
Quasigroups and Related Systems 15 (2007), 191− 200

On central loops and the central square property

John Olúso. lá Adéníran and Tèmító. pé. Gbó. láhàn Jaiyéo. là

Abstract
The representation sets of a central square C-loop are investigated. Isotopes
of central square C-loops of exponent 4 are shown to be both C-loops and
A-loops.

1. Introduction
C-loops are one of the least studied loops. Few publications that have
considered C-loops include Fenyves [10], [11], Beg [3], [4], Phillips et. al.
[17], [19], [15], [14], Chein [7] and Solarin et. al. [2], [23], [21], [20]. The
di�culty in studying them is as a result of the nature of their identities
when compared with other Bol-Moufang identities (the element occurring
twice on both sides has no other element separating it from itself). Latest
publications on the study of C-loops which has attracted fresh interest on
the structure include [17], [19], and [15].

LC-loops, RC-loops and C-loops are loops that satis�es the identities

(xx)(yz) = (x(xy))z, (zy)(xx) = z((yx)x), x(y(yz)) = ((xy)y)z,

respectively. Fenyves' work in [11] was completed in [17]. Fenyves proved
that LC-loops and RC-loops are de�ned by three equivalent identities. In
[17] and [18], it was shown that LC-loops and RC-loops are de�ned by four
equivalent identities. Solarin [21] named the fourth identities the left middle
(LM) and right middle (RM) identities and loops that obey them are called
LM -loops and RM -loops, respectively. These terminologies were also used
in [22]. Their basic properties are found in [19], [11] and [9].

De�nition 1.1. A set Π of permutations on a set L is the representation
of a loop (L, ·) if and only if
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(i) I ∈ Π (identity mapping),
(ii) Π is transitive on L (i.e., for all x, y ∈ L, there exists a unique π ∈ Π

such that xπ = y),
(iii) if α, β ∈ Π and αβ−1 �xes one element of L, then α = β.

The left (right) representation of a loop L is denoted by Πλ(L) (resp. Πρ(L))
or Πλ (resp. Πρ) and is de�ned as the set of all left (right) translation maps
on the loop i.e., if L is a loop, then Πλ = {Lx : L → L | x ∈ L} and
Πρ = {Rx : L → L | x ∈ L}, where Rx : L → L and Lx : L → L are de�ned
as yRx = yx and yLx = xy are bijections.

De�nition 1.2. Let (L, ·) be a loop. The left nucleus of L is the set

Nλ(L, ·) = {a ∈ L : ax · y = a · xy ∀ x, y ∈ L}.
The right nucleus of L is the set

Nρ(L, ·) = {a ∈ L : y · xa = yx · a ∀ x, y ∈ L}.
The middle nucleus of L is the set

Nµ(L, ·) = {a ∈ L : ya · x = y · ax ∀ x, y ∈ L}.
The nucleus of L is the set

N(L, ·) = Nλ(L, ·) ∩Nρ(L, ·) ∩Nµ(L, ·).
The centrum of L is the set

C(L, ·) = {a ∈ L : ax = xa ∀ x ∈ L}.
The center of L is the set

Z(L, ·) = N(L, ·) ∩ C(L, ·).
L is said to be a centrum square loop if x2 ∈ C(L, ·) for all x ∈ L.

L is said to be a central square loop if x2 ∈ Z(L, ·) for all x ∈ L. L is
said to be left alternative if for all x, y ∈ L, x · xy = x2y and is said to
right alternative if for all x, y ∈ L, yx · x = yx2. Thus, L is said to be
alternative if it is both left and right alternative. The triple (U, V, W ) such
that U, V, W ∈ SY M(L, ·) is called an autotopism of L if and only if

xU · yV = (x · y)W ∀ x, y ∈ L.
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SY M(L, ·) is called the permutation group of the loop (L, ·). The group
of autotopisms of L is denoted by AUT (L). Let (L, ·) and (G, ◦) be two
distinct loops.

The triple (U, V, W ) : (L, ·) → (G, ◦) such that U, V, W : L → G are
bijections is called a loop isotopism if and only if

xU ◦ yV = (x · y)W ∀ x, y ∈ L.

In [13], the three identities stated in [11] were used to study �nite cen-
tral loops and the isotopes of central loops. It was shown that in a �nite
RC(LC)-loop L, αβ2 ∈ Πρ(L)

(
Πλ(L)

)
for all α, β ∈ Πρ(L)

(
Πλ(L)

)
while in

a C-loop L, α2β ∈ Πρ(L)
(
Πλ(L)

)
for all α, β ∈ Πρ(L)

(
Πλ(L)

)
. A C-loop is

both an LC-loop and an RC-loop [11], hence it satis�es the formal. Here,
it will be shown that LC-loops and RC-loops satisfy the later formula.

Also in [13], under triples of the form (A,B, B), (A,B, A), alternative
centrum square loop isotopes of centrum square C-loops were shown to be
C-loops.

It is shown that a �nite loop is a central square central loop if and only
if its left and right representations are closed relative to some left and right
translations. Central square C-loops of exponent 4 are groups, hence their
isotopes are both C-loops and A-loops.

For other de�nitions see [5], [22] and [16].

2. Preliminaries
De�nition 2.1. (cf. [16]) Let (L, ·) be a loop and U, V, W ∈ SY M(L, ·).
If (U, V,W ) ∈ AUT (L) for some U, V, W , then U is called an autotopism.
If there exists V ∈ SY M(L, ·) such that xU · y = x · yV for all x, y ∈ L,
then U is called µ-regular, while U ′ = V is called its adjoint.

The set of autotopic bijections in a loop (L, ·) is denoted by Σ(L, ·), the
set of all µ-regular bijections by Φ(L), the set of all adjoints by Φ∗(L).

Theorem 2.1. ([16]) Groups of autotopisms of isotopic quasigroups are
isomorphic.

Theorem 2.2. ([16]) The set of all µ-regular bijections of a quasigroup
(Q, ·) is a subgroup of the group Σ(Q, ·) of all autotopic bijections of (Q, ·).
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Corollary 2.1. ([16]) If two quasigroups Q and Q′ are isotopic, then the
corresponding groups Φ and Φ′ [Φ∗ and Φ′∗] are isomorphic.

De�nition 2.2. A loop (L, ·) is called a left inverse property loop or right
inverse property loop (L.I.P.L. or R.I.P.L.) if and only if it satis�es the left
inverse property (resp. right inverse property): xλ(xy) = y (resp. (yx)xρ =
y. Hence, it is called an inverse property loop (I.P.L.) if and only if it has
the inverse property (I.P.) i.e., it has a left inverse property (L.I.P.) and
right inverse property (R.I.P.).

Most of our results and proofs, are written in dual form relative to RC-
loops and LC-loops. That is, a statement like 'LC(RC)-loop... A(B)' where
'A' and 'B' are some equations or expressions means that 'A' is for LC-loops
and 'B' is for RC-loops.

3. Finite central loops
Lemma 3.1. Let L be a loop. L is an LC(RC)-loop if and only if β ∈ Πρ

(Πλ) implies αβ ∈ Πρ (Πλ) for some α ∈ Πρ (Πλ).

Proof. L is an LC-loop if and only if x · (y ·yz) = (x ·yy)z for all x, y, z ∈ L.
L is an RC-loop if and only if (zy ·y)x = z(yy ·x) for all x, y, z ∈ L. Thus, L
is an LC-loop if and only if xRy·yz = xRy2Rz if and only if Ry2Rz = Ry·yz

for all y, z ∈ L and L is an RC-loop if and only if xLzy·y = xLy2Lz if and
only if Lzy·y = Ly2Lz. With α = Ry2 (Ly2) and β = Rz(Lz), αβ ∈ Πρ

(Πλ).

Lemma 3.2. A loop L is an LC(RC)-loop if and only if α2β = βα2 for all
α ∈ Πλ (Πρ) and β ∈ Πρ (Πλ).

Proof. L is an LC-loop if and only if x(x · yz) = (x · xy)z while L is an
RC-loop if and only if (zy · x)x = z(yx · x). Thus, when L is an LC-loop,
yRzL

2
x = yL2

xRz if and only if RzL
2
x = L2

xRz, while when L is an RC-loop,
yLzR

2
x = yR2

xLz if and only if LzR
2
x = R2

xLz. Thus, replacing Lx (Rx)
and Rz (Lz) respectively by α and β, We obtain our result. The converse
statement can be proved analogously.

Theorem 3.1. A loop L is an LC(RC)-loop if and only if α, β ∈ Πλ (Πρ)
implies α2β ∈ Πλ (Πρ).
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Proof. L is an LC-loop if and only if x · (y · yz) = (x · yy)z for all x, y, z ∈ L
while L is an RC-loop if and only if (zy · y)x = z(yy · x) for all x, y, z ∈ L.
Thus when L is an LC-loop, zLx·yy = zL2

yLx if and only if L2
yLx = Lx·yy

while when L is an RC-loop, zR2
yRx = zRyy·x if and only if R2

yRx = Ryy·x.
Replacing Ly(Ry) and Lx(Rx) with α and β respectively, we have α2β ∈
Πλ(Πρ) when L is an LC(RC)-loop. The converse follows by reversing the
procedure.

Theorem 3.2. Let L be an LC(RC)-loop. L is centrum square if and only
if α ∈ Πρ (Πλ) implies αβ ∈ Πρ (Πλ) for some β ∈ Πρ(Πλ).
Proof. By Lemma 3.1, Ry2Rz = Ry·yz (Ly2Lz = Lzy·y). Using Lemma 3.2,
if L is centrum square, Ry2 = Ly2 (L2

y = Ry2). So, when L is an LC-loop,
Ry2Rz = L2

yRz = RzL
2
y = RzRy2 = Ry·yz, while when L is an RC-loop,

Ly2Lz = R2
yLz = LzRy2 = LzLy2 = Lzy·y. Let α = Rz (Lz) and β = Ry2

(Ly2), then αβ ∈ Πρ (Πλ) for some β ∈ Πρ (Πλ).
Conversely, if αβ ∈ Πρ (Πλ) for some β ∈ Πρ (Πλ) such that α = Rz (Lz)

and β = Ry2 (Ly2) then RzRy2 = Ry·yz (LzLy2 = Lzy·y). By Lemma 3.1,
Ry2Rz = Ry·yz (Lzy·y = Ly2Lz), thus RzRy2 = Ry2Rz (LzLy2 = Ly2Lz) if
and only if xz · y2 = xy2 · z (y2 · zx = z · y2x). Let x = e, then zy2 = y2z
(y2z = zy2) implies L is centrum square.

Corollary 3.1. Let L be a loop. L is a centrum square LC(RC)-loop if
and only if

1. αβ ∈ Πρ (Πλ) for all α ∈ Πρ (Πλ) and for some β ∈ Πρ (Πλ),
2. αβ ∈ Πρ (Πλ) for all β ∈ Πρ (Πλ) and for some α ∈ Πρ (Πλ).

Proof. This follows from Lemma 3.1 and Theorem 3.2.

4. Isotopes of central loops
In [23] is concluded that central loops are not CC-loops. This means that the
study of the isotopic invariance of C-loops will be trivial. This is, because
if C-loops are CC-loops, then commutative C-loops would be groups since
commutative CC-loops are groups. But from the constructions in [19], it
follows that there are commutative C-loops which are not groups. The
conclusion in [23] is based on the fact that the authors considered a loop of
units in a central algebra.
Theorem 4.1. A loop L is an LC(RC)-loop if and only if (Ry2 , L−2

y , I) ∈
AUT (L) (resp. (R2

y, L
−1
y2 , I) ∈ AUT (L)) for all y ∈ L.
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Proof. According to [19], L is an LC-loop if and only if x ·(y ·yz) = (x ·yy)z
for all x, y, z ∈ L, while L is an RC-loop if and only if (zy · y)x = z(yy · x)
for all x, y, z ∈ L. x · (y · yz) = (x · yy)z if and only if x · zL2

y = xRy2 · z if
and only if (Ry2 , L−2

y , I) ∈ AUT (L) for all y ∈ L, while (zy · y)x = z(yy ·x)
if and only if zR2 · x = z · xLy2 if and only if (R2

y, L
−1
y2 , I) ∈ AUT (L) for all

y ∈ L.

Corollary 4.1. Let (L, ·) be an LC(RC)-loop, then (Ry2L2
x, L−2

y , L2
x) (resp.

(R2
y, L

−1
y2 R2

x, R2
x)) belongs to AUT (L) for all x, y ∈ L.

Proof. In an LC-loop L, (L2
x, I, L2

x) ∈ AUT (L) while in an RC-loop L
we have (I, R2

x, R2
x) ∈ AUT (L). Thus, by Theorem 4.1, for any LC-loop,

(Ry2 , L−2
y , I)(L2

x, I, L2
x) = (Ry2L2

x, L−2
y , L2

x) ∈ AUT (L) and for any RC-
loop, (R2

y, L
−1
y2 , I)(I, R2

x, R2
x) = (R2

y, L
−1
y2 R2

x, R2
x) ∈ AUT (L).

Theorem 4.2. A loop L is a C-loop if and only if L is a right (left) alter-
native LC(RC)-loop.

Proof. If (L, ·) is an LC(RC)-loop, then by Theorem 4.1, (Ry2 , L−2
y , I) (resp.

(R2
y, L

−1
y2 , I)) ∈ AUT (L) for all y ∈ L. If L has the right (left) alternative

property, then (R2
y, L

−2
y , I) ∈ AUT (L) for all y ∈ L if and only if L is a

C-loop.

Lemma 4.1. A loop L is an LC(RC, C)-loop if and only if Ry2 ∈ Φ(L)
(resp. R2

y, R2
y ∈ Φ(L)) and (Ry2)∗ = L2

y ∈ Φ∗(L) (resp. (R2
y)
∗ = Ly2 ∈

Φ∗(L), (R2
y)
∗ = L2

y ∈ Φ∗(L)) for all y ∈ L.

Proof. This can be deduced from Theorem 4.1.

Theorem 4.3. Let (G, ·) and (H, ◦) be two distinct loops. If G is a central
square LC(RC)-loop, H an alternative central square loop and the triple
α = (A,B,B) (resp. α = (A,B, A)) is an isotopism of G onto H, then H
is a C-loop.

Proof. G is a LC(RC)-loop if and only if Ry2 (R2
y)∈ Φ(G) and (Ry2)∗ = L2

y

(resp. (R2
y)
∗ = Ly2) ∈ Φ∗(G) for all x ∈ G. Using the idea of [6],

L′xA = B−1LxB and R′
xB = A−1RxA for all x ∈ G. Using Corol-

lary 2.1, for the case when G is an LC-loop: let h : Φ(G) → Φ(H) and
h∗ : Φ∗(G) → Φ∗(H) be de�ned as h(U) = B−1UB for all U ∈ Φ(G)
and h∗(V ) = B−1V B for all V ∈ Φ∗(G). This mappings are isomor-
phisms. Using the hypothesis, h(Ry2) = h(Ly2) = h(L2

y) = B−1L2
yB =
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B−1LyBB−1LyB = L′yAL′yA = L′2yA = L′(yA)2 = R′
(yA)2 = R′2

(yA) ∈ Φ(H).
h∗[(Ry2)∗] = h∗(L2

y) = B−1L2
yB = B−1LyLyB = B−1LyBB−1LyB =

L′yAL′yA = L′2yA ∈ Φ∗(H). So, R′2
y ∈ Φ(H) and (R′2

y )∗ = L′2y ∈ Φ∗(H) for all
y ∈ H if and only if H is a C-loop.

For the case of RC-loops, using h and h∗ as above, but now de-
�ned as: h(U) = A−1UA for all U ∈ Φ(G) and h∗(V ) = A−1V A for
all V ∈ Φ∗(G). This mappings are still isomorphisms. Using the hy-
potheses, h(R2

y) = A−1R2
yA = A−1RyAA−1RyA = R′

yBR′
yB = R′2

yB ∈
Φ(H). h∗[(R2

y)
∗] = h∗(Ly2) = h∗(Ry2) = A−1R2

yA = A−1RyRyB =
B−1RyBB−1RyB = R′

yAR′
yA = R′2

yA = R′
(yA)2 = L′(yA)2 = L′2yA ∈ Φ∗(H).

So, R′2
y ∈ Φ(H) and (R′2

y )∗ = L′2y ∈ Φ∗(H) if and only if H is a C-loop.

Corollary 4.2. Let (G, ·) and (H, ◦) be two distinct loops. If G is a central
square left (right) RC(LC)-loop, H an alternative central square loop and
the triple α = (A,B, B) (resp. α = (A,B, A)) is an isotopism of G onto H,
then H is a C-loop.

Proof. By Theorem 4.2, G is a C-loop in each case. The rest of the proof
follows by Theorem 4.3.

Remark 4.1. Corollary 4.2 was proved in [13].

5. Central square C-loops of exponent 4
For a loop (L, ·), the bijection J : L → L is de�ned by xJ = x−1.

Theorem 5.1. If for a C-loop (L, ·) (I, L2
z, JL2

zJ) or (R2
z, I, JR2

zJ) lies in
AUT (L), then L is a loop of exponent 4.

Proof. If (I, L2
z, JL2

zJ) ∈ AUT (L) for all z ∈ L, then: x · yL2
z = (xy)JL2

zJ
for all x, y, z ∈ L implies x · z2y = xy · z−2, whence z2y · z2 = y. Then
y4 = e. Hence L is a C-loop of exponent 4.

If (R2
z, I, JR2

zJ) ∈ AUT (L) for all z ∈ L, then: xR2
z · y = (xy)JR2

zJ
for all x, y, z ∈ L −→ (xz2) · y = [(xy)−1z2]−1 −→ (xz2) · y = z−2(xy) −→
(xz2) · y = z−2x · y −→ xz2 = z−2x −→ z4 = e. Hence L is a C-loop of
exponent 4.

Theorem 5.2. If in a C-loop L for all z ∈ L (I, L2
z, JL2

zJ) or (R2
z, I, JR2

zJ)
is in AUT (L), then L is a central square C-loop of exponent 4.
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Proof. If (I, L2
z, JL2

zJ) ∈ AUT (L) for all z ∈ L, then x · yL2
z = (xy)JL2

zJ
for all x, y, z ∈ L, whence x · z2y = xy · z−2.

If (R2
z, I, JR2

zJ) ∈ AUT (L) for all z ∈ L, then xR2
z · y = (xy)JR2

zJ for
all x, y, z ∈ L, whence xz2 · y = z−2 · xy.

So, in both these cases we have x·z2y = xz2·y ←→ xy·z−2 = z−2·xy. For
t = xy, we get tz−2 = z−2t ←→ z2t−1 = t−1z2, which implies z2 ∈ C(L, ·)
for all z ∈ L.

Since C-loops arenuclear square (cf. [19]), we have z2 ∈ Z(L, ·). Hence
L is a central square C-loop. By Theorem 5.1, x4 = e.

Remark 5.1. In [19], C-loops of exponent 2 were found. In [19] and [11] i
is proved that C-loops are naturally nuclear square. Our Theorem 5.2 gives
some conditions under which a C-loop can be naturally central square.

Theorem 5.3. If A = (U, V,W ) ∈ AUT (L) for a C-loop (L, ·), then Aρ =
(V,U, JWJ) 6∈ AUT (L), but Aµ = (W,JV J, U), Aλ = (JUJ,W, V ) are in
AUT (L).

Proof. The fact that Aµ, Aλ ∈ AUT (L) has been shown in [5] and [16] for
an I.P.L. L. Let L be a C-loop. Since C-loops are inverse property loops,
Aµ = (W,JV J, U), Aλ = (JUJ,W, V ) ∈ AUT (L). A C-loop is both an
RC-loop and an LC-loop. So, (I,R2

x, R2
x), (L2

x, I, L2
x) ∈ AUT (L, ·) for all

x ∈ L. Thus, if Aρ ∈ AUT (L) when A = (I, R2
x, R2

x) and A = (L2
x, I, L2

x),
Aρ = (I, L2

x, JL2
xJ) ∈ AUT (L) and Aρ = (R2

x, I, JR2
xJ) ∈ AUT (L) hence

by Theorem 5.1 and Theorem 5.2, all C-loops are central square and of
exponent 4 (in fact it will soon be seen in Theorem 5.4 that central square
C-loops of exponent 4 are groups), which is false. So, Aρ = (V, U, JWJ) 6∈
AUT (L).

Corollary 5.1. If (I, L2
z, JL2

zJ) ∈ AUT (L), and (R2
z, I, JR2

zJ) ∈ AUT (L)
for all z ∈ L, where (L, ·) is a C-loop, then

1. L is �exible,
2. (xy)2 = (yx)2 for all x, y ∈ L,
3. x 7→ x3 is an anti-automorphism.

Proof. This is a consequence of Theorem 5.2, Lemma 5.1 and Corollary 5.2
of [15].

Theorem 5.4. A central square C-loop of exponent 4 is a group.
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Proof. To prove this, it shall be shown that R(x, y) = I for all x, y ∈ L.
Using Corollary 5.1 we see that for any w ∈ L will be wR(x, y) =

wRxRyR
−1
xy = (wx)y·(xy)−1 = (wx)(x2yx2)·(xy)−1 = (wx3)(yx2)·(xy)−1 =

(w2(w3x3))(yx2)·(xy)−1 = (w2(xw)3)(yx2)·(xy)−1 = w2(xw)3·(yx2)(xy)−1

= w2(xw)3·[y·x2(xy)−1] = w2(xw)3·[y·x2(y−1x−1)] = w2(xw)3·[y(y−1x−1·x2)] =
w2(xw)3 · [y(y−1x)] = w2(xw)3 · x = w2(w3x3) · x = w2 · (w3x3)x =
w2 · (w3x−1)x = w2w3 = w5 = w ←→ R(x, y) = I ←→ RxRyR

−1
xy =

I ←→ RxRy = Rxy ←→ zRxRy = zRxy ←→ zx · y = z · xy ←→ L is a
group.

Corollary 5.2. If (I, L2
z, JL2

zJ) ∈ AUT (L) and (R2
z, I, JR2

zJ) ∈ AUT (L)
for all z ∈ L, where L is a C-loop, then L is a group.

Proof. This follows from Theorem 5.2 and Theorem 5.4.

Remark 5.2. Central square C-loops of exponent 4 are A-loops.
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