some 〈i, j, t〉 ∈ N3. Thus
ab� c� = abi • c� = abi • ci+j• and abc�� = abcj •� = abici+j • • .
So if ab� c� = abc�� then • ci+j • = ci+j • • , an impossibility.

In our view, the groupoids 〈F ; •〉 and 〈F σ;�〉 lie at an opposite extreme
from the class of semigroups. For, no triple of elements in either of these
two groupoids associates. However, every triple in a semigroup associates.

For 〈G; �〉 a semigroup, each sequence ~g := 〈g0, g1, . . . , gk−1〉 ∈ Gk un-
ambiguously determines the element in G obtained by the conventionally
presented but unparenthesized product g0 � g1 � · · · � gk−1.

If we endowed F σ with the relation, x0x0 � x0� ≈ x0x0x0 � �, then
|F σ(k)/ ≈ | = 1 for each k ∈ N, where F σ(k)/ ≈ is the family of ≈�
equivalence classes.

Plainly every groupoid falls between the extremes represented by
〈F σ;�〉 on one end, and by the class of semigroups on the other. We
believe that every �nite nonassociative groupoid lies strictly between these
extremes.

We next propose a scheme for using F σ in order to pin down this idea.

3. The Subassociativity Type of a Groupoid

Let 〈G; �〉 be an arbitrary groupoid, let w ∈ F σ(k) for a given k ∈ N,
and let ~g := 〈g0, g1, g2, . . .〉 ∈ G∞. Then w(�, ~g) denotes the element in G
obtained by replacing in w the operator • with the operation � , and the
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symbol xi with the element gi for each i ∈ k, and then executing the k − 1
binary operations � as indicated in the modi�ed version of w.

Illustrative Example 3: Consider the groupoid 〈Z; −〉 of integers under sub-
traction, and the formal 5�product w := x0x1 • x2x3x4 • • • ∈ F σ(5). Let
~g := 〈2, 7, 0, 1,−5, g5, g6, . . .〉. Then w(− , ~g) = 2 7 − 0 1 (−5) − −−,
where we append parentheses to eliminate ambiguity. In conventional form
w(− , ~g) = (2− 7)− (0− (1− (−5))), and hence w(− , ~g) = 1.

De�nition 3.1. Let k > 3, and let {u,v} ⊆ F σ(k). Let 〈G; �〉 be a
groupoid. We say that u is ��equivalent to v, in which event we write
u ≈� v, i� u(�, ~g) = v(�, ~g) for all ~g ∈ G∞. The expressions F σ(k)/� and
F σ(k)/ ≈� denote the family of ≈��equivalence classes [w]� of F σ(k).

De�nition 3.2. We call a groupoid 〈G; �〉 completely free i� [w]� = {w}
for every w ∈ F σ .

Illustrative Example 4: Returning to the groupoid 〈Z; −〉 of Example 3,
we easily see for k ∈ {1, 2, 3} that F σ(k)/ ≈− = {{w} : w ∈ F σ(k)}. But
for k = 4 the situation complicates slightly. As we will proceed to show,
u ≈− v where u := x0x1x2x3 • • • and where v := x0x1x2 • •x3 • :

Switching back and forth between RPN and ordinary terminology as
convenience dictates, we note for an arbitrary ~g ∈ Z∞ that u(− , ~g) =
g0g1g2g3−−− = g0−(g1−(g2−g3)) = g0−g1+g2−g3 = (g0−(g1−g2))−g3 =
g0g1g2−−g3− = v(− , ~g). Similar calculations establish that F σ(4)/ ≈− =
{{u,v}, {a}, {b}, {c}}, where a := x0x1x2 • x3 • • and b := x0x1 • x2x3 • •
and c := x0x1 • x2 • x3 • . Thus |F σ(4)/ ≈− | = 4 < 5 = |F σ(4)|. So the
groupoid 〈Z; −〉 is neither a semigroup, nor is it completely free.

Theorem 3.3. Let 〈G; �〉 be a groupoid, and let {s, t, s′, t′} ⊂ F σ. Let

s ≈� s′, and let t ≈� t′. Then st� ≈� s′t′�.

Proof. There exist k ∈ N such that {s, s′} ⊆ F σ(k), and j ∈ N such that
{t, t′} ⊆ F σ(j). Pick ~g := 〈g0, g1, . . . , gk−1, gk, . . . , gk+j−1, . . .〉 ∈ G∞. Let
~b := 〈gk, gk+1, . . . , gk+j−1, . . .〉 ∈ G∞.

By hypothesis s(�, ~g) = s′(�, ~g) and t(�,~b) = t′(�,~b). Therefore

(st�)(�, ~g) = (stk•)(�, ~g) = [s(�, ~g)][tk(�, ~g)]� = [s(�, ~g)][t(�,~b)]� =

[s′(�, ~g)][t′(�,~b)]� = [s′(�, ~g)][t′k(�, ~g)]� = (s′t′k•)(�, ~g) = (s′t′�)(�, ~g),

with parentheses and brackets appended only to aid the reader.
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Recall that C(k) denotes the kth Catalan number. The following is an
easy consequence of Theorem 3.3 and Illustrative Example 4.

Corollary 3.4. If k ∈ {1, 2, 3} then |F σ(k)/ ≈− | = C(k). However,

|F σ(j)/ ≈− | < C(j) for every integer j > 4.

De�nition 3.5. For 〈G; �〉 a groupoid, we de�ne the subassociativity type

of this groupoid to be the in�nite sequence in N, written

SaT(〈G; �〉) := 〈 |F σ(k)/ ≈� | 〉∞k=2 .

For 〈S; · 〉 a semigroup, obviously SaT(〈S; · 〉) = 〈1, 1, 1, . . .〉.
As we remarked, SaT(〈F σ;�〉) = 〈C(n)〉∞n=2 .

Theorem 3.6. SaT(〈Z; −〉) = 〈2k−2〉∞k=2 .

Proof. For each integer k > 2, for each w ∈ F σ(k), and for each ~g ∈ Zk, we
observe that w(− , ~g) = g0 − g1 ±1 g2 ±2 g3 ±3 · · · ±k−3 gk−2 ±k−2 gk−1 for
some �sign� sequence 〈±1,±2, . . . ,±k−2〉 ∈ {−,+}k−2, where we present the
expression to the right of the symbol = in ordinary terminology. Indeed,
since there are only 2k−2 distinct sign sequences of length k−2, we see that
|F σ(k)/ ≈− | ≤ 2k−2. So it su�ces to show that |F σ(k)/ ≈− | 6< 2k−2.

Claim: For every sign sequence 〈±1,±2, . . . ,±k−2〉 ∈ {−,+}k−2, there
exists r ∈ F σ(k) such that r(− , ~g) = g0 − g1 ±1 g2 ±2 · · · gk−2 ±k−2 gk−1,
thus �realizing� the sign sequence 〈±i〉k−2

i=1 .
We argue by induction on k > 2. The claim is trivial for k = 2.
For 2 6 n ∈ N, suppose the claim holds when k = n. Pick a sign se-

quence 〈±i〉n−2
i=1 ∈ {−1, 1}n−2 and a sequence ~h := 〈h0, h1, . . . , hn〉 ∈ Zn+1.

We are required only to supply {w− ,w+} ⊂ F σ(n + 1) such that

w−(− ,~h) = h0 − h1 ±1 h2 ±2 · · · ±n−3 hn−2 ±n−2 hn−1 − hn

and such that

w+(− ,~h) = h0 − h1 ±1 h2 ±2 · · · ±n−3 hn−2 ±n−2 hn−1 + hn.

For each positive integer i 6 n− 2 let ∓i := −±i. And now de�ne ~p :=
〈h0, h1, h2, . . . , hn−2, hn−1, . . .〉 and ~s := 〈h1,±1h2, h3, . . . , hn−1, hn, . . .〉.
Both ~p and ~s are sequences in Z∞.

By the inductive hypothesis there exists u ∈ F σ(n) such that

u(− , ~p) = h0 − h1 ±1 h2 ±2 · · ·hn−2 ±n−2 hn−1.
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Let w− := ux0� . Then, with ordinary terminology when convenient,

w−(− ,~h) = (uxn•)(− ,~h) = (u(− , ~p))−hn = h0−h1±1· · ·±n−2hn−1−hn .

Again by the inductive hypothesis there exists v ∈ F σ(n) such that

v(− , ~s) = h1 − (±1h2)∓2 h3 ∓3 · · · ∓n−2 hn−1 − hn.

Let w+ := x0v� . Then

w+(− ,~h) = (x0v1•)(− ,~h) = h0 − (v(− , ~s)) =

h0 − (h1 − (±1h2)∓2 h3 ∓3 · · · ∓n−2 hn−1 − hn) =

h0 − h1 ±1 h2 ±2 h3 ±3 · · · ±n−2 hn−1 + hn.

The theorem follows.

Corollary 3.4 applies to each groupoid 〈G; �〉. If |F σ(k)/ ≈� | < C(k)
then |F σ(j)/ ≈� | < C(j) for all j > k.

The subtraction of integers is an issue for the very young. Surely one
ought to be able to settle every relevant question about the groupoid 〈Z; −〉.

Theorem 3.6 suggests further scrutiny. Since the average size

C(k)
2k−2

of the equivalence classes [w]− ∈ F σ(k)/ ≈− increases without bound as
k increases, it is reasonable to wonder how the sizes of those equivalence
classes are distributed

De�nition 3.7. For each k > 2 we say that the sequence 〈 〈νk(i), i〉 〉∞i=1 in
ω×N is the size sequence for k of 〈Z; −〉 when F σ(k)/ ≈− contains exactly
νk(i) member sets of size i, for each i ∈ N.

Of course in any size sequence, νk(i) > 0 for only �nitely many i. For a
size sequence we list only those terms with positive �rst coordinates.

Here are the size sequences and other relevant numerical data about
F σ(k)/ ≈− for the cases k ∈ {4, 5, 6}:

|F σ(4)| = 5 and |F σ(4)/ ≈− | = 4. Size sequence: 〈3, 1〉, 〈1, 2〉.
|F σ(5)| = 14 and |F σ(5)/ ≈− | = 8. Size sequence: 〈4, 1〉, 〈3, 2〉, 〈1, 4〉 .
|F σ(6)| = 42 and |F σ(6)/ ≈− | = 16. Size sequence: 〈5, 1〉, 〈3, 2〉,

〈4, 3〉, 〈2, 4〉, 〈1, 5〉, 〈1, 6〉.
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Problem 3.8. Specify the size sequences of 〈Z; −〉 for each k > 2.

Observe that a groupoid 〈G; �〉 is completely free if and only if |F σ(k)| =
|F σ(k)/ ≈� | for all k ∈ N .

Suggestive Example 5: Let the binary operation / on the set 2 := {0, 1} be
given by 0t/ := 1 and 1t/ := 0 for each t ∈ 2.

It is easily checked that the groupoid, 〈2; /〉, is antiassociative. Hence,
F σ(3)/ ≈/ = { {x0x1x2 • •}, {x0x1 • x2 •} } . F σ(4)/ ≈/ := {A,B} where
|A| = 3 and |B| = 2. In fact

A = {x0x1 • x2 • x3 •, x0x1x2 • x3 • •, x0x1x2x3 • • •},
B = {x0x1x2 • •x3 •, x0x1 • x2x3 • •}.

F σ(5)/ ≈/ = {C,D}, where C contains 8 of the elements in F σ(5) while
D contains the other 6 formal 5�products.

Theorem 3.9. |F σ(k)/ ≈/ | = 2 for all k > 3.

Proof. Choose k > 3. Our �test sequence� is ~0 := 〈0, 0, . . .〉. For w ∈ F σ(k)
we write w ∈ Ak to mean that w(/ ,~0) = 0, and we de�ne Bk := F σ(k)\Ak.

For every positive integer pair 〈i, j〉 such that i + j = k, we have that
AiF

σ(j)� ⊂ Bk. Indeed

k−1⋃
i=1

AiF
σ(k − i)� = Bk

and similarly
k−1⋃
i=1

BiF
σ(k − i)� = Ak.

So {Ak, Bk} is a partition of F σ(k), since

F σ(k) =
k−1⋃
i=1

F σ(i)F σ(k − i)� =
k−1⋃
i=1

(Ai∪̇Bi)F σ(k − i)� = Bk∪̇Ak.

It remains only to show that we were wise in our choice of ~0 as a test
sequence in 2∞. For an arbitrary pair u and v of formal k�products we
must prove that u(/,~0) = v(/ ,~0) ⇒ u ≈/ v . So, pick any ~g ∈ 2∞.

Recall that u = p0s0� for a unique pair 〈p0, s0〉 ∈ F σ × F σ. Likewise
there is a unique 〈p1, s1〉 ∈ F σ × F σ with p0 = p1s1�. Proceeding, we
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obtain a unique descending sequence of formal product pre�xes of u. There
exists λ := λ(u) ∈ N for which pλ is the �nal and shortest term 6= x0 of the
sequence. Notice that pλ(/ ,~g) = g0 where 0 := 1 and 1 = 0. Furthermore,

u = pλsλ � sλ−1 � · · · � s1 � s0 � .

Thus we see that u(/ ,~g) = g0 if the integer λ(u) is even, but that u(/ ,~g) =
g0 if λ(u) is odd. A parallel analysis holds for v . Thus u(/ ,~g) = v(/ ,~g)
if and only if u(/ ,~0) = v(/ ,~0) .

So now, for {u,v} ⊆ F σ(k), we see that

u ≈/ v ⇔ u(/ ,~0) = v(/ ,~0) ⇔ λ(u) + λ(v) is even ⇔

({u,v} ⊆ Ak ∨ {u,v} ⊆ Bk) .

The theorem follows.

Theorem 3.9 generalizes to an in�nite class of antiassociative groupoids
〈n; δ̂〉 for 2 6 n ∈ N. Indeed, the groupoid in Theorem 3.9 is the smallest
example of the sort we will call �vertically deranged�.

The expression Sym(G) denotes the collection of all permutations on
the set G. And Drn(G) denotes the set of all derangements of G, which are
those f ∈ Sym(G) such that x 6= xf for every x ∈ G, where xf denotes the
image � often written f(x) � of x under the function f .

We call a groupoid 〈G; δ̂〉 vertically deranged if there is a derangement
δ ∈ Drn(n) such that xyδ̂ := xδ for every 〈x, y〉 ∈ n × n, and we say that
δ induces δ̂ . Remarks analogous to those below apply to the horizontally
deranged groupoid 〈G; δ̌〉 where xyδ̌ := yδ .

Theorem 3.10. Every vertically deranged groupoid is antiassociative.

Proof. Let 〈G; δ̂〉 be vertically deranged via some δ ∈ Drn(G). Let ~g ∈ G3.
Then g0g1g2δ̂δ̂ = g0g1δδ̂ = g0δ 6= g0δδ = g0g1δ̂δ = g0g1δ̂g2δ̂.

In the interest of maximizing the size of the families F σ(k)/ ≈� induced
by the groupoids 〈n; �〉 for a �xed n ∈ N, it seems prudent �rst to con-
sider those 〈n; �〉 which are antiassociative. The vertically deranged 〈n; �〉
constitute a convenient class of �nite antiassociative groupoids.

If 2 6 n ∈ N and if δ is a cyclic permutation of n, then for i ∈ ω it is
evident that δi ∈ Drn(n) if and only if i is not a multiple of n.
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Theorem 3.11. Let 2 6 n ∈ N. Let δ ∈ Sym(n) be cyclic. Then

|F σ(k)/ ≈δ̂ | = min{k − 1, n}.

Proof. By Theorem 3.9 we can take it that n > 3.
Let k ∈ {2, . . . , n}. Pick w ∈ F σ(k) and ~g := 〈g0, g1, g2, . . .〉 ∈ n∞.
Claim One: w(δ̂, ~g) = g0δ

i for some positive integer i < k.
First, for k = 2 observe that (x0x0�)(δ̂, ~g) = g0g1δ̂ := g0δ =: g0δ

1.
Choose k > 3. Suppose that whenever 2 6 j < k,

u ∈ F σ(j) ⇒ u(δ̂, ~g) = g0δ
t

for some t ∈ {1, 2, . . . , j − 1}. Factor w in 〈F σ,�〉: w = ps�. Since p ∈
F σ(j) for some j < k, by hypothesis there exists t with 1 6 t 6 j − 1 such
that p(δ̂, ~g) = g0δ

t. From earlier calculations, (ps�)(δ̂, ~g) = p(δ̂, ~g) s(δ̂,~b)δ̂,
where ~b := 〈gj , gj+1, . . .〉. So w(δ̂, ~g) = p(δ̂, ~g) s(δ̂, ~g)δ̂ = p(δ̂, ~g)δ = g0δ

tδ =
g0δ

t+1. Furthermore, t + 1 6 j 6 k − 1. Claim One is established.
Claim Two: Since k 6 n, for every i < k there exists v ∈ F σ(k) such

that v(δ̂, ~g) = gi
0.

Pick an appropriate i. Let v := x0x1 • x2 • x3 • · · · • xi−1 • r� where
r ∈ F σ(k − i). Then v(δ̂, ~g) =

g0g1δ̂g2δ̂ · · · δ̂gi−2δ̂gi−1δ̂δ = g0δg2δ̂ · · · gi−2δ̂gi−1δ̂δ =

g0δ
2g3δ̂ · · · δ̂gi−1δ̂δ = · · · = g0δ

i−1δ = g0δ
i.

Claim Two is established.
If k > n + 1 then δk−1 = δj for some j ∈ {1, 2, . . . , n}. In the light of

Claims One and Two each of the n distinct elements g0δ
j ∈ n determines

a distinct equivalence class [w]δ̂ ∈ F σ(k)/ ≈δ̂, and all of the elements in
F σ(k)/ ≈δ̂ are thus determined if k > n.

Corollary 3.12. If C(k) > n then there exist distinct formal k�products u
and v such that u ≈δ̂ v.

Proof. |F σ(k)| = C(k). Therefore if C(k) > n then the pigeonhole principle
applies, since |F σ(k)/ ≈δ̂ | 6 n by Theorem 3.11.

Conjecture 3.13. No �nite groupoid is completely free.

Under the assumption that our conjecture is correct, it becomes relevant
to raise the following question:

Problem 3.14. Given 2 6 n ∈ N, what is the smallest integer τ(n) such

that, for every integer k > τ(n) and for every groupoid 〈n; �〉, there exist

elements a 6= b in F σ(k) for which a ≈� b ?
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4. k�Anti-Associativity

In RPN an ordered triple 〈x, y, z〉 of elements in G associates under µ i�
xyµzµ = xyzµµ. RPN confers other conveniences besides relieving us of
parenthesis jungles. We use it to express the complex products involving
the nonassociative binary operations of concern in this section.

If the groupoid 〈G;µ〉 happens to be a semigroup then, for every pair
{p, s} ⊆ F σ(k) of formal k�products, we get that p(µ,~g) = s(µ,~g) whenever
~g ∈ G∞. That is, in a semigroup, all formal k�products are µ�equivalent.
So we focus on non-semigroups. We seek groupoids which are, indeed, �as
anti-associative as possible�. The following remarks elaborate.

The concept of k�anti-associativity, as it pertains to a groupoid 〈G;µ〉,
is trivial for 1 6 k 6 2. Henceforth we take it that k > 3.

〈G;µ〉 is 3�anti-associative i� xyzµµ 6= xyµzµ for every ordered triple
〈x, y, z〉 ∈ G3. Theorem 3.10, and a comment preceding it on horizontal
derangements, provides 2 · |Drn(n)| distinct 3�anti-associative groupoids
on the set n, when 2 6 n ∈ N .

〈G;µ〉 is 4�anti-associative i�, for every ~g := 〈g0, g1, g2, g3, . . .〉 ∈ G∞,
the subset,

{g0g1g2g3µµµ, g0g1g2µg3µµ, g0g1µg2g3µµ, g0g1g2µµg3µ, g0g1µg2µg3µ},

of G is 5�membered. If 〈G;µ〉 is 4�anti-associative, clearly |G| > 5 .
Do there exist 4�anti-associative groupoids?

De�nition 4.1. 〈G;µ〉 is k�anti-associative i� u(µ,~g) 6= v(µ,~g) for all
〈u,v, ~g〉 ∈ F σ(k)× F σ(k)×G∞ with u 6= v.

Theorem 4.2. The groupoid 〈F σ;�〉 is k�anti-associative if k > 3.

Proof. Fix k > 3. We normally use 〈F σ;�〉 as a tool for evaluating the sub-
associativity of other groupoids. Since our argument here requires 〈F σ;�〉
itself to be evaluated, we relabel this groupoid qua instrument in order to
distinguish it from the same groupoid qua entity scrutinized.

〈F σ;�〉 is the tool version; its elements are words in the alphabet
{•, x0, x1, x2, . . .}. Let ~g := 〈g0,g1,g2, . . .〉 ∈ (F σ)∞ be any in�nite se-
quence of �nite formal products. We must prove that u(�, ~g) 6= v(�, ~g) for
every {u,v} ⊆ F

σ(k) with u 6= v.
For {r, s} ⊆ F σ, recall that r = s i� r and s are spelled alike as �nite

words in the in�nite alphabet {•, x0, x1, x2, . . .}, in which event there exists
j ∈ N such that {r, s} ⊆ F σ(j) .
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Now choose any 〈u,v〉 ∈ F
σ(k) × F

σ(k) such that u 6= v . Obviously
|u(�, ~g)| = |v(�, ~g)|. So, in order to prove that u(�, ~g) 6= v(�, ~g), we must
show that the words u(�, ~g) and v(�, ~g) are spelled di�erently.

The following remarks should be viewed in the light of De�nition 2.2 and
the material between that de�nition and the statement of Theorem 2.3.

Among the possibly many occurrences of the letter • in the word
u(�, ~g) ∈ F σ ⊆ {•, x0, x1, x2, . . .}∗ are exactly k − 1 of them which de-
rive from transformations of � into • . The same is true of the word
v(�, ~g) ∈ F σ . We tag those crucial occurrences of • in order to keep
track of them: We write them as •′.

If we removed all of the k− 1 occurrences of •′ from u(�, ~g) , and all of
the k − 1 occurrences of •′ from v(�, ~g), then the two resulting shortened
words would be identical. It is the di�ering placements of those k−1 vagrant
tagged •′ in u(�, ~g) and in v(�, ~g) that make the two words di�er in their
spellings. We now establish this orthographic distinction.

Since by hypothesis u 6= v , there is a smallest integer m for which
m = |pu| = |pv|, but for which pu 6= pv, where pu and pv are pre�xes
respectively of u and v. Let pu be the pre�x that is generated in u(�, ~g)
from pu under the mapping u 7→ u(�, ~g). Let pv be similarly obtained
from pv.

Since surely both u and v have x0 as a pre�x, we have that m > 2.
Furthermore, by our choice of m, if q is a pre�x of pu with |q| = m − 1,
then q is a pre�x also of pv. Therefore the length-one su�x of pu di�ers
from the length-one su�x of pv.

Without loss of generality we suppose that pu has • as its length-one
su�x. Then pu has •′ as its length-one su�x. Moreover, pv has some xc

as its length-one su�x. There are two cases.

Case: gc = x0. Then |pu| = |pv| and pv has a length-one su�x of
the sort xd 6∈ {•′, •}. So the length�|pu| pre�x of u(�, ~g) di�ers from the
length�|pu| pre�x of v(�, ~g), whence u(�, ~g) 6= v(�, ~g) .

Case: |gc| > 3, and so |pu| < |pv|. Then the length�|pu| pre�x of
v(�, ~g) has some xd 6∈ {•′, •} as its length-one su�x. So the words u(�, ~g)
and v(�, ~g) have distinct length�|pu| pre�xes, and are therefore themselves
distinct.

These cases are exhaustive, and in both cases u(�, ~g) 6= v(�, ~g).

Illustrative Example 6: Let g0 := x0x1• and g1 := g2 := x0 and g3 :=
x0x1 • x2 • be the �rst four terms in a sequence ~g ∈ (F σ)∞ of formal
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products. Consider the actions on ~g of two elements u and v in the set
F

σ(4) ; to wit, the words u := x0x1•x2x3• • and v := x0x1x2x3• • • .
Now u(�, ~g) = g0g1 � g2g3 � � = x0x1 • x0 � x0x0x1 • x2 • �� =

x0x1 • x2 •′ x0x1x2 • x3 • •′� = x0x1 • x2 •′ x3x4x5 • x6 • •′•′ , with the
tags ′ appended to those instances in the word u(�, ~g) of the letter • which
came from transformed operator symbols �, which in their turn replaced
the occurrences of the letter • in the word u. In summary,

u(�, ~g) = x0x1 • x2 •′ x3x4x5 • x6 • •′ •′ .

Likewise, v(�, ~g) = g0g1g2g3 ��� , and so eventually

v(�, ~g) = x0x1 • x2x3x4x5 • x6 • •′ •′ •′ .

Notice: u(�, ~g) 6= v(�, ~g) because the •′ occur di�erently in each word.

Since 〈F σ;�〉 achieves the theoretical extreme of anti-associativity, and
since in a semigroup everything is k�associative for every k, we imagine a
hierarchy of groupoids between these extremes. Of course, the set F σ is
in�nite, rendering anti-associativity fairly straightforward to produce.

Recall that |F σ(k)| = C(k) . Thus

Theorem 4.3. If C(k) > n, no groupoid 〈n; �〉 is k�anti-associative. So,

no �nite groupoid is k�anti-associative for every k ∈ N.

Problem 4.4. For each k > 3 is there some n := n(k) ∈ N and some

β : n× n → n such that the groupoid 〈n;β〉 is k�anti-associative?

Our inquiry re�nes and extends in natural ways. Here is one:
For integers n > 2 and k > 3 and a binary operation � : n2 → n let

Ψ(n, k, �) := |{~g|̀k : ~g ∈ n∞ ∧ ∀{u,v} ⊆ F σ(k) (u(�, ~g) = v(�, ~g) )}|.

Given an arbitrary rational number q ∈ [0, 1] does there exist a relevant
triple 〈n, k, �〉 such that

q =
Ψ(n, k, �)

nk
?
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