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Central automorphisms of Latin square designs
and loops

Jonathan I. Hall

Abstract

We discuss special automorphisms of Latin square designs or equivalently the 3-nets that
are dual to them. We focus on the relationships between these automorphisms and the
algebraic properties of the associated loops, especially Moufang loops.

1. Introduction
Let O be a set and consider a relation R ⊂ O3 with the property that
projection onto any pair of coordinates gives a copy of O2. That is, for
every pair a and b of (not necessarily distinct) members of O there are
unique triples (a, b, ∗), (a, ∗, b), and (∗, a, b) in R.

Such relations R are equivalent to Latin squares, to quasigroups, to 3-
nets, and to Latin square designs. Let R, C,E be a �xed permutation of the
index set {1, 2, 3}. We construct a Latin square L from R by, for each triple
t = (t1, t2, t3) ∈ R, letting tE be the entry in row tR and column tC . The
associated quasigroup Q = (O, ◦) then has L as its Cayley (multiplication)
table: if a = tR, b = tC , and c = tE , then a ◦ b = c. Each Latin square and
quasigroup occurs naturally as one of six di�erent conjugates, coming from
a �xed R and one of the six permutations of R, C, E.

A partial linear space (P,L) is a set of points P and a set of lines L
together with an incidence relation ∼ satisfying:

There do not exist distinct points a, b and distinct lines k, l with
a ∼ k ∼ b ∼ l ∼ a.
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The axiom is selfdual in the sense that (P,L) is a partial linear space if and
only if (L,P) is. In almost all examples of interest to us we will have the
further (selfdual) nondegeneracy axiom:

Every point is incident to at least two lines, and every line is incident
to at least two points.

In this case, we may identify each line with the subset of points incident to
it.

The Latin square design associated with the relation R is the partial
linear space with point set P = O1 ∪ O2 ∪ O3 (of size 3|O|) and line set L
(of size |O|2) given by

{a1, b2, c3} ∈ L ⇐⇒ (a, b, c) ∈ R .

Every line contains exactly three points, and xi is collinear with yj if and
only if i 6= j. The noncollinearity relation on P is an equivalence relation
whose classes Oi are the �bers of the Latin square design. The cardinality
|O| of each �ber is the order of the Latin square design (and Latin square
and quasigroup). A Latin square design is degenerate precisely when it has
order |O| = 1, and even in that case we may identify the unique line with
its set of three incident points.

The dual of a Latin square design is a 3-net (sometimes 3-web). The
line set of the 3-net is naturally partitioned into the three parallel classes
of lines Oi.

In this survey we are particularly interested in automorphisms of Latin
square designs (or equivalently the 3-nets dual to them) and the relation-
ships between certain geometrically de�ned automorphisms and the alge-
braic properties of the associated quasigroups and loops.

Much of what we present here is not new. Indeed such relationships
have been studied for nearly one hundred years. The equivalence of alge-
braic identities to the existence of various geometric automorphisms and
closure of con�gurations goes back to Veblen and Young [33] (who consid-
ered automorphisms of projective planes and their relationship to Desar-
gues' con�gurations) and to Reidermeister [29], Thomsen [31], Bol [2], and
their collaborators who, in a remarkable series of papers entitled �Topologi-
sche Fragen der Differentialgeometrie,� worked on 3-nets (3-webs) of parallel
classes of lines in the projective plane. Tits [32] studied automorphisms of
nets and their connection to groups with triality speci�cally in the context
of the octonions and Cartan's triality groups. Glauberman [12] and Doro
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[8] later de�ned and studied abstract groups with triality and the loops that
can be used to coordinatize them. The geometric study has been revived
more recently, particularly in the paper of Funk and P. Nagy [9], which
describes in detail the relationships between Bol re�ections on a 3-net and
coordinatizing Bol loops. The approach we take here is closer to that of Hall
and G.P. Nagy [16] and G.P. Nagy and Vojt¥chovský [24], which discusses
the case of simple Moufang loops extensively.

Since the early work in this area dealt with the study of line sets in
Euclidean planes, it was naturally phrased in terms of 3-nets. We prefer
the equivalent but dual world of Latin square designs and will largely stay
there.

Our general reference for combinatorics is M. Hall, Jr. [17], for group
theory Aschbacher [1], and for general loop theory Bruck [3] and P�ugfelder
[26]. For the octonions, see [30].

2. Automorphisms of Latin square designs
Let D = (P,L) be a Latin square design of order n with �bers OR, OC ,
and OE . The group Aut(D) is the automorphism group of D, the set of all
permutations σ of P = OR ∪OC ∪OE that take lines to lines:

{a, b, c} ∈ L ⇐⇒ {aσ, bσ, cσ} ∈ L .

Any automorphism of D must preserve the noncollinearity equivalence
relation whose equivalence classes are OR, OC and OE . The automorphism
group of this equivalence relation is the wreath product Sym(O) o Sym(3)
consisting of the normal base subgroup Sym(OR) × Sym(OC) × Sym(OE)
extended by the symmetric group of degree 3, Sym({R, C, E}) ' Sym(3).
The base subgroup BAut(D) of Aut(D) is its intersection with the base sub-
group of the wreath product. (See Section 4.1 below for further discussion
of full wreath products.)

A subdesign D0 = (P0,L0) is given by a subset P0 of P with the property
that, for l ∈ L, we have l ∈ L0 and l ⊆ P0 if and only if |l ∩ P0| > 2. A
subdesign is a Latin square design in its own right, although we must allow
for degenerate examples with one line or no lines (which happens when P0

is contained in a single �ber). The subset P0 determines D0 completely, so
we often (with mild abuse) identify a subdesign with its set of points.
Lemma 2.1. If A is a subset of Aut(D), then the set of common �xed points
of A in D is a subdesign of D. In particular, the subgroup of Aut(D) that
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�xes a �ber pointwise is semiregular on the remaining points. (That is, only
the identity �xes additional points.)

Proof. If an automorphism �xes two points of a line, then it �xes the line
and so the third point of the line. Therefore the �xed points of A form a
subdesign. The smallest subdesign of D containing a �ber and at least one
point not in that �ber is D itself.

A shear of D is an automorphism that �xes one �ber pointwise and �xes
the other �bers globally (that is, belongs to the base subgroup of Aut(D)).
By the lemma, the group of all shears with �xed �ber Q is semiregular on
each of the other �bers. A basic result of the sort we are interested in here
is the following, due to Praeger [28]. (See [7] for another proof.)

Theorem 2.2. Let D be a Latin square design, and let Q be a �ber. Then
the group S of all shears with �xed �ber Q is regular on some other �ber if
and only if D is the Latin square design associated with the Cayley table of
the group S.

We now come to one of the fundamental concepts of this paper. A
central automorphism τa of the Latin square design D with center a ∈ P is
a nontrivial automorphism of D that �xes the point a and all lines through
it. Therefore, if τa exists then, for all {a, b, c} ∈ L, we have

aτa = a, bτa = c, cτa = b .

In particular τa switches the two �bers that complement the �ber F con-
taining a. Since every line of L contains two points of this complement, the
permutation induced on the line set L by τa is uniquely determined. The
question is whether or not the action of τa can be de�ned on the remaining
points of the �ber F to be consistent with this action on the lines.

In the dual world of 3-nets, a central automorphism is usually called a
Bol re�ection [9]. There the action of a putative Bol re�ection on the points
of the 3-net (that is, the lines of D) is evident, and the question is whether
or not this induces a permutation of the lines of the 3-net (the points of D).

Proposition 2.3. In Aut(D) there is at most one central automorphism τa

with center a for each a ∈ P. If τa exists in Aut(D), then it has order 2 and
is central in the stabilizer of a in Aut(D), and τ g

a = τag for all g ∈ Aut(D).
If τa and τb exist in Aut(D) with a and b in di�erent �bers, then τaτb

has order 3 and 〈τa, τb〉 is isomorphic to Sym(3). If this is the case, then
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there is a unique conjugacy class T of central automorphisms in Aut(D),
and the centers of the members of T form a subdesign of D.

Proof. If t1 and t2 are two central automorphisms of D with center a, then
the automorphism t1t2 of D is trivial on both �bers o� a and so is the
identity by Lemma 2.1. Therefore if there is a central automorphism with
center a, then it is unique and has order 2.

For g ∈ Aut(D), the conjugate τ g
a is clearly a central automorphism of

D with center ag. Therefore by uniqueness τ g
a = τag and, especially, τa is in

the center of the stabilizer of a in Aut(D).
In particular if {a, b, c} ∈ L, then

τbτaτb = τ τb
a = τc = τ τa

b = τaτbτa

and therefore
(τaτb)3 = (τaτbτa)(τbτaτb) = τ2

c = 1 .

If τx and τy are two central automorphisms of D, then either they are in
di�erent �bers and so conjugate in 〈τx, τy〉 ' Sym(3), or they are in the
same �ber and so both conjugate to τz where z ∈ {a, b} is not in the �ber
of x and y.

If l is a line of L with l ∩ {p | τp ∈ T} ⊃ {x, y}, say, then τz = τ
τy
x ∈ T ,

where l = {x, y, z}.

The stength of the proposition can be seen in

Corollary 2.4. Suppose that a, b, c are from di�erent �bers of D and that
τa, τb, τc ∈ Aut(D). Then 〈τa, τb, τc〉 is a quotient of (Z× Z) : Sym(3).

Proof. (Z×Z) : Sym(3) is the Weyl group of a�ne type Ã2 with presenta-
tion 〈x, y, z | 1 = x2 = y2 = z2 = (xy)3 = (xz)3 = (yz)3〉. (This has a direct
proof. The subgroup N = 〈xyzy, yxzx, zxyx〉 = 〈xyzy, yxzx〉 is easily seen
to be normal and abelian, and the whole group is N extended by 〈x, y〉
which is isomorphic to Sym(3).)

The proposition shows that there is a unique maximal subdesign D0 of D
with the property that every central automorphism of D0 exists and extends
to a central automorphism of D. It is also true that (in a sense which will
be made precise at the end of Section 4.2 below) there is a unique maximal
quotient design of D that admits all possible central automorphisms.
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3. Central automorphisms and loops
Let D = (P,L) be a Latin square design with �bers OR, OC , and OE

for the underlying set O. Any permutation (α, β, γ) from the base group
Sym(OR)× Sym(OC)× Sym(OE) acts on P = OR ∪OC ∪OE , producing
a Latin square design isomorphic to D. At the level of Latin squares, this
corresponds to passing to an equivalent Latin square by permuting rows,
permuting columns, and permuting the entry labels. In the quasigroup
context, we are speaking of an isotopic quasigroup (O, ¦) given by

x ◦ y = z ⇐⇒ xα ¦ yβ = zγ ; that is, p ¦ q = (pα−1 ◦ qβ−1
)γ .

It is well-known and easy to see that every Latin square on the set
O = {1, 2, . . . , n} is equivalent to one whose �rst row and �rst column
are 1, 2, . . . , n in order. That is, every quasigroup is isotopic to a loop,
a quasigroup with a two-sided identity element 1. In particular, in the
equation xy = 1, the element x determines its right inverse y uniquely and
y determines its left inverse x uniquely. We write x−1 = y and −1y = x.

For the loop L = (L, ·) (with mild abuse) we let D(L) = D be the Latin
square design with point set P = LR ∪LC ∪LE and line set L given by the
Cayley table of L:

{aR, bC , cE} ∈ L ⇐⇒ a · b = c .

The basic question we approach here is: how is the existence of central
automorphisms of D(L) re�ected in the algebraic properties of the loop L?

To simplify our notation, for each a ∈ L we will write ρa in place of τaR ;
κa in place of τaC ; and εa in place of τaE . (This notation indicates that
the central automorphism has center corresponding to, respectively, a row,
column, or entry of the associated Latin square.)

3.1. Inverse property loops
Lemma 3.1.

(a) κ1 ∈ Aut(D(L)) if and only if L has the right inverse property
(xy)(−1y) = x for all x, y ∈ L. In this case inverses are two-sided
(that is, −1x = x−1 and (x−1)−1 = x always) and xκ1

C = x−1
C .

(b) ρ1 ∈ Aut(D(L)) if and only if L has the left inverse property
x−1(xy) = y for all x, y ∈ L. In this case inverses are two-sided
and xρ1

R = x−1
R .
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(c) ε1 ∈ Aut(D(L)) if and only if L has the anti-automorphic inverse
property (xy)−1 = y−1x−1 for all x, y ∈ L. In this case inverses
are two-sided and xε1

E = x−1
E .

Proof. We prove part (a) in detail, the other two parts being similar. (In-
deed they are equivalent to (a) in conjugates of the loop L.) Pictures of the
following type are helpful.
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Suppose we have xy = 1 in L. We then have

1 · x = x , x · 1 = x , and x · y = 1 ,

giving in D(L) the three lines {1R, xC , xE}, {xR, 1C , xE}, and {xR, yC , 1E},
which are drawn in the picture along with the line {1R, 1C , 1E}.

Assume that κ1 is an automorphism of D(L). Then 1κ1
C = 1C and the

lines {1R, 1C , 1E} and {xR, 1C , xE} through 1C are mapped to themselves
via

1κ1
R = 1E , 1κ1

E = 1R , xκ1
R = xE , xκ1

E = xR .

Therefore

{1R, xC , xE}κ1 = {1κ1
R , xκ1

C , xκ1
E } = {1E , xκ1

C , xR} = {xR, yC , 1E} ,

since a line of D is uniquely determined by any two of its points. In partic-
ular xκ1

C = yC and also yκ1
C = xC (as κ1 has order 2). The �rst equality says

that (in the �ber LC) every element of L is moved by κ1 to its right inverse,
but the second equality says that every element is moved by κ1 to its left
inverse. Therefore right inverses are always equal to left inverses. That is,
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each x has a two-sided inverse −1x = x−1, (x−1)−1 = x, and xκ1
C = x−1

C , as
claimed.

Next consider, for arbitrary x, y ∈ P:
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The lines here come from the equations

x · y = xy , xy · 1 = xy , x · 1 = x , (xy) · y−1 = (xy)y−1 .

The image of the line {xR, yC , xyE} under κ1 is the line

{xκ1
R , yκ1

C , xyκ1
E } = {xE , y−1

C , xyR} = {xyR, y−1
C , xE} .

As {xyR, y−1
C , (xy)y−1

E } is clearly a line of L, we conclude that x = (xy)y−1,
proving the right inverse property.1

Now assume that L has the right inverse property. Thus (−1yy)(−1y) =
−1y, hence (by cancellation) inverses are two-sided. The line {xR, yC , xyE}
is generic in L, and the picture above shows that its image under κ1 is also
a line (with the image of yC under κ1 de�ned to be y−1

C ). Therefore this κ1

is a central automorphism of D(L).

If ρ1, κ1, and ε1 are all automorphisms of D(L), then L is called an
inverse property loop. Since the group 〈ρ1, κ1, ε1〉 is a copy of Sym(3) (by
Proposition 2.3 or direct calculation) and so is generated by any two of the
three central automorphisms in it, we have the immediate

1 This argument illustrates how Reidermeister [29], Thomsen [31], Bol [2], and others
were able to relate the closure of certain geometric con�gurations to identities satis�ed
by coordinatizing binary systems.
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Corollary 3.2. If the loop L has any two of the right inverse property, the
left inverse property, and the anti-automorphic inverse property, then it is
an inverse property loop and has all three properties.

3.2. Bol loops
Proposition 3.3. Let L be a loop with κ1 ∈ Aut(D(L)). Then, for the
element x of L, we have κx ∈ Aut(D(L)) if and only if we have

a((xb)x) = ((ax)b)x

for all a, b in L. In this case yκx = (xy−1)x for all y in L.

Proof. As κ1 ∈ Aut(D(L)) by hypothesis, L has the right inverse property
by Lemma 3.1. In particular, inverses are two-sided.

Assume κx is an automorphism and consider
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As L has the right inverse property, in picture the top line

{xbR, b−1
C , (xb)b−1

E } = {xbR, b−1
C , xE}

is indeed in L. The image of this line under the automorphism κx is then
the line {1R, (b−1)κx

C , (xb)xE}. Therefore (b−1)κx = (xb)x; and so yκx =
(xy−1)x, for all y ∈ L, as claimed.

The above picture is the a = 1 case of
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where again the top line is valid because of the right inverse property. We
conclude that, for all a, b ∈ L,

a((xb)x) = ((ax)b)x

as desired.
Conversely assume that in the right inverse property loop L we have

a((xb)x) = ((ax)b)x, for a �xed x and all a, b. Let {pR, qC , pqE} be an
arbitrary line of D(L). Consider
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We use the given property and the right inverse property (twice) to calculate

((pq)x−1)((xq−1)x) = (((pq)x−1)x)q−1)x = ((pq)q−1)x = px .

This shows that, with the image of qC under κx de�ned to be (xq−1)x, the
image of {pR, qC , pqE} is indeed a line. Therefore κx is a central automor-
phism of D(L) with center xC , as desired.
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The identity
a((xb)x) = ((ax)b)x

is called the right Bol identity, and a loop in which this holds for all a, b, x
is a right Bol loop.
Theorem 3.4. Let L be a loop. Then L is a right Bol loop if and only if
κx ∈ Aut(D(L)) for all x of L.

Proof. Setting b = −1x in a((xb)x) = ((ax)b)x, we learn that a right Bol
loop has the right inverse property. Therefore the theorem is an immediate
consequence of Proposition 3.3.

As already mentioned, trading L for an isotopic loop corresponds to
replacing D(L) with an isomorphic Latin square design. Since this clearly
does not a�ect the existence of central automorphisms, we have immediately
the well-known
Theorem 3.5.

(a) All loop isotopes of a right Bol loop are right Bol loops [26, IV.6.15].
(b) The loop L is a right Bol loop if and only if all its loop isotopes are

right inverse property loops [26, II.3.9].
Corresponding to the right Bol identity we have the left Bol identity

(x(ax))b = x(a(xb)) .

A loop in which the left Bol identity holds for all a, b, x is a left Bol loop.
The corresponding versions of the previous three results remain true (by
passing to the opposite loop given by x ¦ y = y · x).
Proposition 3.6. Let L be a loop with ρ1 ∈ Aut(D(L)). Then, for the
element x of L, we have ρx ∈ Aut(D(L)) if and only if we have

(x(ax))b = x(a(xb))

for all a, b in L. In this case yρx = x(y−1x) for all y in L.

Theorem 3.7. Let L be a loop. Then L is a left Bol loop if and only if
ρx ∈ Aut(D(L)) for all x of L.

Theorem 3.8.
(a) All loop isotopes of a left Bol loop are left Bol loops.
(b) The loop L is a left Bol loop if and only if all its loop isotopes are

left inverse property loops [26, II.3.8].
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Many of the properties of Bol loops can be easily derived in this context.
For x in the loop L, de�ne powers of x recursively by

x0 = 1, xn = (xn−1)x, and x−n = (x−1)n for n ∈ Z+ .

The order of x, written |x|, is the smallest positive integer n (if any) with
xn = 1. Otherwise x has in�nite order.

Lemma 3.9. Let L be a loop with κ1, κx ∈ Aut(D(L)) for some x of L.
(a) For arbitrary a ∈ L and integers i, j, we have (axi)(xj) = axi+j.

In particular xi+j = xixj and (xi)−1 = (x−1)i.
(b) κxn ∈ Aut(D(L)) and (κxκ1)n = κxnκ1. In particular |x| = |κxκ1|.

Proof. (a) We show that (a) follows from (b) (indeed from (b) with n ∈
{i, j, i + j}). For arbitrary z with κz ∈ Aut(D(L)) and arbitrary a ∈ L, we
have

aκzκ1
R = azκ1

E = azR .

Therefore

axi+j
R = a

κ
xi+j κ1

R = a
(κxκ1)i+j

R = a
(κxκ1)i(κxκ1)j

R = a
(κxiκ1)(κ

xj κ1)

R = (axi)xj
R ,

as claimed.
(b) For κz ∈ Aut(D(L)) and arbitrary y ∈ L we have yκz

C = (zy−1)zC

by Proposition 3.3. Therefore if κy ∈ Aut(D(L)) then by Proposition 2.3
κzκyκz = κ(zy−1)z. In particular κ1κyκ1 = κy−1 and (κyκ1)−1 = κ1κy =
κy−1κ1, so (b) for negative n follows from (b) for positive −n.

We prove κxn ∈ Aut(D(L)) and (κxκ1)n = κxnκ1 for nonnegative n by
induction, the result being clear for n = 0, 1. Let n > 1 and assume the
result for 0 6 k 6 n. Using the previous paragraph, induction, and (a) with
{i, j} = {1, n− 1}, we �nd

κxn+1κ1 = κxnxκ1

= κ(xxn−1)xκ1

= κxκ(xn−1)−1κxκ1

= κxκ1κxn−1κ1κxκ1

= κxκ1(κxκ1)n−1κxκ1

= (κxκ1)n+1 ,

as desired. As κx and κ1 are in Aut(D(L)), so is κxn+1 = (κxκ1)n+1κ1.
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Corollary 3.10. [26, IV.6.6] Right Bol loops are power associative.

Of course, the same result is true for left Bol loops as well.
For loops admitting ε1 and εx there does not seem to be a nice counter-

part to the Bol identities. The following more specialized result is important
in the next section.

Proposition 3.11. Let L be an inverse property loop. Then, for the element
x of L, we have εx ∈ Aut(D(L)) if and only if we have

(xa)(bx) = (x(ab))x

for all a, b in L. In this case (xy)x = x(yx) and yεx = x(y−1x), for all y
in L.

Proof. Consider the picture
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Here we have the line {xaR, a−1
C , xE} because of the right inverse property,

line {b−1
R , bxC , xE} because of the left inverse property, and {b−1

R , a−1
C , (ab)−1

E }
because of the anti-automorphic inverse property.

Suppose εx is an automorphism of D(L). Setting b = 1 we �nd (a−1
E )εx =

(xa)xE , and setting a = 1 we �nd (b−1
E )εx = x(bx)E . Therefore εx can only

be an automorphism if yεx
E = x(y−1x)E and (xy)x = x(yx) for all y in L.

As {b−1
R , a−1

C , (ab)−1
E } is certainly a generic line of D(L), we see that εx

(extended to LE as in the previous paragraph) is an automorphism of D(L)
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if and only if (xa)(bx) is equal to ((ab)−1)εx for all a, b. That is, if and only
if

(xa)(bx) = (x((ab)−1)−1)x = (x(ab))x

for all a, b.

3.3. Moufang loops
We begin with a result that could well have been in the previous section.
Theorem 3.12. For the loop L, the following are equivalent:

(1) for each of its points p, the Latin square design D(L) admits a
central automorphism with center p;

(2) εx ∈ Aut(D(L)) for all x ∈ L and L has the right inverse property;
(3) εx ∈ Aut(D(L)) for all x ∈ L and L has the left inverse property;
(4) L is an inverse property loop with εx ∈ Aut(D(L)) for all x ∈ L;
(5) L is right Bol and εx ∈ Aut(D(L)) for some x ∈ L;
(6) L is left Bol and εx ∈ Aut(D(L)) for some x ∈ L;
(7) L is right Bol and ρx ∈ Aut(D(L)) for some x ∈ L;
(8) L is left Bol and κx ∈ Aut(D(L)) for some x ∈ L;
(9) L is right Bol and has the anti-automorphic inverse property;

(10) L is left Bol and has the anti-automorphic inverse property;
(11) L is right Bol and has the left inverse property;
(12) L is left Bol and has the right inverse property;
(13) L is an inverse property loop that is is right Bol;
(14) L is an inverse property loop that is is left Bol;
(15) L is right Bol and left Bol.

Proof. By previous results, each of the conditions (2) − (15) is equivalent
to there being a �ber F of D(L) and at least one additional point p /∈ F
such that D(L) admits central automorphisms with center p and each f of
F . This condition is clearly a consequence of (1), so it remains to prove
that conversely this condition implies (1).

Let the �bers of D(L) be F , G, and H with p ∈ G. Then τp switches F
and H, and so

Aut(D(L)) ⊃ { τh |h ∈ H } = { τf | f ∈ F }τp .

Next for q ∈ H we have

Aut(D(L)) ⊃ { τg | g ∈ G } = { τf | f ∈ F }τq .

This gives (1).
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Theorem 3.13. Let L be a loop. Then each of the following conditions is
equivalent to the others and to all the condition of Theorem 3.12.

(M1) (xa)(bx) = (x(ab))x for all x, a, b in L.
(M2) (xa)(bx) = x((ab)x) for all x, a, b in L.
(M3) ((ax)b)x = a(x(bx)) for all x, a, b in L.
(M4) ((xa)x)b = x(a(xb)) for all x, a, b in L.
(M5) For each of its points p, the Latin square design D(L) admits a

central automorphism with center p.

Proof. Condition (M5) is, of course, condition (1) of Theorem 3.12.
If we substitute a = 1 into conditions (M1) and (M3) and b = 1 into

(M2) and (M4), then we get the �exible law (xc)x = x(cx), for all c, x ∈ L.
In particular conditions (M1) and (M2) are equivalent, since they di�er only
by an application of the �exible law on the righthand side.

By Proposition 3.11, being an inverse property loop with condition (M1)
is equivalent to condition (4) of Theorem 3.12. So we show that condition
(M1) forces a loop to be an inverse property loop.

With x = −1b in (M1), an application of the �exible law gives
−1ba = (−1ba)(b(−1b)) = (−1b(ab))(−1b) = −1b((ab)(−1b)) .

We cancel −1b on the left to get the right inverse property a = (ab)(−1b).
Similarly, setting x = a−1, we �nd

ba−1 = (a−1a)(ba−1) = (a−1(ab))a−1 .

The two righthand a−1's cancel to give b = a−1(ab) for all a, b, and this is
the left inverse property. Therefore conditions (M1) and (M2) are equivalent
to all the conditions of Theorem 3.12.

Next consider condition (M3). An application of the �exible law gives
((ax)b)x = a((xb)x)), the right Bol identity. Also x = −1a in (M3) yields

b(−1a) = ((a(−1a))b)(−1a) = a(−1a(b(−1a))) ,

which for z = b(−1a) reads z = a(−1az), a version of the left inverse prop-
erty. Therefore (M3) implies condition (11) of Theorem 3.12. Conversely,
assume as in (11) of Theorem 3.12 that the loop L is a right Bol loop
with the left inverse property. (In particular, inverses are two-sided.) Set
a = x−1 in the right Bol identity to get

bx = ((x−1x)b)x = x−1((xb)x)) .
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The left inverse property then gives x(bx) = (xb)x, the �exible law. But
given the �exible law, condition (M3) and the right Bol identity are equiv-
alent. Therefore (M3) is equivalent to condition (11) of Theorem 3.12.

A similar argument to that of the previous paragraph shows that con-
dition (M4) is equivalent to being a left Bol loop with the right inverse
property, condition (12) of Theorem 3.12. (Alternatively, (M4) is (M3) in
the opposite loop.)

Loops that satisfy all the conditions of the two theorems above are called
Moufang loops after Ruth Moufang [21] who �rst studied the four conditions
(M1) � (M4) of Theorem 3.13. Bol [2] �rst proved the equivalence of these
four conditions, and the further equivalence with conditions (9) � (15) is
well-known. (See, for instance, [26, II.3.10,IV.6.9].) The identity (M4) was
Moufang's original condition, but various authors choose any one of the four
conditions to de�ne Moufang loops. Bruck [3, p. 116] and P�ugfelder [26,
p. 89] prefer (M1).

Here we are particularly interested in condition (M5). The equivalence
of algebraic identities like those of Moufang and Bol with the existence
of various geometric automorphisms, in turn equivalent to the closure of
certain geometric �gures (as seen in the proofs above), goes back to Veblen
and Young [33] (who considered automorphisms of projective planes and
their relationship to Desargues' con�gurations) and to Reidermeister [29],
Thomsen [31], Bol [2], and their collaborators who worked on 3-nets (3-
webs) of parallel classes of lines in the projective plane. See also Bruck
[3] and Pickert [27]. Tits [32] studied automorphisms of nets and groups
with triality speci�cally in the context of the octonions and Cartan's triality
groups. The geometric study has been revived more recently, particularly in
the paper of Funk and P. Nagy [9] which describes in detail the relationships
between Bol re�ections on a 3-net (the dual of central automorphisms of a
Latin square design) and coordinatizing Bol loops. See also [16, 24].

As before, several of the well-known properties of Moufang loops are
immediate from the Theorem 3.13.

Theorem 3.14.
(a) All loop isotopes of a Moufang loop are Moufang loops [26, IV.4.2].
(b) The loop L is a Moufang loop if and only if all its loop isotopes are

inverse property loops [3, VII.2.3], [26, IV.4.3].
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3.4. Multiplication groups
If L is a loop (indeed a quasigroup) then for all x ∈ L the maps

R(x) : L −→ L given by aR(x) = ax

and
L(x) : L −→ L given by aL(x) = xa

are permutations of L. We then de�ne within Sym(L) the right multiplica-
tion group

MR(L) = 〈R(x) |x ∈ L 〉 ,
the left multiplication group

ML(L) = 〈L(x) |x ∈ L 〉 ,
and the multiplication group

M(L) = 〈R(x), L(x) |x ∈ L 〉 = 〈MR(L), ML(L)〉.
The inner mapping group is then the stabilizer of the identity in the multi-
plication group:

I(L) = {α ∈ M(L) | 1α = 1 } .

These groups are often useful. Indeed, in our proof of Lemma 3.9 we
veri�ed and made good use of the fact that the automorphism κzκ1 acted
as the permutation R(z) in its action on the �ber LR:

aκzκ1
R = azR = a

R(z)
R .

Following on from this we easily �nd
Proposition 3.15. Let L be a loop.

(a) If κ1, κz ∈ Aut(D(L)) for some z of L, then

κ1κz ∈ Sym(LR)× Sym(LC)× Sym(LE)

with
κ1κz = ( R(z−1), L(z)R(z), R(z)) .

(b) If ρ1, ρz ∈ Aut(D(L)) for some z of L, then

ρ1ρz ∈ Sym(LR)× Sym(LC)× Sym(LE)

with

ρ1ρz = ( R(z)L(z), L(z−1), L(z)) .



36 J. I. Hall

We thus have

Theorem 3.16.
(a) If L is a right Bol loop, then the automorphism group

〈κ1κz | z ∈ L 〉 = 〈κxκy |x, y ∈ L 〉

acts as the right multiplication group MR(L) on the �bers LR and
LE.

(b) If L is a left Bol loop, then the automorphism group

〈 ρ1ρz | z ∈ L 〉 = 〈 ρxρy |x, y ∈ L 〉

acts as the left multiplication group ML(L) on the �bers LC and
LE.

(c) If L is a Moufang loop, then the automorphism group

〈 ρxρy, κxκy |x, y ∈ L 〉

acts as the multiplication group M(L) on each of the �bers LR, LC ,
and LE.

This theorem (phrased in the dual language of 3-nets and their Bol
re�ections) was one of the main results of Funk and Nagy [9]; and they
went on to explore many of its consequences, particularly for Bol loops.

The maps of the lemma and theorem are special cases of autotopisms
of the loop L. An autotopism of L is a triple

(α, β, γ) ∈ Sym(LR)× Sym(LC)× Sym(LE)

with
x · y = z ⇐⇒ xα · yβ = zγ .

So an autotopism is a self-isotopy (see Section ).
It is immediate that the autotopism group of L is canonically isomorphic

to BAut(D(L)), the normal base subgroup of Aut(D(L)) consisting of all
automorphisms of D(L) that leave each �ber globally �xed.

Let Aut(D(L))0 be the normal subgroup of Aut(D(L)) that is generated
by all central automorphisms. Its base subgroup

BAut(D(L))0 = Aut(D(L))0 ∩ BAut(D(L))

is in turn normal in Aut(D(L)). This is the subgroup of Theorem 3.16(c).



Central automorphisms of Latin square designs and loops 37

A permutation α of the loop L is called a pseudo-automorphism 2 of L
if 1α = 1 and there is an autotopism (α, β, γ). We thus have by Theorem
3.16(c)

Proposition 3.17. [3, Lemma VII.3.2], [26, IV.1.6]. If L is a Moufang
loop, then the inner mapping group I(L) is a normal subgroup of the group
of all pseudo-automorphisms of L.

4. Wreath products and groups with triality
4.1. Wreath products
Let Ω be a �nite set and K a group. For each x ∈ Ω, let Kx be a copy of
K and set B =

⊗
x Kx, the base group. The symmetric group Sym(Ω) acts

on B via
kg

x = kx.g ,

for each g ∈ Sym(Ω). The full wreath product K o Sym(Ω) is then the
extension B.Sym(Ω).

The projection homomorphism is the map π : K o Sym(Ω) −→ Sym(Ω)
with kernel B. The augmented wreath product Wr(K,Ω) is the normal
subgroup of the full wreath product generated by the conjugacy class T =
(a, b)KoSym(Ω) containing the 2-cycle class of Sym(Ω). We call T the set of
transpositions of K o Sym(Ω). The quotient of K o Sym(Ω) by Wr(K, Ω)
is small � the largest abelian quotient of K. Therefore we can think of
K o Sym(Ω) and Wr(K, Ω) as essentially the same group.

Two distinct transpositions of Sym(Ω) have product of order 2 or 3.
Surprisingly this restricted set of product orders maintains in the full wreath
product. This is made precise in the following observation of Zara [34] and
Doro [8]. (See also [14, Theorem 1.1].)

Theorem 4.1. Let T be the transposition class of the full wreath product
K o Sym(Ω) with |Ω| > 3. Let the associated projection homomorphism be
π : K o Sym(Ω) −→ Sym(Ω). Then, for all t, r ∈ T , we have

if π(t) 6= π(r), then |π(t)π(r)| = |tr| .
2 This de�nition is equivalent to the usual equational de�nition for a pseudo-auto-

morphism of a loop; see [26, Theorem III.4.14].
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That is, the product of two transpositions remains of order 2 or 3 in
the full wreath product unless the transpositions are in the same coset of
the base group. A nearly complete converse of this result was given in [14,
Theorem 1.2]:

Theorem 4.2. Let T be a conjugacy class of elements of order 2 in the group
G = 〈T 〉; and let π : G −→ Sym(Ω), with |Ω| ≥ 4, be a homomorphism in
which π(T ) is the transposition class of Sym(Ω). Further assume, for all
t, r ∈ T , that we have

if π(t) 6= π(r), then |π(t)π(r)| = |tr| .

Then there is a group K with

G/Z(G) ' Wr(K,Ω)/Z(Wr(K, Ω)) .

4.2. Groups with triality
The case of Theorem 4.1 that is missing from the characterization Theorem
4.2 is that of |Ω| = 3. The groups satisfying the hypotheses of Theo-
rem 4.2 with |Ω| = 3 have in fact been studied extensively, starting with
Glauberman [12] and Doro [8], under the name of groups with triality; see
[9, 16, 24, 32], for instance. Such groups need not arise from wreath prod-
ucts, Cartan's triality groups PΩ+

8 (F) :Sym(3), for F a �eld, furnishing the
canonical example (and the name).

We have a version of Theorem 4.2 for groups with triality. (In that case
the hypotheses can be streamlined somewhat.) This presents Glauberman
and Doro's correspondence between groups with triality and Moufang loops.

Theorem 4.3. Let T be a conjugacy class of elements of order 2 in the
group G = 〈T 〉, and let π : G −→ Sym(3) be a surjective homomorphism.
Further assume, for all t, r ∈ T , that we have

if π(t) 6= π(r), then |π(t)π(r)| = 3.

Then there is a Moufang loop L (unique up to isotopy) with

G/Z(G) ' Aut(D(L))0 ,

where the class T of size 3|L| maps bijectively to the class of central au-
tomorphisms of Aut(D(L))0, the subgroup of Aut(D(L)) generated by all
central automorphisms.
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Conversely if L is a Moufang loop, then the group G = Aut(D(L))0

generated by the size 3|L| conjugacy class T of central automorphisms is a
group with triality and has the above properties with respect to the projection
map π given by

π(ρk) = (2, 3), π(κk) = (1, 3), π(εk) = (1, 2) ,

for all k ∈ L.

Proof. Given the group G with triality (as in the hypothesis), we form a
partial linear space D whose points are the members of the class T and whose
lines are the various triples of elements of T in a subgroup S ' Sym(3)
generated by members of T and having π(S) = Sym(3). Then D is a Latin
square design whose �bers are the three sets

TR = T ∩ π−1((2, 3)), TC = T ∩ π−1((1, 3)), TE = T ∩ π−1((1, 2)) .

G acts naturally by conjugation on D, the kernel of the action being Z(G),
the center of G. Each element t ∈ T acts on D as the central automorphism
τt with center t. Therefore by Theorem 3.13 there is a Moufang loop L,
unique up to isotopy, with D isomorphic to D(L).

The converse follows from Proposition 2.3 and Theorem 3.13.

In particular, we see that the Zara-Doro Theorem 4.1 in the case |Ω| =
3 is associated with the fact that a group is a special type of Moufang
loop. In the split octonions over the �eld F, the units of norm 1 form
a Moufang loop whose associated group with triality is Cartan's triality
group PΩ+

8 (F) :Sym(3).
The previous two theorems show that there are uniquely determined

minimal groups with triality (and �Ω-ality�), namely those with trivial cen-
ter. There are also uniquely determined maximal (universal) groups, those
with the largest possible center compatible with the hypotheses. This comes
from intermediate results in [14] that also emphasize the connection between
Theorems 4.2 and 4.3. (See also [11, Prop. 2.5].) We �rst need a de�nition.

De�nition 4.4. For a loop L and �nite set Ω of size at least 3, the group
UWr(L,Ω) has the following presentation:

Generators:
〈〈k ; a , b〉〉 for arbitrary k ∈ L and distinct a, b ∈ Ω;

Relations:
for arbitrary k, h ∈ L and distinct a, b, c, d ∈ Ω (as possible):
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(1) 〈〈k ; a , b〉〉2 = 1;
(2) 〈〈k ; a , b〉〉 = 〈〈k−1 ; b , a〉〉;
(3) 〈〈k ; a , b〉〉〈〈h ; b ,c〉〉 = 〈〈kh ; a , c〉〉;
(4) 〈〈k ; a , b〉〉〈〈h ; c ,d〉〉 = 〈〈k ; a , b〉〉.

The relation (4) is empty when |Ω| = 3.
By (3) the set T = { 〈〈k ; a , b〉〉 | k ∈ L, a, b ∈ Ω } is a conjugacy class of

UWr(L,Ω). The class need not be in bijection with the set of the various
(k, {a, b}) (for instance, by (2) if L does not have two-sided inverses).

It is routine to check that UWr(L,Ω) satis�es the hypotheses of The-
orem 4.2 (for |Ω| > 3) with respect to the class T and π(〈〈k ; a , b〉〉) =
(a, b) ∈ Sym(Ω). Indeed, if L is a group, then Wr(L,Ω) is a quotient of
UWr(L,Ω) (as suggested by Theorem 4.1) with the transposition class and
T in bijection (and so the kernel is central).

If L is a Moufang loop and Ω = {R, C,E} then, by Proposition 2.3 and
Theorem 3.13, Aut(D(L))0 is a homomorphic image of the group with trial-
ity UWr(L,Ω) and the class T of UWr(L,Ω) is in bijection with the class of
central automorphisms (so again the kernel is central). The homomorphism
and bijection are given by

〈〈k ; 2 , 3〉〉 7→ ρk, 〈〈k ; 1 , 3〉〉 7→ κk, 〈〈k ; 1 , 2〉〉 7→ εk .

(This also explains why we do not need relations describing the conjugations
〈〈k ; a , b〉〉〈〈h ; a ,b〉〉; by Corollary 2.4 such relations are consequences of those
already speci�ed.)

These two classes of examples are essentially all there are.
Theorem 4.5. Let T be a conjugacy class of elements of order 2 in the group
G = 〈T 〉; and let π : G −→ Sym(Ω), with |Ω| > 3, be a homomorphism in
which π(T ) is the transposition class of Sym(Ω). Further assume, for all
t, r ∈ T , that we have

if π(t) 6= π(r), then |π(t)π(r)| = |tr| .
Then there is a Moufang loop L (unique up to isotopy) and a central sub-
group Z of UWr(L,Ω) with

G ' UWr(L,Ω)/Z .

Here the class T has size 3|L| and is in bijection with the class {〈〈k ; a , b〉〉}
of UWr(L,Ω). The map π factors through the natural map that takes each
〈〈k ; a , b〉〉 to (a, b) ∈ Sym(Ω).

If additionally |Ω| > 4, then the Moufang loop L is a group.
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For |Ω| > 4 this is essentially [14, Theorem 3.7], which is the major step
in the proof of Theorem 4.2 (that is, [14, Theorem 1.2]). For |Ω| = 3 this
is essentially [14, Theorem 4.1] and is an easy consequence of Theorem 4.3
above and intermediate results proven in [14].

For |Ω| = 3 this theorem can also be thought of as locating a unique
largest Moufang quotient of a given loop or, equivalently, for each Latin
square design giving the unique maximal quotient design (possibly of order
1) that admits all possible central automorphisms (as promised at the end
of Section 2).

4.3. Generalized dihedral loops
The previous section suggests that one way of �nding nice Moufang loops
is to �nd nice groups with triality.3

A dihedral group G is one that has a normal cyclic subgroup H of index
2 such that every element g of G\H has order 2 and by conjugation inverts
all elements h of H; that is, gh = h−1g.

We say that the loop L is generalized dihedral precisely when it has a
subloop H of index 2 such that every element g of L \H has order 2 and
by conjugation inverts all elements h of H via gh = h−1g. Dihedral groups
provide examples of generalized dihedral Moufang loops.

A result of Chein [4, Theorem 1] gives

Theorem 4.6. If L is a generalized dihedral Moufang loop, then the subloop
H is a group. For any group H there is a generalized dihedral Moufang loop
L with H as its distinguished subloop of index 2, and such an L is uniquely
determined up to isomorphism.

A construction equivalent to Chein's was given by R.T. Curtis [6] but
was not published. Chein and Curtis gave the Cayley table of L in a simple
form which is derived from that of H.

Here the crucial but elementary observation is this:
The symmetric group Sym(3) = Sym({1, 2, 3}) is a homomorphic
image of Sym(4) = Sym({1, 2, 3, 4}) with transpositions mapped to
transpositions.

Therefore by Theorem 4.1 for any group H the augmented wreath prod-
uct group Wr(H, {1, 2, 3, 4}) is a group with triality and so is associated as

3 Equally well, nice groups with triality can be found from nice Moufang loops.
Witness the unit octonions and Cartan's triality groups.
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in the previous section with a Moufang loop L. The loop turns out to be
generalized dihedral.

Theorem 4.7. [14, Theorem 4.4] Let H be a group. Then the group
UWr(H, {1, 2, 3, 4}) is isomorphic to UWr(L, {1, 2, 3}), the universal group
with triality associated with the generalized dihedral Moufang loop L having
H as its distinguished subloop of index 2.

The theorem says that generalized dihedral Moufang loops come up
naturally, namely as those Moufang loops arising from groups with triality
that are full wreath products by the symmetric group of degree 4.

5. Simple Moufang loops
A nonidentity loop is simple if every surjective loop homomorphism is either
bijective or has image the identity. For instance, if in the split octonions
over a �eld F we take the Moufang loop of norm 1 elements and factor out
the center {±1}, then we have a simple loop P(F), called a Paige loop after
L.J. Paige who �rst observed and proved simplicity [25].

A group G with S ≤ Aut(G) is S-simple if the identity and G are the
only S-invariant normal subgroups of G. The group G is triality-simple if it
is S-simple for S ' Sym(3) and additionally the group G.S is a group with
triality with respect to the conjugacy class containing the transpositions of
S and kerπ = G.

Lemma 5.1. [8, Cor.1.1] Let L be a Moufang loop. Then L is simple if
and only if BAut(D(L))0 is triality-simple.

Lemma 5.2. [8, 23] Let G be a nonabelian triality-simple group. Then one
of:

(a) G.S ' N o Sym(3) for a nonabelian simple group N,
(b) G is simple.

In the second lemma, since S ' Sym(3) and G is nonabelian and S-
simple, there must be a nonabelian simple group N with G the direct prod-
uct of k copies of N for k ∈ {1, 2, 3, 6}. The case k = 1 is conclusion (b).
Doro showed that, for a triality-simple group, k = 6 is not possible and
k = 3 leads to conclusion (a). He also showed that in the special case
of �nite nonabelian triality-simple groups k = 2 cannot occur. Nagy and
Valsecchi later proved that for arbitrary nonabelian triality-simple groups
k = 2 leads to a contradiction.
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5.1. Finite simple Moufang loops
Liebeck [19], using the classi�cation of �nite simple groups, proved

Theorem 5.3. If G is a nonabelian �nite triality-simple group, then G.S
is one of:

(a) N o Sym(3) for a nonabelian �nite simple group N ,
(b) PΩ+

8 (F) :Sym(3) for a �nite �eld F.

With Lemmas 5.1 and 5.2 this yields

Theorem 5.4. [19, Theorem] A �nite simple Moufang loop is either asso-
ciative (and so a �nite simple group) or is isomorphic to a Paige loop P(F)
over a �nite �eld F.

Lagrange's Theorem says that every subgroup of the �nite group G
has order that divides the order of G. It had long been conjectured [5]
that Lagrange's Theorem remains true for �nite Moufang loops. A result of
Bruck [3, Lemma V.2.1] shows that Lagrange's Theorem is true for all �nite
Moufang loops if and only if it is true for all �nite simple Moufang loops. It
is certainly true in the �nite simple groups, so by Liebeck's Theorem 5.4 it
remained to check whether or not Lagrange's Theorem holds in �nite Paige
loops. This was recently done by several groups of people independently,
the �rst being Grishkov and Zavarnitsine [13]. Therefore we have

Theorem 5.5. [10, 11, 13, 20] Every subloop of the �nite Moufang loop L
has order that divides the order of L.

All of the proofs relate subloops of the octonions to subgroups of the
associated group with triality PΩ+

8 (F) :Sym(3) and then carefully study the
subgroup structure of this group.

Just a few years ago, it was possible to say [5] that the two most impor-
tant problems in loop theory were the Lagrange Property for �nite Moufang
loops and the existence of �nite simple Bol loops that are not Moufang. Now
both problems have been resolved positively. Nevertheless, as pointed out
by the referee, it is still open as to whether all �nite Bol loops have the
Lagrange Property. Bruck's result [3, Lemma V.2.1] again reduces this to
the case of simple loops. But Nagy's examples [22] of �nite simple Bol loops
that are not Moufang show that much remains to be done. In particular,
the corresponding result to Doro's Lemma 5.1 is false, since Nagy's smallest
example L (of order 24) has Aut(D(L))0 solvable.
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5.2. Locally �nite simple Moufang loops
An algebraic object is locally �nite if each subobject generated by a �nite
subset is itself �nite. For example the algebraic closure Fp of any �nite �eld
Fp is a locally �nite �eld since any �nite subset of Fp lies in a extension
that has �nite degree over Fp and so is itself �nite. Indeed a �eld is locally
�nite precisely when it is isomorphic to a sub�eld of Fp for some prime p.

A great deal of work has been done in the last twenty-�ve years on the
classi�cation and properties of locally �nite simple groups (for instance,
[15, 18]). Certain techniques go over to Moufang loops, allowing us to
extend Liebeck's theorems by replacing every instance of ��nite� by �locally
�nite.�

Theorem 5.6. If G is a nonabelian locally �nite triality-simple group, then
G.S is one of:

(a) N o Sym(3) for a nonabelian locally �nite simple group N,

(b) PΩ+
8 (F) :Sym(3) for a locally �nite �eld F.

Theorem 5.7. A locally �nite simple Moufang loop is either associative
(and so a locally �nite simple group) or is isomorphic to a Paige loop P(F)
over a locally �nite �eld F.

All locally �nite �elds are countable, and a �nite dimensional algebra
over a countable �eld is countable. Therefore we have the remarkable

Corollary 5.8. An uncountable locally �nite simple Moufang loop is asso-
ciative and so is a locally �nite simple group.

The proofs will appear elsewhere. A crucial initial observation is that
the Moufang loop L is locally �nite if and only if the associated universal
group with triality UWr(L, 3) is locally �nite. This is proven using Theorem
4.5 above. The rest of the argument then uses the techniques of locally �nite
group theory as found in [15, 18].
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