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Skew endomorphisms on n-ary groups

Nikolay A. Shchuchkin

Abstract

Let x(k) denote this element of an n-ary group G which is skew to x(k−1), where k > 1

and x(0) = x. We �nd the identities de�ning the variety of all n-ary groups for which the
operation (k)

: x 7→ x(k) is an endomorphism.

1. Introduction

According to the general convention used in the theory of n-ary systems
the sequence of elements xi, xi+1, . . . , xj will be denoted by xj

i . In the case
j < i it will be the empty symbol. If xi+1 = xi+2 = . . . = xi+t = x, then

instead of xi+t
i+1 we shall write

(t)
x . In this convention f(x1, . . . , xn) = f(xn

1 )
and

f(x1, . . . , xi, x, . . . , x︸ ︷︷ ︸
t

, xi+t+1, . . . , xn) = f(xi
1,

(t)
x , xn

i+t+1).

If m = k(n− 1) + 1, then the m-ary operation g of the form

g(xk(n−1)+1
1 ) := f(f(..., f(f︸ ︷︷ ︸

k

(xn
1 ), x2n−1

n+1 ), ...), xk(n−1)+1
(k−1)(n−1)+2)

will be denoted by f(k). In certain situations, when the arity of g does not
play a crucial role or when it will di�er depending on additional assump-
tions, we will write f(.) to mean f(k) for some k = 1, 2, ....

For n > 3, there are several equivalent de�nitions of an n-ary group (see
for example, [2], [6], [8], [10]). The de�nition given in [1] generalizes the
de�nition of a binary group as follows:

The algebra 〈G, f〉 with the n-ary operation f is called an n-ary group

if for every i = 1, 2, . . . , n the following two conditions are satis�ed:
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1. the operation f satis�es the general associative law:

f(f(xn
1 ), x2n−1

n+1 ) = f(xi
1, f(xi+n

i+1 ), x2n−1
i+n+1), (1)

2. the equation f(ai−1
1 , x, an

i+1) = b has a unique solution x ∈ G for all
a1, . . . , ai−1, ai+1, . . . , an, b ∈ Gn.

An algebra 〈G, f〉 satisfying (1) for all i = 1, 2, . . . , n is called an n-ary
semigroup.

In an n-ary group 〈G, f〉 the solution z of the equation

f(
(n−1)

x , z) = x,

is denoted by x and is called the skew element of x.
One can prove (see for example [1]) that

f(
(i−1)
x , x,

(n−i)
x ) = x, 1 6 i 6 n,

f(y
(n−j−1)

x , x,
(j−1)

x ) = y, 1 6 j 6 n− 1 (2)

f(
(i−1)
x , x,

(n−i−1)
x , y) = y, 1 6 i 6 n− 1 (3)

for all x, y ∈ G.
Identities (1), (2) and (3) can be used as identities de�ning the variety

of all n-ary groups (see [2], [6], [8], [10]).

For example, in [6] the following theorem is proved.

Theorem 1.1. An n-ary (n > 2) semigroup 〈G, f〉 with the unary operation

: x → x is an n-ary group if and only if the identities (2) and (3) hold in

G for some 1 6 i, j 6 n− 1.

Following Post [11], we say that two sequences an−1
1 and b

k(n−1)
1 of ele-

ments of G are equivalent in an n-ary group 〈G, f〉 if the equation

f(x, an−1
1 ) = f(k)(x, b

k(n−1)
1 ) (4)

is valid for some x ∈ G.

Lemma 1.2. If in an n-ary group 〈G, f〉 the sequences an−1
1 and b

k(n−1)
1

are equivalent, then the equation (4) is valid for all x ∈ G.
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Proof. Indeed, if this equality holds for some x, an−1
1 , b

k(n−1)
1 ∈ G, then

f(y,
(n−3)

x , x, f(x, an−1
1 )) = f(y,

(n−3)
x , x, f(k)(x, b

k(n−1)
1 ))

is valid for all y ∈ G. Whence, according to the associativity of f , we obtain

f(f(y,
(n−3)

x , x, x), an−1
1 ) = f(k)(f(y,

(n−3)
x , x, x), bk(n−1)

1 ).

This, by (2), implies

f(y, an−1
1 ) = f(k)(y, b

k(n−1)
1 ),

which completes the proof.

2. Skew endomorphisms

W. A. Dudek posed in ([5]) several problems on the operation : x → x on
n-ary groups. He asks (see also [4]) when this operation is an endomorphism,
i.e., in which n-ary groups the identity

f(xn
1 ) = f(x1, x2, . . . , xn) (5)

is satis�ed.

The partial answer was given in [5]. Other answer is given in [13].
Namely, in [13] the following theorem is proved.

Theorem 2.1. The operation : x → x is an endomorphism of an n-ary
group 〈G, f〉 if and only if

f(f(x,
(n−1)

u , y), . . . , f(x,
(n−1)

u , y),
(2)
u ) =

f(
(n−1)

y , f(u, f(x,
(n)
u ), . . . , f(x,

(n)
u ), x, u), u)

and

f(
n
u, f(

n−1
x , u, u)) = f(f(

n−1
x , u, u),

n
u)

hold for all x, y, u ∈ G.

It is clear that : x → x is an endomorphism in all commutative n-ary
groups. Obviously, it is an endomorphism in all idempotent (also non-
commutative) n-ary groups. Gªazek and Gleichgewicht proved in [9] that
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it is an endomorphism in all medial n-ary groups, i.e., in n-ary groups
satisfying the identity

f({f(xin
i1 )}i=n

i=1 ) = f({f(xni
1i )}i=n

i=1 ). (6)

One can prove (see [2]) that an n-ary group 〈G, f〉 is medial if there exists
an element a ∈ G such that

f(x,
(n−2)

a , y) = f(y,
(n−2)

a , x) (7)

holds for all x, y ∈ G.
Using (7) and the associativity of the operation f it is not di�cult to

verify that the following theorem is true.

Theorem 2.2. Each medial n-ary group satis�es the identity

f(n−1)(x1,
(n−2)
x2 ,

(n−2)
x3 , . . . ,

(n−2)
xn+1, xn+2) =

f(x1, f(xn+1, xn,..., x2), . . . , f(xn+1, xn,..., x2)︸ ︷︷ ︸
n−2 times

, xn+2). (8)

The identity (8) describes the class of n-ary groups for which : x → x
is an endomorphism.

Theorem 2.3. The operation : x → x is an endomorphism of an n-ary
group 〈G, f〉 if and only if 〈G, f〉 satis�es (8).

Proof. Let : x → x be an endomorphism of an n-ary group 〈G, f〉, i.e., let
(5) be satis�ed. Then, according to (2) and (3), for any xn+2

2 ∈ G we have

f(n−1)(f(xn+1, xn, . . . , x2),
(n−2)
x2 ,

(n−2)
x3 , . . . ,

(n−2)
xn+1, xn+2) = xn+2

and

f(f(xn+1, xn,..., x2), f(xn+1, xn,..., x2), . . . , f(xn+1, xn,..., x2)︸ ︷︷ ︸
n−2 times

, xn+2)=xn+2

for all elements xn+1
2 ∈ G, which, by (5), means that the sequences

(n−2)
x2 ,

(n−2)
x3 ,...,

(n−2)
xn+1, xn+2 and f(xn+1, xn, ..., x2),..., f(xn+1, xn, ..., x2)︸ ︷︷ ︸

n−2 times

, xn+2

are equivalent. So, in view of Lemma 1.1, the equality (8) is valid for
all xn+1

1 ∈ G.
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Conversely, let (8) be satis�ed in an n-ary group 〈G, f〉. Then putting
x1 = f(y1, y2, . . . , yn), xn+2 = f(yn

1 ) and xk = yn+2−k for 2 6 k 6 n+1 we
see that the left hand side of (8) has the form

f(n−1)(f(y1, y2, . . . , yn),
(n−2)
yn ,

(n−2)
yn−1, . . . ,

(n−2)
y1 , f(yn

1 )) = f(yn
1 ).

On the right side of (8) we obtain

f(f(y1, y2, . . . , yn), f(yn
1 ), . . . , f(yn

1 )︸ ︷︷ ︸
n−2 times

, f(yn
1 )) = f(y1, y2, . . . , yn).

So, f(yn
1 ) = f(y1, y2, . . . , yn) for all yn

1 ∈ G. This completes the proof.

This theorem proves that the converse of Theorem 2.2 is not true. In-
deed, in any idempotent n-ary group the operation : x → x is the identity
endomorphism but not any idempotent n-ary group is medial [11].

Let x (k) be the skew element to x (k−1), where k > 1 and x(0) = x, i.e.,
let x (1) = x, x (2) = x, and so on. If : x → x is an endomorphism of an
n-ary group 〈G, f〉, then obviously (k) : x → x (k) is an endomorphism too.
In some cases it is an automorphism (see [4] and [5]). However, the converse
is not true. For example, in all ternary groups x = x, i.e., the operation

(2) : x → x is the identity endomorphism, but in a ternary group 〈S3, f〉
de�ned on the symmetric group S3, where f is the composition on three
permutations, we have

f((12), (13), (123)) 6= (132) = f((12), (13), (132)).

Hence : x → x is not an endomorphism of this group.

Since in ternary groups x = x for all x, we have x (k) = x if k is even,
and x (k) = x if k is odd. Therefore, the operation (k) : x → x (k) is the
identity endomorphism or coincides with the operation : x → x. From
the last theorem it follows that : x → x is an endomorphism of a ternary
group if and only if this group is medial. In this case : x → x is an
automorphism.

Other important properties of operations (k) : x → x (k) in n-ary groups
satisfying some additional properties are described in [3] and [4].

Following Post [11] an n-ary power of an element x in an n-ary group

〈G, f〉 is de�ned as x<0> = x and x<k+1> = f(
(n−1)

x , x<k>) for all k > 0.
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In this convention x<−k> means z ∈ G such that f(x<k−1>,
(n−2)

x , z) =
x<0> = x.

It is not di�cult to verify that the following exponential laws hold

f(x<s1>, x<s2>, . . . , x<sn>) = x<s1+s2+...+sn+1>,

(x<r>)<s> = x<rs(n−1)+s+r> = (x<s>)<r>.

Using the above laws we can see that x = x<−1> and, consequently

x (2) = (x<−1>)<−1> = x<n−3>,

x (3) = ((x<−1>)<−1>)<−1>,

and so on. Generally: x (k) = (x (k−1))<−1> for all k > 1. This implies
(see [3] or [4]) that x (k) = x<Sk> for

Sk = −
k−1∑
i=0

(2− n)i =
(2− n)k − 1

n− 1
.

For even k we have Sk = (n−2)k−1
n−1 . Hence

x (k) = f(·)(
((n−2)k)

x ) (9)

for even k. In particular x = x<n−3> = f(n−3)(
((n−2)2)

x ). Thus the operation
(k) : x → x (k) coincides with the operation <Sk> : x → x<Sk>. So, the

operation (k) : x → x (k) is an endomorphism if and only if

f(xn
1 )<Sk> = f(x<Sk>

1 , x<Sk>
2 , . . . , x<Sk>

n )

is valid for all xn
1 ∈ G. This implies

Theorem 2.4. For even k the operation (k) : x → x (k) is an endomor-

phism of an n-ary group 〈G, f〉 if and only if the identity

f(·)(f(xn
1 ), . . . , f(xn

1 )︸ ︷︷ ︸
(n−2)k

) = f(·)(
((n−2)k)

x1 ,
((n−2)k)

x2 , . . . ,
((n−2)k)

xn )

is satis�ed.
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Theorem 2.5. For odd k the operation (k) : x → x (k) is an endomorphism

of an n-ary group 〈G, f〉 if and only if the identity

f(·)(x1,
((n−2)k)

x2 ,
((n−2)k)

x3 , . . . ,
((n−2)k)
xn+1 , xn+2) =

f(·)(x1, f(xn+1, xn, . . . , x2), . . . , f(xn+1, xn, . . . , x2)︸ ︷︷ ︸
(n−2)k

, xn+2), (10)

is satis�ed.

Proof. Let k be odd and let (k) : x → x (k) be an endomorphism of an
n-ary group 〈G, f〉. From (2), (3) we get

f(·)(y,
((n−2)k)

x ,
((n−2)k−1)

x ) = f(·)(y,
(n−2)

x , x , . . . ,
(n−2)

x , x ) = y, (11)

f(·)(
((n−2)k−1)

x ,
((n−2)k)

x , y) = f(·)( x ,
(n−2)

x , . . . , x ,
(n−2)

x , y) = y. (12)

Consequently

f(·)(f(·)(
((n−2)k−1)

xn+1 ,
((n−2)k−1)

xn , . . . ,
((n−2)k−1)

x2 ),
((n−2)k)

x2 , . . . ,
((n−2)k)
xn+1 , xn+2) = xn+2

and

f(·)(f(xn+1, xn, . . . , x2), . . . , f(xn+1, xn, . . . , x2)︸ ︷︷ ︸
(n−2)k−1

,

f(xn+1, xn, . . . , x2), . . . , f(xn+1, xn, . . . , x2)︸ ︷︷ ︸
(n−2)k

, xn+2) = xn+2.

Since k − 1 is even, by (9) we have x (k) = (x)
(k−1)

= f(·)(
((n−2)k−1)

x ) for all
x ∈ G. Thus

f(xn+1, xn, . . . , x2)
(k)

= f(·)(f(xn+1, xn, . . . , x2), . . . , f(xn+1, xn, . . . , x2)︸ ︷︷ ︸
(n−2)k−1

)

and

f(·)(
((n−2)k−1)

xn+1 ,
((n−2)k−1)

xn , . . . ,
((n−2)k−1)

x2 ) = f(·)(x
(k)
n+1, x

(k)
n , . . . , x

(k)
2 ),
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whence

f(·)(
((n−2)k−1)

xn+1 ,
((n−2)k−1)

xn , . . . ,
((n−2)k−1)

x2 ) =

f(·)(f(xn+1, xn, . . . , x2), . . . , f(xn+1, xn, . . . , x2)︸ ︷︷ ︸
(n−2)k−1

).

This, together with the above two identities containing xn+2, means
that the sequences:

((n−2)k)
x2 ,

((n−2)k)
x3 , . . . ,

((n−2)k)
xn+1 , xn+2

and

f(xn+1, xn, . . . , x2), . . . , f(xn+1, xn, . . . , x2)︸ ︷︷ ︸
(n−2)k

, xn+2

are equivalent. Hence, by Lemma 1.2, the equality (10) is valid for all
xn+2

1 ∈ G.

On the other hand, if (10) is valid for all xn+2
1 ∈ G, then for

x1 = f(·)(
((n−2)k−1)

y1 ,
((n−2)k−1)

y3 , . . . ,
((n−2)k−1)

yn ),

xk = yn+2−k, for k = 2, 3, . . . , n + 1,

xn+2 = f(·)(f(yn
1 ), f(yn

1 ), . . . , f(yn
1 )︸ ︷︷ ︸

(n−2)k−1

) = f(·)(
((n−2)k−1)

f(yn
1 ) ),

it has the form

f(·)(f(·)(
((n−2)k−1)

y1 , . . . ,
((n−2)k−1)

yn ),
((n−2)k)

yn , . . . ,
((n−2)k)

y2 ,
((n−2)k)

y1 , f(·)(
((n−2)k−1)

f(yn
1 ) ) =

f(·)(f(·)(
((n−2)k−1)

y1 , . . . ,
((n−2)k−1)

yn ),
((n−2)k)

f(yn
1 ) , f(·)(

((n−2)k−1)

f(yn
1 ) )).

Whence, applying (11) and (12), we obtain

f(·)(
((n−2)k−1)

f(yn
1 ) ) = f(·)(

((n−2)k−1)

y1 , . . . ,
((n−2)k−1)

yn ).
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But, by (9), for all y ∈ G we have f(·)(
((n−2)k−1)

y ) = (y)
(k−1)

= y (k). Thus,
the last identity implies

f(yn
1 )

(k)
= f(y (k)

1 , y
(k)
2 , . . . , y (k)

n ).

Therefore, (k) : x → x (k) is an endomorphism.

Note that for any �nite n-ary group there exists a natural number m
such that x (m) = x holds for all x ∈ G. The same holds also in some
in�nite n-ary groups (see for example [3]). In these groups endomorphisms

(k) : x → x (k) are automorphisms.
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