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On central loops and the central square property

John Olidsold Adéniran and Témitopé Gbélahan Jaiyéola

Abstract

The representation sets of a central square C-loop are investigated. Isotopes
of central square C-loops of exponent 4 are shown to be both C-loops and
A-loops.

1. Introduction

C-loops are one of the least studied loops. Few publications that have
considered C-loops include Fenyves [10], [11], Beg [3], [4], Phillips et. al.
[17], [19], [15], [14], Chein [7] and Solarin et. al. [2], [23], [21], [20]. The
difficulty in studying them is as a result of the nature of their identities
when compared with other Bol-Moufang identities (the element occurring
twice on both sides has no other element separating it from itself). Latest
publications on the study of C-loops which has attracted fresh interest on
the structure include [17], [19], and [15].
LC-loops, RC-loops and C-loops are loops that satisfies the identities

(zz)(yz) = (x(zy))z, (2y)(zz) = 2((y2)7), 2(Y(y2)) = ((2Y)y)Z,

respectively. Fenyves’ work in [11] was completed in [17]. Fenyves proved
that LC-loops and RC-loops are defined by three equivalent identities. In
[17| and [18], it was shown that LC-loops and RC-loops are defined by four
equivalent identities. Solarin [21] named the fourth identities the left middle
(LM) and right middle (RM) identities and loops that obey them are called
LM -loops and RM -loops, respectively. These terminologies were also used
n [22]. Their basic properties are found in [19], [11] and [9].

Definition 1.1. A set II of permutations on a set L is the representation
of a loop (L,-) if and only if
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(1) I €Tl (identity mapping),
(13) 1II is transitive on L (i.e., for all z,y € L, there exists a unique 7 € II
such that xm = y),

(iii) if a, 3 € Il and aB~! fixes one element of L, then o = 3.

The left (right) representation of a loop L is denoted by I (L) (resp. II,(L))
or IT (resp. II,) and is defined as the set of all left (right) translation maps
on the loop i.e., if L is a loop, then Iy = {L, : L — L |z € L} and
II,={R;:L— L|xecL}, where R, : L — L and L, : L — L are defined
as yR, = yx and yL, = zy are bijections.

Definition 1.2. Let (L,-) be a loop. The left nucleus of L is the set

Nyx(L,)={a€L:ar-y=a-xyV x,y € L}.
The right nucleus of L is the set

N,L,)={aceL:y-za=yx-aVz,ye L}
The middle nucleus of L is the set

N,(L,)={a€Ll:ya-z=y-axVax,yec L}
The nucleus of L is the set

N(L,-) = Nx(L,-) " Ny(L,-) NN, (L, ).
The centrum of L is the set
C(L,)={a€L:axr=xzaV x e L}
The center of L is the set
Z(L,-)=N(L,-)NnC(L,-).

L is said to be a centrum square loop if 2> € C(L,-) for all z € L.
L is said to be a central square loop if x> € Z(L,-) for all x € L. L is
said to be left alternative if for all x,y € L, x -2y = 2%y and is said to
right alternative if for all z,y € L, yx -2 = y2?. Thus, L is said to be
alternative if it is both left and right alternative. The triple (U, V, W) such
that U, V,W € SYM(L,-) is called an autotopism of L if and only if

2U-yV =(x-yW Va,yel.
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SYM(L,-) is called the permutation group of the loop (L,-). The group
of autotopisms of L is denoted by AUT(L). Let (L,-) and (G,0) be two
distinct loops.

The triple (U,V,W) : (L,-) — (G, o) such that U, VW : L — G are
bijections is called a loop isotopism if and only if

xUoyV =(x-yW Vua,yelL

In [13], the three identities stated in [11] were used to study finite cen-
tral loops and the isotopes of central loops. It was shown that in a finite
RC(LC)-loop L, a3? € I1,(L)(I1 (L)) for all o, 3 € I,(L)(IIx(L)) while in
a C-loop L, a?3 € I1,(L)(II\(L)) for all o, 3 € I, (L) (I5(L)). A C-loop is
both an LC-loop and an RC-loop [11], hence it satisfies the formal. Here,
it will be shown that LC-loops and RC-loops satisfy the later formula.

Also in [13], under triples of the form (A, B, B), (A, B, A), alternative
centrum square loop isotopes of centrum square C-loops were shown to be
C-loops.

It is shown that a finite loop is a central square central loop if and only
if its left and right representations are closed relative to some left and right
translations. Central square C-loops of exponent 4 are groups, hence their
isotopes are both C-loops and A-loops.

For other definitions see [5], [22] and [16].

2. Preliminaries

Definition 2.1. (cf. [16]) Let (L,-) be a loop and U,V,W € SYM(L,-).
If (U, V,W) e AUT(L) for some U,V,W, then U is called an autotopism.
If there exists V € SYM(L,-) such that 2U -y = = - yV for all z,y € L,
then U is called p-regular, while U’ = V is called its adjoint.

The set of autotopic bijections in a loop (L, -) is denoted by (L, -), the
set of all p-regular bijections by ®(L), the set of all adjoints by ®*(L).

Theorem 2.1. ([16]) Groups of autotopisms of isotopic quasigroups are
isomorphic. 0

Theorem 2.2. ([16]) The set of all p-reqular bijections of a quasigroup
(Q,-) is a subgroup of the group X(Q, ) of all autotopic bijections of (Q,-).
O
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Corollary 2.1. ([16]) If two quasigroups Q and Q' are isotopic, then the
corresponding groups ® and ®' [®* and ®"*] are isomorphic. O

Definition 2.2. A loop (L, -) is called a left inverse property loop or right
inverse property loop (L.I.LP.L. or R.I.P.L.) if and only if it satisfies the left
inverse property (resp. right inverse property): z*(zy) =y (resp. (yx)zf =
y. Hence, it is called an inverse property loop (1.P.L.) if and only if it has
the inverse property (I.P.) i.e., it has a left inverse property (L.I.P.) and
right inverse property (R.L.P.).

Most of our results and proofs, are written in dual form relative to RC-
loops and LC-loops. That is, a statement like 'LC(RC)-loop... A(B)’ where
A’ and "B’ are some equations or expressions means that ’A’ is for LC-loops
and 'B’ is for RC-loops.

3. Finite central loops

Lemma 3.1. Let L be a loop. L is an LC(RC)-loop if and only if B € 11,
(IT)) implies o € 11, (I1y) for some o € 11, (I1).

Proof. L is an LC-loop if and only if z- (y-yz) = (z-yy)z for all z,y, z € L.
L is an RC-loop if and only if (zy-y)z = z(yy-x) for all z,y,z € L. Thus, L
is an LC-loop if and only if zRy.,. = zR,2 R, if and only if R 2R, = Ry,
for all y,z € L and L is an RC-loop if and only if L.y, = xL,2 L, if and
only if L.y, = L,2L,. With a = R (L) and 8 = R.(L.), aff € I,
(ILy). O

Lemma 3.2. A loop L is an LC(RC)-loop if and only if o3 = Ba? for all
a € 1Ily (I,) and B € 11, (II).

Proof. L is an LC-loop if and only if z(z - yz) = (z - zy)z while L is an
RC-loop if and only if (zy - )x = 2z(yz - ). Thus, when L is an LC-loop,
yR,L2 = yL2R, if and only if R,L2 = L2R,, while when L is an RC-loop,
yL.R2 = yR2L, if and only if L,R?2 = R2L,. Thus, replacing L, (R,)
and R, (L) respectively by a and 3, We obtain our result. The converse
statement can be proved analogously. O

Theorem 3.1. A loop L is an LC(RC)-loop if and only if o, B € I (IL,)
implies o3 € 11, (I1,).
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Proof. L is an LC-loop if and only if z- (y-yz) = (z-yy)z for all z,y,z € L
while L is an RC-loop if and only if (zy - y)x = z(yy - ) for all z,y,z € L.
Thus when L is an LC-loop, zLg.4y = zLiLI if and only if Lng = Ly.yy
while when L is an RC-loop, szRw = zRyy., if and only if Rng = Ryy.s.
Replacing L,(R,) and L, (R;) with a and 3 respectively, we have o?3 €
IT\(II,) when L is an LC(RC)-loop. The converse follows by reversing the
procedure. O

Theorem 3.2. Let L be an LC(RC)-loop. L is centrum square if and only
if a € 11, (II)) implies o € 11, (I1y) for some B € I1,(ILy).

Proof. By Lemma 3.1, R2R, = Ry, (L,2L. = L.,,). Using Lemma 3.2,
if L is centrum square, R2 = L2 (L; = R,2). So, when L is an LC-loop,
RpR, = LzRZ = Rsz/ = R,R,2» = Ry, while when L is an RC-loop,
LpL.=RIL. = L.Rp = L.Lp = Ly, Let a = R, (L) and § = Ry
(Ly2), then af € II, (ILy) for some 8 € 11, (ILy).

Conversely, if af € 11, (IIy) for some 8 € II,, (I ) such that o« = R, (L)
and 8 = Ry2 (L,2) then R.R» = R, (L.L,2 = L,y,). By Lemma 3.1,
RyzRZ = Ry.y- (Lzy.y = Lysz), thus RzRyz = Rysz (LzLyz = Lysz) if
and only if vz -y? = xy? - 2 (y? - 20 = 2 - y*x). Let = = e, then 2y* = 3z
(%2 = zy?) implies L is centrum square. O

Corollary 3.1. Let L be a loop. L is a centrum square LC(RC)-loop if
and only if

1. ap ell, (Il)) for all a € 11, (I) and for some B € 11, (II,),

2. apell, (ILy) for all B € 11, (II\) and for some o € 11, (IL).

Proof. This follows from Lemma 3.1 and Theorem 3.2. O

4. Isotopes of central loops

In [23] is concluded that central loops are not CC-loops. This means that the
study of the isotopic invariance of C-loops will be trivial. This is, because
if C-loops are CC-loops, then commutative C-loops would be groups since
commutative CC-loops are groups. But from the constructions in [19], it
follows that there are commutative C-loops which are not groups. The
conclusion in [23] is based on the fact that the authors considered a loop of
units in a central algebra.

Theorem 4.1. A loop L is an LC(RC)-loop if and only if (Ry2,L;2,I) €
AUT(L) (resp. (R, L, I) € AUT(L)) for all y € L.
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Proof. According to [19], L is an LC-loop if and only if z- (y-yz) = (z-yy)z
for all z,y,z € L, while L is an RC-loop if and only if (zy - y)x = z(yy - )
forall z,y,z € L. - (y-yz) = (x - yy)z if and only if = - ng =Ry - zif
and only if (R,2, L,?,1) € AUT(L) for all y € L, while (zy-y)z = z(yy - =)
if and only if zR? -z = z -z L, if and only if (Ri, L;Ql, I) € AUT(L) for all
y € L. ]

Corollary 4.1. Let (L,-) be an LC(RC)-loop, then (R,2L2, L,?, L3) (resp.
(R;,L;R%, R2)) belongs to AUT(L) for all x,y € L.

Proof. Tn an LC-loop L, (L2,1I,L2) € AUT(L) while in an RC-loop L
we have (I, R2, R2) € AUT(L). Thus, by Theorem 4.1, for any LC-loop,
(Ry2, L, I)(L2,1,L2) = (RpeL3,L,* L) € AUT(L) and for any RC-
loop, (Ri,L;J,I)(L R;, R3) = (R;L;}R%Ri) € AUT(L). O

Theorem 4.2. A loop L is a C-loop if and only if L is a right (left) alter-
native LC(RC)-loop.

Proof. If (L, ) is an LC(RC)-loop, then by Theorem 4.1, (Ry2, L, 2, I) (resp.
(Ry, L, 1)) € AUT(L) for all y € L. If L has the right (left) alternative
property, then (R;,L;z,l) € AUT(L) for all y € L if and only if L is a
C-loop. O

Lemma 4.1. A loop L is an LC(RC,C)-loop if and only if R,2 € ®(L)
(resp. R2, R € ®(L)) and (Ryp)* = L € ®*(L) (resp. (R})* = L, €
®*(L), (R2)* = L2 € ®*(L)) for all y € L.

Proof. This can be deduced from Theorem 4.1. O

Theorem 4.3. Let (G,-) and (H,o) be two distinct loops. If G is a central
square LC(RC)-loop, H an alternative central square loop and the triple
a = (A, B,B) (resp. a = (A, B,A)) is an isotopism of G onto H, then H
15 a C-loop.

Proof. G'is a LC(RC)-loop if and only if R, (RZ)G ®(G) and (R2)" = Lz
(resp. (RZ)* = L) € ®(G) for all z € G. Using the idea of [6],

'y = B7'L,B and R.; = A7'R,A for all + € G. Using Corol-
lary 2.1, for the case when G is an LC-loop: let h : ®(G) — ®(H) and
h* . *(GQ) — ®*(H) be defined as h(U) = B~'UB for all U € &(G)
and h*(V) = B7'VB for all V € ®*(G). This mappings are isomor-
phisms. Using the hypothesis, h(R,2) = h(L,2) = h(L}) = B"'L2B =
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1 1 2 _
BLyBB'LyB = L)\, = L% = L{ ., = R}, = RZ, € ®(H).
W [(Ry2)*] = h*(L}) = B'L:B = B™'LyL,B = B 'L, BB 1L B =
L aL, 4 L’A € <I>*( )- So, R’2 € ®(H) and (R’z) =L € *(H) for all
Yy € H if and only if H is a C- loop

For the case of RC-loops, using h and h* as above, but now de-
fined as: h(U) = A7IUA for all U € ®(G) and h*(V) = A7V A for
all V€ ®*(G). This mappings are still isomorphisms. Using the hy-
potheses, h(Ry) = A'RZA = AT'RyAAT'R A = RpRp = R;QB €

<I>(H). h*[(R2)] = W (L, ) = *(Rp) = A*1R§A = AIR,RyB =

So, R/y2 € <I>(H) and (R/yQ) Lgf € ®*(H) if and only if H is a C loop. O

Corollary 4.2. Let (G,-) and (H, o) be two distinct loops. If G is a central
square left (right) RC(LC)-loop, H an alternative central square loop and
the triple o = (A, B, B) (resp. a = (A, B, A)) is an isotopism of G onto H,
then H is a C-loop.

Proof. By Theorem 4.2, GG is a C-loop in each case. The rest of the proof
follows by Theorem 4.3. O

Remark 4.1. Corollary 4.2 was proved in [13].

5. Central square C-loops of exponent 4
For a loop (L, ), the bijection J : L — L is defined by xJ = x~

Theorem 5.1. If for a C-loop (L,-) (I, L%, JL?J) or (R%,1,JR?J) lies in
AUT(L), then L is a loop of exponent 4.

Proof. 1f (I, L2, JL%J) € AUT(L) for all 2 6 L, then: a: yL2 (wy)JL2T
for all z,y,2z € L implies x - 2%y = xy - 272, whence 2%y - 22 = y. Then
y* = e. Hence L is a C-loop of exponent 4.

If (R2,1,JR2J) € AUT(L) for all z € L, then: xR? .y = (xy)JR2J
for all #,y,2 € L — (222) -y = [(wy) 124t — (222)  y = 272 (2y) —
(22%) -y = 222 -y — 222 = 2720 — 2* = e. Hence L is a C-loop of
exponent 4. O

Theorem 5.2. Ifin a C-loop L for all z € L (I, L%, JL2J) or (R2,1,JR2J)
is in AUT(L), then L is a central square C-loop of exponent 4.
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Proof. 1f (I, L%, JL?J) € AUT(L) for all z € L, then x - yL? = (wy)JL2J
for all ,y,z € L, whence x - 2%y = zy - z72.

If (R2,1,JR2J) € AUT(L) for all z € L, then xR2 -y = (zy)JR2J for
all z,y,2 € L, whence 222 -y = 272 - 2.

So, in both these cases we have z-2%y = 222y «—— xy-272 = 2 %.2y. For
t = xy, we get tz72 = 272 «— 22t~ = t7122 which implies 22 € C(L,")
for all z € L.

Since C-loops arenuclear square (cf. [19]), we have 22 € Z(L,-). Hence

L is a central square C-loop. By Theorem 5.1, 2% = e. O

Remark 5.1. In [19], C-loops of exponent 2 were found. In [19] and [11] i
is proved that C-loops are naturally nuclear square. Our Theorem 5.2 gives
some conditions under which a C-loop can be naturally central square.

Theorem 5.3. If A= (U,V,W) e AUT(L) for a C-loop (L,-), then A, =
(V,U,JWJ) & AUT(L), but A, = (W, JVJ,U), Ay = (JUJ, W, V) are in
AUT(L).

Proof. The fact that A,, Ay € AUT(L) has been shown in [5] and [16] for
an I.LP.L. L. Let L be a C-loop. Since C-loops are inverse property loops,
Ay, = W, JVIU), Ay = (JUJ,W,V) € AUT(L). A C-loop is both an
RC-loop and an LC-loop. So, (I, R2, R2),(L2,I,L%) € AUT(L,-) for all
x € L. Thus, if A, € AUT(L) when A = (I, R2,R2) and A = (L2,1,L2),
A, = (I,L2,JL2]) € AUT(L) and A, = (R2,1,JR2J) € AUT(L) hence
by Theorem 5.1 and Theorem 5.2, all C-loops are central square and of
exponent 4 (in fact it will soon be seen in Theorem 5.4 that central square
C-loops of exponent 4 are groups), which is false. So, A, = (V,U, JWJ) &
AUT(L). O

Corollary 5.1. If (I, L%, JL?J) € AUT(L), and (R?,1,JR?J) € AUT(L)
for all z € L, where (L,-) is a C-loop, then

1. L s flexible,

2. (zy)? = (yx)? for all z,y € L,

3. x+— 22 is an anti-automorphism.

Proof. This is a consequence of Theorem 5.2, Lemma 5.1 and Corollary 5.2
of [15]. O

Theorem 5.4. A central square C-loop of exponent 4 is a group.
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Proof. To prove this, it shall be shown that R(z,y) = I for all z,y € L.
Using Corollary 5.1 we see that for any w € L will be wR(x,y) =
why R Ry = (wa)y-(zy) ' = (wa)(xya?)-(zy) " = (wa®)(ya?)- (x y) =
(w? ))(yfﬂ) y) = (e ))(wf)(%y) b= w?(aw)® (ya?) (ay)
—UJ( w)?[y-a®(zy) ] = w?(z )[3/93( )} (w;[(_1 a~la?)] =

w(zw)? - [y(y~la)] = wizw)’z = w ( ) - (W) =

w? - (wiz e = v = wd = w — R(w,y) = I — R.R R, =
I «— R,Ry = Ryy +—— zR;Ry = 2Ry «—— 20 -y =2 -2y «— Lis a
group. [

Corollary 5.2. If (I,L2?,JL2J) € AUT(L) and (R2,1,JR%J) € AUT(L)
for all z € L, where L is a C-loop, then L is a group.

Proof. This follows from Theorem 5.2 and Theorem 5.4.

Remark 5.2. Central square C-loops of exponent 4 are A-loops. O
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