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Advances in loop rings and their loops

Edgar G. Goodaire

Dedicated to the Memory of D. A. Robinson

Abstract

We describe some of the advances in the theory of loops whose loop rings satisfy �inter-
esting� identities that have taken place in the past ten years.

1. Introduction
Let L be a loop and R a commutative associative ring with 1. The loop
ring RL is constructed in precisely the same way the group ring would be
constructed if L were associative. Of special signi�cance is the fact that
each α ∈ RL can be represented uniquely in the form α =

∑
`∈L α``, with

the α` ∈ R almost all 0.
While historically, loop rings made an occasional appearance in the lit-

erature, notably with a semisimplicity result of Bruck [2] (a nonassociative
version of the theorem of Maschke for group rings), and a proof by Paige
that in most characteristics, a commutative power associative loop algebra
is a group algebra [31], nonassociative loop rings1 appear to have been lit-
tle more than a curiosity until the 1980s when the author found a class of
nonassociative Moufang loops whose loop rings satisfy the alternative laws.

In 1998, at the �fteenth Brazilian �Escola de Álgebra� held that summer
in Canela, I gave a talk on the history of loop rings, such as the subject
was at that time [13]. �Loops '07� presents a natural forum for an update,
which is the subject of this paper. Much of the work described here is joint
with Orin Chein or César Polcino Milies.
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1In this paper, �nonassociative� always means �not associative.�
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2. Alternative loop rings
Alternative rings are those satisfying

the right alternative law (yx)x = yx2

and
the left alternative law x(xy) = x2y

and can be thought of as the ring-theoretic analogues of Moufang loops. For
instance, the subring of an alternative ring generated by any two elements
is associative (this property is called diassociativity). Moreover, alternative
rings satisfy the familiar

right Moufang identity (xy · z)y = x(y · zy)

and
left Moufang identity (xy · x)z = x(y · xz).

Thus, if RL is an alternative ring, then L is a Moufang loop. The converse
is certainly not true, in general. It is not hard to see that the repeated
variable in a Moufang identity makes it unlikely to linearize to the ring RL.
On the other hand, some Moufang loops do have alternative loop rings.
Those that have alternative loop rings in any characteristic are called RA
loops. Such loops are well understood.

Let G be any nonabelian group with an involution g 7→ g∗ satisfying
gg∗ ∈ Z(G), the centre of G, for all g ∈ G. Let u be an indeterminate and
let L be the set G ∪ Gu. Extend the multiplication from G to L via the
rules

g(hu) = (hg)u

(gu)h = (gh∗)u

(gu)(hu) = g0h
∗g

for g, h ∈ G, where u2 = g0 is central in G and g∗0 = g0.
If L is RA, then L has form M(G, ∗, g0). Moreover,

• G has a unique nonidentity commutator, always denoted s, which is
a unique nonidentity commutator and associator in L,
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• both G and L have what is known as

the LC property: ab = ba if and only if a or b or ab is central

and

• the involution on G takes the form

g∗ =

{
g if g ∈ Z(G)
sg otherwise.

(1)

These properties were �rst found by Orin Chein and the author [7] and are
fully described in a monograph written with Eric Jespers and César Polcino
Milies [15].

With a hint at what was to come in other varieties, it soon became clear
that by restricting the coe�cient ring to characteristic 2, many more loops
have alternative loop rings. Calling such loopsRA2, those with the structure
M(G, ∗, g0) have been classi�ed [13, 11], although there are indeed RA2
loops not of this form. The smallest is the one Chein denotes M32(B, 5).

Suggestion 1. (Reasonable) Find more classes of RA2 loops.

Suggestion 2. (Optimistic) Classify RA2 loops.

3. Strongly right alternative loop rings
A right alternative ring is a ring which satis�es the right alternative law. In
characteristic di�erent from 2, it is not hard to show that a right alternative
ring satis�es

the right Bol identity (xy · z)y = x(yz · y).

It has long been known that a �nite dimensional simple right alternative
algebra with 1 is alternative [1]. This fact, together with Bruck's version
of Maschke's theorem referenced earlier, allowed Chein and the author to
conclude that in characteristic di�erent from 2, when the loop is �nite,
a right alternative loop algebra must be alternative [8]. Later, Kenneth
Kunen removed the restriction on �niteness and placed whatever theory
might develop for right alternative loop rings squarely within the context
of characteristic 2 [27], a rather idiosyncratic characteristic since it is the
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only characteristic in which the right Bol identity is not a consequence of
the right alternative law. In fact, Kunen has even found a right alternative
loop ring which does not satisfy the right Bol identity. Since such rings are
bizarre (and probably to be avoided), we say that a loop ring RL is strongly
right alternative and the loop L is SRAR (for strongly right alternative ring)
if RL satis�es the right Bol identity, but not the left, (x · yx)z = x(y · xz).
[A ring satisfying both Bol identities is alternative.]

We emphasize that strongly right alternative loop rings that are not
alternative can exist only in characteristic 2. In the 1990s, D. A. Robinson
and the author showed that RL is strongly right alternative if and only if L
is a (right) Bol loop (that is, a loop satisfying the right Bol identity,2) and,
for every x, y, z, w ∈ L, at least one of the following conditions holds:

D(x, y, z, w) : [(xy)z]w = x[(yz)w] and [(xw)z]y = x[(wz)y]
E(x, y, z, w) : [(xy)z]w = x[(wz)y] and [(xw)z]y = x[(yz)w] (2)
F (x, y, z, w) : [(xy)z]w = [(xw)z]y and x[(yz)w] = x[(wz)y].

It was observed that any Bol loop with a unique nonidentity commuta-
tor/associator is SRAR [24, 25] and, for a long time, such loops provided
the only examples of SRAR loops. Indeed, there are families of Bol loops
such as those Chein and the author have denoted L(B, m, n, r, s, t, z, w)
which are SRAR only if the subloop L′ generated by all commutators and
associatiors has order 2 [10].

Research with Orin Chein, currently still at the preprint stage, has
shown that the conjecture that |L′| = 2 characterizes SRAR loops is false.
Some of this work we now describe.

Let L be a Bol loop with an index 2 left nucleus N . Fix u ∈ L\N . Then
L is the union N ∪ Nu and multiplication in L can be de�ned entirely in
terms of multiplication in N and two bijections θ : N → N and φ : N → N ,
these being de�ned by

un = (nθ)u and nφ = u(nu).

Speci�cally, for n1, n2 ∈ N , we have

n1(n2u) = (n1n2)u,

(n1u)n2 = n1(un2) = [n1(n2θ)]u (3)
2In this paper, all Bol loops are assumed to satisfy the right Bol identity.
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and

(n1u)(n2u) = n1[u(n2u)] = n1(n2φ).

Furthermore, if L is not Moufang, then in either of the cases θ = I, the iden-
tity map on N , or φ = R(u2), right multiplication by u2 ∈ N , L is SRAR [6].
Using this fact, one can exhibit families of examples of SRAR loops many
of which have more than a single nonidentity commutator/associator. We
present two such families.

Let N be an elementary abelian 2-group of order at least 8, let θ = I
and let φ be any nonidentity bijection on N such that φ2 = I and φ is not a
right multiplication map. Let L = N ∪Nu, u an indeterminate, and extend
the binary operation on N to L by means of the equations (3). Then L is
an SRAR loop with left nucleus N and, in many cases, |L′| > 2.

Alternatively, let N be an abelian group of exponent 4, let u2 be any
element of order 2 in N , let φ = R(u2), let nθ = n−1 for n ∈ N and construct
a loop L as before. Again, L is SRAR and often |L′| > 2. In passing, we
mention that this family of loops is one discussed by P. Vojt�echovský in [36],
speci�cally the class labelled G(θxy, θxy, θx−1y, θxy). (The reader should,
however, be aware of the fact that Vojt�echovský's loops are left Bol.)

We conclude this section with some suggestions for further investiga-
tions. It may be important to note that this is certainly not the �rst time
that loops with large nuclei have appeared in the literature. Indeed, some
years ago, D. A. Robinson and the author showed that any loop with an
index 2 nucleus is conjugacy closed and hence a G-loop, that is, isomorphic
to all its loop isotopes [23]. This is certainly not the case for a Bol loop
with left nucleus of index 2. Still, such loops may have other elements of
interest.

Suggestion 3. What can be said about a Bol loop with index 2 left nucleus?

Suggestion 4. While it is probably unrealistic to try to characterize SRAR
loops at this time, it would be useful to �nd more families of SRAR loops.

4. Jordan loops
Much of the work described in this section is joint with a student, Rebecca
Keeping.

The theorem of Lowell Paige cited earlier, asserting that in most char-
acteristics a commutative power associative loop ring is associative, may
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explain why the possible existence of Jordan loop rings has been overlooked.
A ring is Jordan if it is commutative and satis�es

the Jordan identity (x2y)x = x2(yx).

Paige's work (with a small correction by Marshall Osborn [30]) shows that a
Jordan loop ring is associative in characteristic prime to 6, so nonassociative
Jordan loop rings can exist only in characteristics divisible by 2 or by 3. As
we shall see, they certainly exist in characteristic 2.

Theorem 1. [16] Let R be a commutative, associative ring with 1 and of
characteristic 2 and let L be a loop. The loop ring RL is nonassociative
Jordan if and only if L is a nonassociative commutative loop satisfying the
Jordan identity and either

1. R is a Boolean ring, that is, r2 = r for all r ∈ R, and, given any
elements x, y, z ∈ L, either

J1 : (x2y)z = x2(yz) and x(yz2) = (xy)z2, or
J2 : (x2y)z = (xy)z2 and x(yz2) = x2(yz), or
J3 : (x2y)z = x(yz2) and x2(yz) = (xy)z2

or else

2. J1 holds for all x, y, z ∈ L.

Each of the properties RA, RA2 and SRAR is equivalent to conditions
just on the loop. Those which characterize SRAR loops were given in (2),
for instance. Theorem 1 highlights the �rst instance of a situation where
the possibility of a loop ring satisfying an �interesting� identity may depend
also on the coe�cient ring. (No examples of this phenomenon are known
as yet.)

Question 5. Does there exist a nonassociative loop whose loop ring is Jor-
dan over one coe�cient ring of characteristic 2 but not over some other
ring of characteristic 2?

Until this question has been answered, we use the term RJ2 to describe
a loop which has a nonassociative Jordan loop ring over some coe�cient
ring of characteristic 2.



Advances in loop rings 7

There are other instances in the literature where the existence of an
identity in an algebra may depend on the �eld of coe�cients. L. Kokoris,
for example, has shown that a Jordan algebra over a �eld of characteristic
2 is power associative provided that �eld contains at least four elements
[26]. It follows from this that any loop which is RJ2 because it satis�es J1
identically must be power associative. We do not know if this must always
be the case.

Question 6. Is an RJ2 loop power associative?

One can also ask an apparently stronger question.

Question 7. Is a Jordan loop ring power associative?

The second question might follow from the �rst, of course.

Question 8. Is the loop ring of a power associative RJ2 loop power asso-
ciative?

Call a loop Jordan if it is commutative and satis�es the Jordan iden-
tity. Clearly any RJ2 loop is Jordan though the converse is certainly false.
Jordan loops exist in abundance as we demonstrate with an observation
and some constructions. Any commutative loop of exponent 2 is Jordan
and even RJ2 because it clearly satis�es J1 identically. Here is a way to
construct some such loops.

Let n be an odd positive integer, let A = {1, 2, 3, . . . , n}, and de�ne
f : A×A → {0, 1, 2, . . . , n− 1} by the rule

f(i, j) =
1
2
(n + 1)(j − 1)− 1

2
(n− 1)(i− 1) (mod n).

It is easily checked that for each �xed i, f(i, ·) : A → {0, 1, 2, . . . , n− 1} is a
bijection and for each �xed j, f(·, j) : A → {0, 1, 2, . . . , n− 1} is a bijection.
One can also verify that f(i, j) = f(j, i) for all i, j and f(i, i) = i − 1
(mod n) for each i. As a consequence, the n× n array whose (i, j) entry is
f(i, j) + 2 is a symmetric Latin square on the integers {2, 3, 4, . . . , n + 1}
with (i, i) entry i + 1. Now form the (n + 1) × (n + 1) table that has this
square in the lower right corner with all diagonal entries changed to 1, and
which has the integers 1, 2, 3, . . . , n + 1 in their natural order in row one
and in column one. The unique nonassociative commutative loop of order
6 arises from this construction with n = 5 and is de�ned by Table 1. For
reasons noted, the loop ring of this loop is Jordan in characteristic 2.
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1 2 3 4 5 6
1 1 2 3 4 5 6
2 2 1 5 3 6 4
3 3 5 1 6 4 2
4 4 3 6 1 2 5
5 5 6 4 2 1 3
6 6 4 2 5 3 1

Table 1: The unique (nonassociative) Jordan loop of order 6.

The literature contains many examples of nonassociative loops con-
structed by �doubling� groups [35, 36, 4, 5],[15, �II.5]. Suggested by the
notation M(G, 2) which Orin Chein introduced for a certain family of Mo-
ufang loops, we label J(G,α) a Jordan loop constructed by the following
theorem.
Theorem 2. [16] Let G be an abelian group, let u be an indeterminate, let
L = G ∪Gu and let α : G×G → G be any symmetric map, that is, a map
satisfying α(g, h) = α(h, g) for all g, h ∈ G. Extend the multiplication in G
to L by setting

g(hu) = (hu)g = (gh)u

and
(gu)(hu) = α(g, h)

for g, h ∈ G. The pair (L, ·) is a loop if and only if for each g ∈ G, the
function αg : G → G de�ned by αg(x) = α(g, x) is a bijection and, when
this is the case,

1. Jordan if and only if α(α(g, g)h, g) = α(g, g)α(g, h) for all g, h ∈ G,
and

2. associative if and only if there exists a ∈ G such that α(g, h) = agh
for all g, h ∈ G.

Remark 3. Notice that maps α which de�ne loops correspond to |G| × |G|
Latin squares with α(g, h) in position (g, h).

As an example of how this theorem can be used, start with G = Zn, the
group of integers under addition (mod n). We require a symmetric map
α : Zn × Zn → Zn with the property that

α(i, α(i, i) + j) = α(i, i) + α(i, j)
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for all i, j ∈ G. Equivalently, writing αi(·) = α(i, ·) and setting λi = αi(i),
for each i ∈ {0, 1, 2, . . . , n}, we need a bijection αi of {0, 1, 2, . . . , n − 1}
(which becomes row i of a Latin square) satisfying

αi(λi + j) = λi + αi(j) (4)

for all i, j. To avoid associativity, we must also ensure that αi(j)− i− j is
not constant.

One obvious solution to (4) can be obtained by setting λi = 0 for all i,
in which case any (symmetric) Latin square with 0s on the diagonal de�nes
a suitable α. The table

0 1 2 3
1 0 3 2
2 3 0 1
3 2 1 0

(5)

shows a smallest such square and yields the loop J(Z4, α) described by Ta-
ble 2. While this loop is not of exponent 2, it is RJ2 by virtue of Theorem 4
that follows.

0 1 2 3 4 5 6 7
1 2 3 0 5 6 7 4
2 3 0 1 6 7 4 5
3 0 1 2 7 4 5 6
4 5 6 7 0 1 2 3
5 6 7 4 1 0 3 2
6 7 4 5 2 3 0 1
7 4 5 6 3 2 1 0

Table 2: The loop J(Z4, α) has a Jordan loop ring.

Theorem 4. Let L = J(G,α) be a loop constructed as in Theorem 2.
Suppose

i. α(g2h, k) = g2α(h, k) and

ii. α(α(g, g)h, k) = α(g, g)α(h, k)

for all g, h, k ∈ G. If α(g, h)g−1h−1 is not constant, then L is RJ2.
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Is there a future for Jordan loops? They have little structure. We
have noted that they need not be power associative. They don't satisfy
the inverse property, (xy)y−1 = x (which is the same as the cross inverse
property in a commutative loop), nor the weak inverse property, y(xy)−1 =
x−1. Also, even in a �nite power associative Jordan loop where there is a
well-de�ned notion of �order of an element,� the order of an element need
not divide the order of the loop nor must conjugate elements have the same
order.

As to existence, we recall that any commutative loop of order less than
6 is associative and we have shown how to construct nonassociative Jordan
loops of every even order n > 6. There are two Jordan loops of order 7
(neither of which is RJ2) so, by taking direct products, we have a nonas-
sociative Jordan loop of order 7k for any positive integer k. A referee has
reported a construction that produces Jordan loops of order 2n − 1 and
perhaps of some other odd orders as well. All this work addresses a natural
question.

Question 9. For what positive integers n does there exist a nonassociative
Jordan loop of order n?

5. The unit loop of an alternative loop ring
Just as with associative rings, the set of invertible elements or units of an
alternative ring is closed under multiplication and hence forms a (Moufang)
loop. The loops of units in alternative loop rings present a class of Moufang
loops which have been and continue to be studied from a number of points
of view.

5.1 Properties shared by L and U(RL). An RA loop L is a subloop
of the unit loop U(RL) and so one can ask what these loops might have in
common. Here, the coe�cient ring R is critical since, for example, over the
integers, if L is �nite and U(ZL) contains nontrivial units (U(ZL) 6= ±L),
then it contains a free group [15, �VIII.5], so it is rare that U(ZL) is nilpotent
or solvable or torsion over its centre, these being known properties of L.
These properties do prove interesting, however, for in�nite loops and over
�elds. It turns out that the torsion subloop of L, this being the set of all
elements of �nite order in L (which is a subloop of an RA loop), often plays
an important role. Here is a typical result.
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Theorem 5. [20] Let L be an RA loop with torsion subloop T and let K
be a �eld of characteristic 0. Assume U = U(KL) contains an element of
in�nite order. Then the following statements are equivalent:

1. U is torsion over its centre;

2. T is central;

3. u2 ∈ Z(U) for all u ∈ U ;
4. U is torsion of bounded exponent over its centre.

5.2 Involutions of RA Loops. An RA loop L has a canonical involution
` 7→ `∗, de�ned by lifting the involution in (1), whose �xed point set is
precisely Z(L), the centre of L. Any involution of L extends linearly to an
involution of the loop ring and, when canonical, the �xed point set of this
extended involution is Z(RL), the centre of RL. Interestingly, this is the
only involution of an RA loop with this property.

Theorem 6. [22] Let θ be an involution of an RA loop and let (RL)+ =
{α ∈ RL | αθ = α} denote the �xed points of RL. Assuming charR 6= 2,
the following statements are equivalent:

1. (RL)+ is closed under multiplication;

2. the elements of (RL)+ commute;

3. (RL)+ = Z(RL);

4. θ = ∗ is the canonical involution on L.

Incidentally, Polcino Milies and the author have also considered the
possibility that the set (RL)− = {α ∈ RL | αθ = −α} of skew-symmetric
elements of an involution θ commute. This happens only in characteristic
2 or 4 and in characteristic 2, often with severe restrictions on L [22].

Theorem 7. [21] Let L be a �nite RA 2-loop, F a �eld of characteristic
2 and θ the involution of RL which is the linear extension of ` 7→ `−1 for
` ∈ L. If (RL)− is a commutative set, then L = L0×A is the direct product
of an abelian group A and a loop L0 which is either the Cayley loop or the
loop M(16Γ2c2, 16Γ2c2, 16Γ2c

]
2, 16Γ2c

]
2) (in the notation of Chein [5]).
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5.3 The units of a right alternative loop ring. The units of a strongly
right alternative loop ring form a loop in the presence of a certain condition
on the augmentation ideal, this being the kernel ∆(L) of the augmentation
map ε : RL → R which is de�ned by ε(

∑
α``) =

∑
α`. Thus

∆(L) = {∑α`` ∈ L | ∑α` = 0}.

If δ ∈ ∆(L) is nil, that is, δn = 0 for some n > 1, then it is easily checked
that 1+ δ is a unit with inverse 1+ δ + δ2 + · · ·+ δn−1. (We now necessarily
assume characteristic 2.) Conversely, if u ∈ RL is a unit, then uv = 1 for
some v yields ε(u) = 1, because ε is a homomorphism, so δ = 1 + u ∈ ∆(L)
and u = 1 + δ. These observations show that if ∆(L) is nil, then

U(RL) = {u ∈ RL | ε(u) = 1},

a set which is clearly closed under multiplication and hence a Bol loop.
If L is a �nite 2-group or RA2 2-loop and F is a �eld of characteristic

2, then the augmentation ideal of FL is actually nilpotent : there exists
a �xed n so that any product of n elements is always 0 [28, 12]. Gábor
Nagy has shown the same thing for Bol 2-loops with a unique nonidentity
commutator/associator [29] but the unrestricted case appears to be open.

Question 10. If L is any SRAR 2-loop, is ∆(L) nilpotent?

A positive answer would imply that the unit loop of RL is Bol for any
SRAR loop L, a fact currently known just for SRAR loops with a unique
nonidentity commutator/associator [14].

5.4 Normal Complements. As we have noted, if L is a group, then
U(RL) is a group and if L is RA, then U(RL) is a loop. It is often (perhaps
always) the case that if L is SRAR, then U(RL) is loop. Whenever this
happens, it is of interest to know how L sits within U(RL). It is rare that
L is normal. A torsion RA loop L is normal in U(ZL), for instance, only in
the trivial case that U(ZL) = ±L [17] and, if �nite, never normal in U(FL)
when F is a �eld [19].

Question 11. Can an in�nite RA loop L ever be normal in U(FL), F a
�eld?

Assuming L is not normal, it is natural then to ask just what the
normalizer of L in U(RL) might be. Certainly L normalizes itself, as
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does the centre of U(RL). The �normalizer conjecture,� which asserts
NU (L) = Z[U(RL)] · L, says that these are essentially the only normal-
izing sets. The conjecture is true for torsion RA loops in their integral loop
rings [17].

Perhaps the most famous problem in the theory of loop rings has always
been the isomorphism problem: When does RL1

∼= RL2 imply L1
∼= L2?

Of special interest because of its connection to the isomorphism problem is
the possibility that L might have a normal complement in U = U(RL), a
subloop N that is normal in U and satis�es L ∩N = {1} and U = LN . It
is known, for example, that if L is a �nite RA loop, then L has a normal
complement in U(ZL) which is also torsion-free: un = 1 with n > 1 implies
u = 1. So the isomorphism problem has a positive solution over Z and the
proof is not hard.

Theorem 8. [19, 18] Let L and L1 be �nite RA loops and suppose that
ZL1

∼= ZL. Then L1
∼= L.

Proof. We observe that L and L1 have the same order since each is the rank
of the same free Z-module. Suppose ϕ : ZL1 → ZL is the given isomorphism
and let N be a torsion-free normal complement for L1 in U(ZL1). Then
ϕ(N) is torsion-free in U(ZL), so L ∩ ϕ(N) = {1} and Lϕ(N)/ϕ(N) ∼=
L/(L ∩ ϕ(N)) ∼= L.

Since [U(ZL) : ϕ(N)] = |L1| = |L| = [Lϕ(N) : ϕ(N)], we have U(ZL) =
Lϕ(N). Thus

L1
∼= U(ZL1)/N ∼= U(ZL)/ϕ(N) ∼= Lϕ(N)/ϕ(N) ∼= L.

Another setting in which the isomorphism problem has been investigated
for group rings is that where the group is a �nite p-group and the coe�cient
ring is the �eld of p elements, the so-called modular case.

Suppose G = 〈a1〉 × 〈a2〉 × · · · × 〈ad〉 is an abelian p-group written as
the direct product of cyclic groups generated by elements ai of order |ai|,
i = 1, . . . , d. For each d-tuple δ = (δ1, δ2, . . . , δd) of integers δi, 0 6 δi <
|ai| not all divisible by p, let P (δ) = (a1 − 1)δ1(a2 − 1)δ2 · · · (ad − 1)δd .
Robert Sandling has shown that the elements 1 + P (δ) generate the cyclic
components of U(FG), F the �eld of p elements [33].

It is helpful to look at an example. Suppose p = 2 and G = 〈a〉 × 〈b〉
is the direct product of cyclic groups of orders 2 and 4, respectively. The
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elements P (δ) are

x1 = a + 1
x2 = (a + 1)(b + 1)

x3 = (a + 1)(b + 1)2

x4 = (a + 1)(b + 1)3

x5 = b + 1

x6 = (b + 1)3,

so U(FG) =
∏〈1 + xi〉. Notice that 1 + x1 = a and 1 + x5 = b, so that G

is actually a direct factor of the unit group.
Now suppose G is a �nite nonabelian p-group. Write

G/G′ = 〈ā1〉 × 〈ā2〉 × · · · × 〈ād〉,

with ā = G′a and this time, for each d-tuple δ = (δ1, δ2, . . . , δd) of integers
δi, 0 6 δi < |āi| not all divisible by p, let

P (δ) = (a1 − 1)δ1(a2 − 1)δ2 · · · (ad − 1)δd .

Let J = ∆(G)∆(G′) + ∆(G′)∆(G) and let w(G) be the ideal generated
by 1 + J and the set of all 1 + P (δ). Under certain conditions, which
include the case |G′| = 2 of interest to us, Sandling proves that w(G) is a
normal complement to G in U(FG) [34] and then, with just a little more
work, establishes a positive solution to the isomorphism problem. Here's an
example.

Writing D4 = 〈a, b | a4 = b2 = 1, ba = a−1b〉 and C2 = 〈c〉, let G =
D4 × C2. We have G′ = {1, s} with s = a2 and G/G′ = 〈ā〉 × 〈b̄〉 × 〈c̄〉 ∼=
C2 × C2 × C2, so the elements P (δ) here are precisely the elements

x1 = a + 1
x2 = (a + 1)(b + 1)
x3 = (a + 1)(c + 1)
x4 = b + 1
x5 = (b + 1)(c + 1)
x6 = c + 1
x7 = (a + 1)(b + 1)(c + 1).
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Since ∆(G′) = {0, 1 + s}, the ideal J = ∆(G)(1 + s) = (1 + s)X, with
X = {1, a, b, c, ab, ac, bc, abc}, and the subgroup w(G) generated by 1 + J
and the 1 + P (δ) is a normal complement to G in U(FG). It is delightful
that the normal complements described are so concrete.

While attempts have been made to adapt Sandling's arguments to the
case of RA loops, these cannot meet with success, as we now show.

Let a, b, x be three elements which do not associate in an RA 2-loop L.
The LC property says (a, x) = (b, x) = (ab, x) = s. (Noteworthy is the fact
that such elements do not exist in the associative case.) With F the �eld
of two elements, we compute

x−1[(a + 1)(b + 1)]x = x−1(ab + a + b + 1)x
= sab + sa + sb + 1
= 1 + s[1 + (a + 1)(b + 1)]

and obtain

x−1[1 + (a + 1)(b + 1)]x = s[1 + (a + 1)(b + 1)]. (6)

Now think of a and b as amongst the generators of L/L′ so that 1 + (a +
1)(b + 1) = 1 + P (δ) for a certain δ. If w(L) is normal, it contains the
element (6), which is s(1 + P (δ)), so it contains s. We conclude that if
w(L) is normal, it is not a complement for L in U(FL).

This observation, of course, begs the question as to whether or not L
might have some other normal complement. In this connection, we can
report that Eric Moorhouse has veri�ed computationally that none of the
Moufang loops of order 16 (these are all RA2) has a normal complement
in U(FL), F the �eld of two elements. Moreover, again via computation,
it has been shown that three of the six nonMoufang Bol loops of order 8
(which are all SRAR) have normal complements in the units of FL (these
are B8(Π2), B8(Π5),B8(Π6) in the notation of R. P. Burn [3]), and three do
not.

Question 12. If L is an RA (even an RA2) 2-loop, can L ever have a
normal complement in U(FL), F the �eld of two elements?

Suggestion 13. Find conditions under which L has a normal complement
in U(FL) in the case that L is an SRAR 2-loop, F the �eld of two elements,
assuming the units of FL form a loop.
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Tribute

This paper has been written with a heavy heart within a month of the
passing of a dear friend and research partner. I met Dan Robinson at
Oberwolfach in the spring of 1976. During a sabbatical year at the Georgia
Institute of Technology in 1979-80, Dan told me about loops and introduced
me to some basic theory. It was during that year that my �rst paper on
alternative loop rings was written. Daniel Robinson was a wonderful friend
and mathematician whom I miss every day.
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